Linear Combinations of Group Means

Size: px
Start display at page:

Download "Linear Combinations of Group Means"

Transcription

1 Linear Combinations of Group Means Look at the handicap example on p. 150 of the text. proc means data=mth567.disability; class handicap; var score; proc sort data=mth567.disability; by handicap; proc boxplot data=mth567.disability; plot score*handicap /boxstyle=schematicid; N HANDICAP Obs N Mean Std Dev Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ AMPUTEE CRUTCHES HEARING NONE WHEELCHAIR SCORE AMPUTEE CRUTCHES HEARING NONE WHEELCHAIR HANDICAP data mth567.dis2; set mth567.disability; if handicap="none" then hand=1; 1

2 if handicap="amputee" then hand=2; if handicap="crutches" then hand=3; if handicap="hearing" then hand=4; if handicap="wheelchair" then hand=5; Give the null and the alternative hypotheses. Dependent Variable: SCORE SCORE The GLM Procedure Sum of Source DF Squares Mean Square F Value Pr > F Model Error Corrected Total R-Square Coeff Var Root MSE SCORE Mean We reject the null hypothesis. Once we reject the null hypothesis, we start to make inferences about the individual group means. We can do this two ways, with Linear Combinations and Multiple Comparisons. Linear Comparisons: proc glm data=mth567.dis2; class hand; model score=hand /clparm; estimate 'wheel-crutch vs. amp-hearing' hand /divisor=2; Standard Parameter Estimate Error t Value Pr > t wheel-crutch vs. amp-hearing Parameter 95% Confidence Limits wheel-crutch vs. amp-hearing

3 Spock Analysis Linear Combinations So with the Spock data, we can decide if we want to compare the mean percentage of women for the Judge Spock got or the average of the means for all other judges! We make Spocks judge, group #1, and we make the other judges groups 2,3,4,5,6, 7. µ H0: µ 1 = 0 6 µ µ 7 H1: µ Let s review the Spock data: data mth567.spock2; set mth567.spock; if judge="a" then judge2=2; if judge="b" then judge2=3; if judge="c" then judge2=4; if judge="d" then judge2=5; if judge="e" then judge2=6; if judge="f" then judge2=7; if judge="spock's" then judge2=1; proc glm data=mth567.spock2; class judge2; model percent=judge2 / clparm; estimate 'Spock vs all others' judge /divisor=6; PERCENT A B C D E F SPOCK'S JUDGE Standard Parameter Estimate Error t Value Pr > t 95% Confidence Limits Spock vs all others <

4 Multiple Comparison Procedures: If the null hypothesis is rejected, the next logical question is where do the means differ? This question is important and one that statisticians have spent a great deal of time answering. proc glm data=mth567.dis2; class hand; model score=hand; means hand /lsd bon cldiff; t Tests (LSD) for SCORE NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. Error Degrees of Freedom 65 Error Mean Square Critical Value of t Least Significant Difference Comparisons significant at the 0.05 level are indicated by ***. Difference hand Between 95% Confidence Comparison Means Limits *** *** *** *** *** ***

5 The GLM Procedure Bonferroni (Dunn) t Tests for SCORE NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than Tukey's for all pairwise comparisons. Error Degrees of Freedom 65 Error Mean Square Critical Value of t Minimum Significant Difference Comparisons significant at the 0.05 level are indicated by ***. proc glm data=mth567.dis2; class hand; model score=hand; means hand /lsd bon ; Difference hand Between Simultaneous 95% Comparison Means Confidence Limits *** ***

6 Means with the same letter are not significantly different. t Grouping Mean N hand A A B A B A B A C B C B C C C Bonferroni (Dunn) t Tests for SCORE NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than REGWQ. Error Degrees of Freedom 65 Error Mean Square Critical Value of t Minimum Significant Difference Means with the same letter are not significantly different. Bon Grouping Mean N hand A A B A B A B A B A B A B B Tukey s Honest Significance Difference Test (HSD) Look at the following experiment where ten guinea pigs in each of 4 groups were fed four different cardiac substances. The main outcome variable was the dosage of the substance when the guinea pigs died. The main goal of the research was to determine if there were any differences among the potencies of the four substances and, if so, to quantify those differences. The data appears below: Substance Substance Substance Substance

7 n = 40, n = 10, k= 4 i Analysis Variable : dosage N substance Obs N Mean Std Dev Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Analysis Variable : dosage N Mean Std Dev Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 7

8 dosage substance Dependent Variable: dosage Sum of Source DF Squares Mean Square F Value Pr > F Model Error Corrected Total proc glm data=mth567.gpig; class substance; model dosage=substance; means substance /lsd cldiff; R-Square Coeff Var Root MSE dosage Mean Error Degrees of Freedom 36 Error Mean Square Critical Value of t Least Significant Difference Comparisons significant at the 0.05 level are indicated by ***. 8

9 Difference substance Between 95% Confidence Comparison Means Limits *** *** *** *** *** *** Note that the above least significant difference is this means that any pairwise difference in means will be significant. Can tell how far apart the group means needed to be in order to be significantly different. proc glm data=mth567.gpig; class substance; model dosage=substance; means substance /tukey cldiff; NOTE: This test controls the Type I experimentwise error rate. Error Degrees of Freedom 36 Error Mean Square Critical Value of Studentized Range Minimum Significant Difference Comparisons significant at the 0.05 level are indicated by ***. Difference Simultaneous substance Between 95% Confidence Comparison Means Limits *** *** *** *** Note that the mean difference here is in order to become significantly different. 9

10 Tukey s test was originally designed for equal sample sizes, but it has been modified to be approximated with unequal sample sizes. It is then called Tukey-Kramer, but in SAS, it is still Tukey. proc glm data=mth567.spock2; class judge2; model percent=judge2; means judge2 /tukey ; The GLM Procedure Tukey's Studentized Range (HSD) Test for PERCENT NOTE: This test controls the Type I experimentwise error rate. Error Degrees of Freedom 39 Error Mean Square Critical Value of Studentized Range More output of all differences not shown Wrap Up 4. Can do a test to see if the variances (ie standard deviations) appear to be equal in each of the groups. This is called Levene s Test for Equality of variances. proc glm data=mth567.gpig; class substance; model dosage=substance; means substance /hovtest; The GLM Procedure Levene's Test for Homogeneity of dosage Variance ANOVA of Squared Deviations from Group Means Sum of Mean Source DF Squares Square F Value Pr > F substance Error If you feel the variances are not equal, then can use the welch option for unequal variances. proc glm data=mth567.gpig; class substance; model dosage=substance; means substance /welch; 10

11 The GLM Procedure Welch's ANOVA for dosage Source DF F Value Pr > F substance Error

T-test: means of Spock's judge versus all other judges 1 12:10 Wednesday, January 5, judge1 N Mean Std Dev Std Err Minimum Maximum

T-test: means of Spock's judge versus all other judges 1 12:10 Wednesday, January 5, judge1 N Mean Std Dev Std Err Minimum Maximum T-test: means of Spock's judge versus all other judges 1 The TTEST Procedure Variable: pcwomen judge1 N Mean Std Dev Std Err Minimum Maximum OTHER 37 29.4919 7.4308 1.2216 16.5000 48.9000 SPOCKS 9 14.6222

More information

Outline. Topic 19 - Inference. The Cell Means Model. Estimates. Inference for Means Differences in cell means Contrasts. STAT Fall 2013

Outline. Topic 19 - Inference. The Cell Means Model. Estimates. Inference for Means Differences in cell means Contrasts. STAT Fall 2013 Topic 19 - Inference - Fall 2013 Outline Inference for Means Differences in cell means Contrasts Multiplicity Topic 19 2 The Cell Means Model Expressed numerically Y ij = µ i + ε ij where µ i is the theoretical

More information

4.8 Alternate Analysis as a Oneway ANOVA

4.8 Alternate Analysis as a Oneway ANOVA 4.8 Alternate Analysis as a Oneway ANOVA Suppose we have data from a two-factor factorial design. The following method can be used to perform a multiple comparison test to compare treatment means as well

More information

Analysis of Variance II Bios 662

Analysis of Variance II Bios 662 Analysis of Variance II Bios 662 Michael G. Hudgens, Ph.D. mhudgens@bios.unc.edu http://www.bios.unc.edu/ mhudgens 2008-10-24 17:21 BIOS 662 1 ANOVA II Outline Multiple Comparisons Scheffe Tukey Bonferroni

More information

Lecture 5: Comparing Treatment Means Montgomery: Section 3-5

Lecture 5: Comparing Treatment Means Montgomery: Section 3-5 Lecture 5: Comparing Treatment Means Montgomery: Section 3-5 Page 1 Linear Combination of Means ANOVA: y ij = µ + τ i + ɛ ij = µ i + ɛ ij Linear combination: L = c 1 µ 1 + c 1 µ 2 +...+ c a µ a = a i=1

More information

STAT 115:Experimental Designs

STAT 115:Experimental Designs STAT 115:Experimental Designs Josefina V. Almeda 2013 Multisample inference: Analysis of Variance 1 Learning Objectives 1. Describe Analysis of Variance (ANOVA) 2. Explain the Rationale of ANOVA 3. Compare

More information

ANALYSIS OF VARIANCE OF BALANCED DAIRY SCIENCE DATA USING SAS

ANALYSIS OF VARIANCE OF BALANCED DAIRY SCIENCE DATA USING SAS ANALYSIS OF VARIANCE OF BALANCED DAIRY SCIENCE DATA USING SAS Ravinder Malhotra and Vipul Sharma National Dairy Research Institute, Karnal-132001 The most common use of statistics in dairy science is testing

More information

N J SS W /df W N - 1

N J SS W /df W N - 1 One-Way ANOVA Source Table ANOVA MODEL: ij = µ* + α j + ε ij H 0 : µ = µ =... = µ j or H 0 : Σα j = 0 Source Sum of Squares df Mean Squares F J Between Groups nj( j * ) J - SS B /(J ) MS B /MS W = ( N

More information

Linear Combinations. Comparison of treatment means. Bruce A Craig. Department of Statistics Purdue University. STAT 514 Topic 6 1

Linear Combinations. Comparison of treatment means. Bruce A Craig. Department of Statistics Purdue University. STAT 514 Topic 6 1 Linear Combinations Comparison of treatment means Bruce A Craig Department of Statistics Purdue University STAT 514 Topic 6 1 Linear Combinations of Means y ij = µ + τ i + ǫ ij = µ i + ǫ ij Often study

More information

Laboratory Topics 4 & 5

Laboratory Topics 4 & 5 PLS205 Lab 3 January 23, 2014 Orthogonal contrasts Class comparisons in SAS Trend analysis in SAS Multiple mean comparisons Laboratory Topics 4 & 5 Orthogonal contrasts Planned, single degree-of-freedom

More information

1 Tomato yield example.

1 Tomato yield example. ST706 - Linear Models II. Spring 2013 Two-way Analysis of Variance examples. Here we illustrate what happens analyzing two way data in proc glm in SAS. Similar issues come up with other software where

More information

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS In our work on hypothesis testing, we used the value of a sample statistic to challenge an accepted value of a population parameter. We focused only

More information

Introduction. Chapter 8

Introduction. Chapter 8 Chapter 8 Introduction In general, a researcher wants to compare one treatment against another. The analysis of variance (ANOVA) is a general test for comparing treatment means. When the null hypothesis

More information

SAS Commands. General Plan. Output. Construct scatterplot / interaction plot. Run full model

SAS Commands. General Plan. Output. Construct scatterplot / interaction plot. Run full model Topic 23 - Unequal Replication Data Model Outline - Fall 2013 Parameter Estimates Inference Topic 23 2 Example Page 954 Data for Two Factor ANOVA Y is the response variable Factor A has levels i = 1, 2,...,

More information

Lec 1: An Introduction to ANOVA

Lec 1: An Introduction to ANOVA Ying Li Stockholm University October 31, 2011 Three end-aisle displays Which is the best? Design of the Experiment Identify the stores of the similar size and type. The displays are randomly assigned to

More information

Descriptions of post-hoc tests

Descriptions of post-hoc tests Experimental Statistics II Page 81 Descriptions of post-hoc tests Post-hoc or Post-ANOVA tests! Once you have found out some treatment(s) are different, how do you determine which one(s) are different?

More information

Biological Applications of ANOVA - Examples and Readings

Biological Applications of ANOVA - Examples and Readings BIO 575 Biological Applications of ANOVA - Winter Quarter 2010 Page 1 ANOVA Pac Biological Applications of ANOVA - Examples and Readings One-factor Model I (Fixed Effects) This is the same example for

More information

Assignment 6 Answer Keys

Assignment 6 Answer Keys ssignment 6 nswer Keys Problem 1 (a) The treatment sum of squares can be calculated by SS Treatment = b a ȳi 2 Nȳ 2 i=1 = 5 (5.40 2 + 5.80 2 + 10 2 + 9.80 2 ) 20 7.75 2 = 92.95 Then the F statistic for

More information

COMPLETELY RANDOM DESIGN (CRD) -Design can be used when experimental units are essentially homogeneous.

COMPLETELY RANDOM DESIGN (CRD) -Design can be used when experimental units are essentially homogeneous. COMPLETELY RANDOM DESIGN (CRD) Description of the Design -Simplest design to use. -Design can be used when experimental units are essentially homogeneous. -Because of the homogeneity requirement, it may

More information

The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization.

The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization. 1 Chapter 1: Research Design Principles The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization. 2 Chapter 2: Completely Randomized Design

More information

PLS205 Lab 2 January 15, Laboratory Topic 3

PLS205 Lab 2 January 15, Laboratory Topic 3 PLS205 Lab 2 January 15, 2015 Laboratory Topic 3 General format of ANOVA in SAS Testing the assumption of homogeneity of variances by "/hovtest" by ANOVA of squared residuals Proc Power for ANOVA One-way

More information

COMPARING SEVERAL MEANS: ANOVA

COMPARING SEVERAL MEANS: ANOVA LAST UPDATED: November 15, 2012 COMPARING SEVERAL MEANS: ANOVA Objectives 2 Basic principles of ANOVA Equations underlying one-way ANOVA Doing a one-way ANOVA in R Following up an ANOVA: Planned contrasts/comparisons

More information

Specific Differences. Lukas Meier, Seminar für Statistik

Specific Differences. Lukas Meier, Seminar für Statistik Specific Differences Lukas Meier, Seminar für Statistik Problem with Global F-test Problem: Global F-test (aka omnibus F-test) is very unspecific. Typically: Want a more precise answer (or have a more

More information

Introduction to Design and Analysis of Experiments with the SAS System (Stat 7010 Lecture Notes)

Introduction to Design and Analysis of Experiments with the SAS System (Stat 7010 Lecture Notes) Introduction to Design and Analysis of Experiments with the SAS System (Stat 7010 Lecture Notes) Asheber Abebe Discrete and Statistical Sciences Auburn University Contents 1 Completely Randomized Design

More information

Multiple Comparison Procedures Cohen Chapter 13. For EDUC/PSY 6600

Multiple Comparison Procedures Cohen Chapter 13. For EDUC/PSY 6600 Multiple Comparison Procedures Cohen Chapter 13 For EDUC/PSY 6600 1 We have to go to the deductions and the inferences, said Lestrade, winking at me. I find it hard enough to tackle facts, Holmes, without

More information

These are all actually contrasts (the coef sum to zero). What are these contrasts representing? What would make them large?

These are all actually contrasts (the coef sum to zero). What are these contrasts representing? What would make them large? Lecture 12 Comparing treatment effects Orthogonal Contrasts What use are contrasts? Recall the Cotton data In this case, the treatment levels have an ordering to them this is not always the case) Consider

More information

Multiple Comparisons

Multiple Comparisons Multiple Comparisons Error Rates, A Priori Tests, and Post-Hoc Tests Multiple Comparisons: A Rationale Multiple comparison tests function to tease apart differences between the groups within our IV when

More information

STAT 5200 Handout #7a Contrasts & Post hoc Means Comparisons (Ch. 4-5)

STAT 5200 Handout #7a Contrasts & Post hoc Means Comparisons (Ch. 4-5) STAT 5200 Handout #7a Contrasts & Post hoc Means Comparisons Ch. 4-5) Recall CRD means and effects models: Y ij = µ i + ϵ ij = µ + α i + ϵ ij i = 1,..., g ; j = 1,..., n ; ϵ ij s iid N0, σ 2 ) If we reject

More information

Analysis of variance and regression. April 17, Contents Comparison of several groups One-way ANOVA. Two-way ANOVA Interaction Model checking

Analysis of variance and regression. April 17, Contents Comparison of several groups One-way ANOVA. Two-way ANOVA Interaction Model checking Analysis of variance and regression Contents Comparison of several groups One-way ANOVA April 7, 008 Two-way ANOVA Interaction Model checking ANOVA, April 008 Comparison of or more groups Julie Lyng Forman,

More information

Analysis of variance. April 16, Contents Comparison of several groups

Analysis of variance. April 16, Contents Comparison of several groups Contents Comparison of several groups Analysis of variance April 16, 2009 One-way ANOVA Two-way ANOVA Interaction Model checking Acknowledgement for use of presentation Julie Lyng Forman, Dept. of Biostatistics

More information

Booklet of Code and Output for STAC32 Final Exam

Booklet of Code and Output for STAC32 Final Exam Booklet of Code and Output for STAC32 Final Exam December 7, 2017 Figure captions are below the Figures they refer to. LowCalorie LowFat LowCarbo Control 8 2 3 2 9 4 5 2 6 3 4-1 7 5 2 0 3 1 3 3 Figure

More information

Analysis of variance. April 16, 2009

Analysis of variance. April 16, 2009 Analysis of variance April 16, 2009 Contents Comparison of several groups One-way ANOVA Two-way ANOVA Interaction Model checking Acknowledgement for use of presentation Julie Lyng Forman, Dept. of Biostatistics

More information

PLS205 Winter Homework Topic 8

PLS205 Winter Homework Topic 8 PLS205 Winter 2015 Homework Topic 8 Due TUESDAY, February 10, at the beginning of discussion. Answer all parts of the questions completely, and clearly document the procedures used in each exercise. To

More information

A posteriori multiple comparison tests

A posteriori multiple comparison tests A posteriori multiple comparison tests 11/15/16 1 Recall the Lakes experiment Source of variation SS DF MS F P Lakes 58.000 2 29.400 8.243 0.006 Error 42.800 12 3.567 Total 101.600 14 The ANOVA tells us

More information

ANOVA Analysis of Variance

ANOVA Analysis of Variance ANOVA Analysis of Variance ANOVA Analysis of Variance Extends independent samples t test ANOVA Analysis of Variance Extends independent samples t test Compares the means of groups of independent observations

More information

Analysis of Covariance

Analysis of Covariance Analysis of Covariance (ANCOVA) Bruce A Craig Department of Statistics Purdue University STAT 514 Topic 10 1 When to Use ANCOVA In experiment, there is a nuisance factor x that is 1 Correlated with y 2

More information

In ANOVA the response variable is numerical and the explanatory variables are categorical.

In ANOVA the response variable is numerical and the explanatory variables are categorical. 1 ANOVA ANOVA means ANalysis Of VAriance. The ANOVA is a tool for studying the influence of one or more qualitative variables on the mean of a numerical variable in a population. In ANOVA the response

More information

Statistics for exp. medical researchers Comparison of groups, T-tests and ANOVA

Statistics for exp. medical researchers Comparison of groups, T-tests and ANOVA Faculty of Health Sciences Outline Statistics for exp. medical researchers Comparison of groups, T-tests and ANOVA Lene Theil Skovgaard Sept. 14, 2015 Paired comparisons: tests and confidence intervals

More information

Example: Four levels of herbicide strength in an experiment on dry weight of treated plants.

Example: Four levels of herbicide strength in an experiment on dry weight of treated plants. The idea of ANOVA Reminders: A factor is a variable that can take one of several levels used to differentiate one group from another. An experiment has a one-way, or completely randomized, design if several

More information

Introduction to Analysis of Variance (ANOVA) Part 2

Introduction to Analysis of Variance (ANOVA) Part 2 Introduction to Analysis of Variance (ANOVA) Part 2 Single factor Serpulid recruitment and biofilms Effect of biofilm type on number of recruiting serpulid worms in Port Phillip Bay Response variable:

More information

Multiple t Tests. Introduction to Analysis of Variance. Experiments with More than 2 Conditions

Multiple t Tests. Introduction to Analysis of Variance. Experiments with More than 2 Conditions Introduction to Analysis of Variance 1 Experiments with More than 2 Conditions Often the research that psychologists perform has more conditions than just the control and experimental conditions You might

More information

PLS205!! Lab 9!! March 6, Topic 13: Covariance Analysis

PLS205!! Lab 9!! March 6, Topic 13: Covariance Analysis PLS205!! Lab 9!! March 6, 2014 Topic 13: Covariance Analysis Covariable as a tool for increasing precision Carrying out a full ANCOVA Testing ANOVA assumptions Happiness! Covariable as a Tool for Increasing

More information

171:162 Design and Analysis of Biomedical Studies, Summer 2011 Exam #3, July 16th

171:162 Design and Analysis of Biomedical Studies, Summer 2011 Exam #3, July 16th Name 171:162 Design and Analysis of Biomedical Studies, Summer 2011 Exam #3, July 16th Use the selected SAS output to help you answer the questions. The SAS output is all at the back of the exam on pages

More information

Outline. Analysis of Variance. Acknowledgements. Comparison of 2 or more groups. Comparison of serveral groups

Outline. Analysis of Variance. Acknowledgements. Comparison of 2 or more groups. Comparison of serveral groups Outline Analysis of Variance Analysis of variance and regression course http://staff.pubhealth.ku.dk/~lts/regression10_2/index.html Comparison of serveral groups Model checking Marc Andersen, mja@statgroup.dk

More information

An Old Research Question

An Old Research Question ANOVA An Old Research Question The impact of TV on high-school grade Watch or not watch Two groups The impact of TV hours on high-school grade Exactly how much TV watching would make difference Multiple

More information

The One-Way Independent-Samples ANOVA. (For Between-Subjects Designs)

The One-Way Independent-Samples ANOVA. (For Between-Subjects Designs) The One-Way Independent-Samples ANOVA (For Between-Subjects Designs) Computations for the ANOVA In computing the terms required for the F-statistic, we won t explicitly compute any sample variances or

More information

Statistics For Economics & Business

Statistics For Economics & Business Statistics For Economics & Business Analysis of Variance In this chapter, you learn: Learning Objectives The basic concepts of experimental design How to use one-way analysis of variance to test for differences

More information

Outline. Analysis of Variance. Comparison of 2 or more groups. Acknowledgements. Comparison of serveral groups

Outline. Analysis of Variance. Comparison of 2 or more groups. Acknowledgements. Comparison of serveral groups Outline Analysis of Variance Analysis of variance and regression course http://staff.pubhealth.ku.dk/~jufo/varianceregressionf2011.html Comparison of serveral groups Model checking Marc Andersen, mja@statgroup.dk

More information

9 One-Way Analysis of Variance

9 One-Way Analysis of Variance 9 One-Way Analysis of Variance SW Chapter 11 - all sections except 6. The one-way analysis of variance (ANOVA) is a generalization of the two sample t test to k 2 groups. Assume that the populations of

More information

One-way between-subjects ANOVA. Comparing three or more independent means

One-way between-subjects ANOVA. Comparing three or more independent means One-way between-subjects ANOVA Comparing three or more independent means Data files SpiderBG.sav Attractiveness.sav Homework: sourcesofself-esteem.sav ANOVA: A Framework Understand the basic principles

More information

Analysis of Variance

Analysis of Variance 1 / 70 Analysis of Variance Analysis of variance and regression course http://staff.pubhealth.ku.dk/~lts/regression11_2 Marc Andersen, mja@statgroup.dk Analysis of variance and regression for health researchers,

More information

Analysis of Variance (ANOVA)

Analysis of Variance (ANOVA) Analysis of Variance (ANOVA) Two types of ANOVA tests: Independent measures and Repeated measures Comparing 2 means: X 1 = 20 t - test X 2 = 30 How can we Compare 3 means?: X 1 = 20 X 2 = 30 X 3 = 35 ANOVA

More information

Week 7.1--IES 612-STA STA doc

Week 7.1--IES 612-STA STA doc Week 7.1--IES 612-STA 4-573-STA 4-576.doc IES 612/STA 4-576 Winter 2009 ANOVA MODELS model adequacy aka RESIDUAL ANALYSIS Numeric data samples from t populations obtained Assume Y ij ~ independent N(μ

More information

One-Way Analysis of Variance (ANOVA) There are two key differences regarding the explanatory variable X.

One-Way Analysis of Variance (ANOVA) There are two key differences regarding the explanatory variable X. One-Way Analysis of Variance (ANOVA) Also called single factor ANOVA. The response variable Y is continuous (same as in regression). There are two key differences regarding the explanatory variable X.

More information

(Foundation of Medical Statistics)

(Foundation of Medical Statistics) (Foundation of Medical Statistics) ( ) 4. ANOVA and the multiple comparisons 26/10/2018 Math and Stat in Medical Sciences Basic Statistics 26/10/2018 1 / 27 Analysis of variance (ANOVA) Consider more than

More information

Introduction to the Analysis of Variance (ANOVA)

Introduction to the Analysis of Variance (ANOVA) Introduction to the Analysis of Variance (ANOVA) The Analysis of Variance (ANOVA) The analysis of variance (ANOVA) is a statistical technique for testing for differences between the means of multiple (more

More information

Chap The McGraw-Hill Companies, Inc. All rights reserved.

Chap The McGraw-Hill Companies, Inc. All rights reserved. 11 pter11 Chap Analysis of Variance Overview of ANOVA Multiple Comparisons Tests for Homogeneity of Variances Two-Factor ANOVA Without Replication General Linear Model Experimental Design: An Overview

More information

STA 303H1F: Two-way Analysis of Variance Practice Problems

STA 303H1F: Two-way Analysis of Variance Practice Problems STA 303H1F: Two-way Analysis of Variance Practice Problems 1. In the Pygmalion example from lecture, why are the average scores of the platoon used as the response variable, rather than the scores of the

More information

Chapter Seven: Multi-Sample Methods 1/52

Chapter Seven: Multi-Sample Methods 1/52 Chapter Seven: Multi-Sample Methods 1/52 7.1 Introduction 2/52 Introduction The independent samples t test and the independent samples Z test for a difference between proportions are designed to analyze

More information

Outline Topic 21 - Two Factor ANOVA

Outline Topic 21 - Two Factor ANOVA Outline Topic 21 - Two Factor ANOVA Data Model Parameter Estimates - Fall 2013 Equal Sample Size One replicate per cell Unequal Sample size Topic 21 2 Overview Now have two factors (A and B) Suppose each

More information

13: Additional ANOVA Topics

13: Additional ANOVA Topics 13: Additional ANOVA Topics Post hoc comparisons Least squared difference The multiple comparisons problem Bonferroni ANOVA assumptions Assessing equal variance When assumptions are severely violated Kruskal-Wallis

More information

PLSC PRACTICE TEST ONE

PLSC PRACTICE TEST ONE PLSC 724 - PRACTICE TEST ONE 1. Discuss briefly the relationship between the shape of the normal curve and the variance. 2. What is the relationship between a statistic and a parameter? 3. How is the α

More information

4:3 LEC - PLANNED COMPARISONS AND REGRESSION ANALYSES

4:3 LEC - PLANNED COMPARISONS AND REGRESSION ANALYSES 4:3 LEC - PLANNED COMPARISONS AND REGRESSION ANALYSES FOR SINGLE FACTOR BETWEEN-S DESIGNS Planned or A Priori Comparisons We previously showed various ways to test all possible pairwise comparisons for

More information

Analysis of variance

Analysis of variance Analysis of variance 1 Method If the null hypothesis is true, then the populations are the same: they are normal, and they have the same mean and the same variance. We will estimate the numerical value

More information

Comparing Several Means: ANOVA

Comparing Several Means: ANOVA Comparing Several Means: ANOVA Understand the basic principles of ANOVA Why it is done? What it tells us? Theory of one way independent ANOVA Following up an ANOVA: Planned contrasts/comparisons Choosing

More information

General Linear Model (Chapter 4)

General Linear Model (Chapter 4) General Linear Model (Chapter 4) Outcome variable is considered continuous Simple linear regression Scatterplots OLS is BLUE under basic assumptions MSE estimates residual variance testing regression coefficients

More information

2 Hand-out 2. Dr. M. P. M. M. M c Loughlin Revised 2018

2 Hand-out 2. Dr. M. P. M. M. M c Loughlin Revised 2018 Math 403 - P. & S. III - Dr. McLoughlin - 1 2018 2 Hand-out 2 Dr. M. P. M. M. M c Loughlin Revised 2018 3. Fundamentals 3.1. Preliminaries. Suppose we can produce a random sample of weights of 10 year-olds

More information

10/31/2012. One-Way ANOVA F-test

10/31/2012. One-Way ANOVA F-test PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 1. Situation/hypotheses 2. Test statistic 3.Distribution 4. Assumptions One-Way ANOVA F-test One factor J>2 independent samples

More information

Lecture 3: Inference in SLR

Lecture 3: Inference in SLR Lecture 3: Inference in SLR STAT 51 Spring 011 Background Reading KNNL:.1.6 3-1 Topic Overview This topic will cover: Review of hypothesis testing Inference about 1 Inference about 0 Confidence Intervals

More information

Introduction to the Analysis of Variance (ANOVA) Computing One-Way Independent Measures (Between Subjects) ANOVAs

Introduction to the Analysis of Variance (ANOVA) Computing One-Way Independent Measures (Between Subjects) ANOVAs Introduction to the Analysis of Variance (ANOVA) Computing One-Way Independent Measures (Between Subjects) ANOVAs The Analysis of Variance (ANOVA) The analysis of variance (ANOVA) is a statistical technique

More information

Two-factor studies. STAT 525 Chapter 19 and 20. Professor Olga Vitek

Two-factor studies. STAT 525 Chapter 19 and 20. Professor Olga Vitek Two-factor studies STAT 525 Chapter 19 and 20 Professor Olga Vitek December 2, 2010 19 Overview Now have two factors (A and B) Suppose each factor has two levels Could analyze as one factor with 4 levels

More information

UNIVERSITY EXAMINATIONS NJORO CAMPUS SECOND SEMESTER 2011/2012

UNIVERSITY EXAMINATIONS NJORO CAMPUS SECOND SEMESTER 2011/2012 UNIVERSITY EXAMINATIONS NJORO CAMPUS SECOND SEMESTER 2011/2012 THIRD YEAR EXAMINATION FOR THE AWARD BACHELOR OF SCIENCE IN AGRICULTURE AND BACHELOR OF SCIENCE IN FOOD TECHNOLOGY AGRO 391 AGRICULTURAL EXPERIMENTATION

More information

The Statistical Sleuth in R: Chapter 5

The Statistical Sleuth in R: Chapter 5 The Statistical Sleuth in R: Chapter 5 Linda Loi Kate Aloisio Ruobing Zhang Nicholas J. Horton January 21, 2013 Contents 1 Introduction 1 2 Diet and lifespan 2 2.1 Summary statistics and graphical display........................

More information

In many situations, there is a non-parametric test that corresponds to the standard test, as described below:

In many situations, there is a non-parametric test that corresponds to the standard test, as described below: There are many standard tests like the t-tests and analyses of variance that are commonly used. They rest on assumptions like normality, which can be hard to assess: for example, if you have small samples,

More information

Topic 6. Two-way designs: Randomized Complete Block Design [ST&D Chapter 9 sections 9.1 to 9.7 (except 9.6) and section 15.8]

Topic 6. Two-way designs: Randomized Complete Block Design [ST&D Chapter 9 sections 9.1 to 9.7 (except 9.6) and section 15.8] Topic 6. Two-way designs: Randomized Complete Block Design [ST&D Chapter 9 sections 9.1 to 9.7 (except 9.6) and section 15.8] The completely randomized design Treatments are randomly assigned to e.u. such

More information

Section 9.4. Notation. Requirements. Definition. Inferences About Two Means (Matched Pairs) Examples

Section 9.4. Notation. Requirements. Definition. Inferences About Two Means (Matched Pairs) Examples Objective Section 9.4 Inferences About Two Means (Matched Pairs) Compare of two matched-paired means using two samples from each population. Hypothesis Tests and Confidence Intervals of two dependent means

More information

Multiple Testing. Gary W. Oehlert. January 28, School of Statistics University of Minnesota

Multiple Testing. Gary W. Oehlert. January 28, School of Statistics University of Minnesota Multiple Testing Gary W. Oehlert School of Statistics University of Minnesota January 28, 2016 Background Suppose that you had a 20-sided die. Nineteen of the sides are labeled 0 and one of the sides is

More information

Booklet of Code and Output for STAC32 Final Exam

Booklet of Code and Output for STAC32 Final Exam Booklet of Code and Output for STAC32 Final Exam December 8, 2014 List of Figures in this document by page: List of Figures 1 Popcorn data............................. 2 2 MDs by city, with normal quantile

More information

PSYC 331 STATISTICS FOR PSYCHOLOGISTS

PSYC 331 STATISTICS FOR PSYCHOLOGISTS PSYC 331 STATISTICS FOR PSYCHOLOGISTS Session 4 A PARAMETRIC STATISTICAL TEST FOR MORE THAN TWO POPULATIONS Lecturer: Dr. Paul Narh Doku, Dept of Psychology, UG Contact Information: pndoku@ug.edu.gh College

More information

The Statistical Sleuth in R: Chapter 5

The Statistical Sleuth in R: Chapter 5 The Statistical Sleuth in R: Chapter 5 Kate Aloisio Ruobing Zhang Nicholas J. Horton June 15, 2016 Contents 1 Introduction 1 2 Diet and lifespan 2 2.1 Summary statistics and graphical display........................

More information

Chapter 10. Design of Experiments and Analysis of Variance

Chapter 10. Design of Experiments and Analysis of Variance Chapter 10 Design of Experiments and Analysis of Variance Elements of a Designed Experiment Response variable Also called the dependent variable Factors (quantitative and qualitative) Also called the independent

More information

Chapter 23: Inferences About Means

Chapter 23: Inferences About Means Chapter 3: Inferences About Means Sample of Means: number of observations in one sample the population mean (theoretical mean) sample mean (observed mean) is the theoretical standard deviation of the population

More information

Analysis of Covariance. The following example illustrates a case where the covariate is affected by the treatments.

Analysis of Covariance. The following example illustrates a case where the covariate is affected by the treatments. Analysis of Covariance In some experiments, the experimental units (subjects) are nonhomogeneous or there is variation in the experimental conditions that are not due to the treatments. For example, a

More information

STAT 501 EXAM I NAME Spring 1999

STAT 501 EXAM I NAME Spring 1999 STAT 501 EXAM I NAME Spring 1999 Instructions: You may use only your calculator and the attached tables and formula sheet. You can detach the tables and formula sheet from the rest of this exam. Show your

More information

Hypothesis T e T sting w ith with O ne O One-Way - ANOV ANO A V Statistics Arlo Clark Foos -

Hypothesis T e T sting w ith with O ne O One-Way - ANOV ANO A V Statistics Arlo Clark Foos - Hypothesis Testing with One-Way ANOVA Statistics Arlo Clark-Foos Conceptual Refresher 1. Standardized z distribution of scores and of means can be represented as percentile rankings. 2. t distribution

More information

General Linear Models (GLM) for Fixed Factors

General Linear Models (GLM) for Fixed Factors Chapter 224 General Linear Models (GLM) for Fixed Factors Introduction This procedure performs analysis of variance (ANOVA) and analysis of covariance (ANCOVA) for factorial models that include fixed factors

More information

Topic 20: Single Factor Analysis of Variance

Topic 20: Single Factor Analysis of Variance Topic 20: Single Factor Analysis of Variance Outline Single factor Analysis of Variance One set of treatments Cell means model Factor effects model Link to linear regression using indicator explanatory

More information

PLS205 Lab 6 February 13, Laboratory Topic 9

PLS205 Lab 6 February 13, Laboratory Topic 9 PLS205 Lab 6 February 13, 2014 Laboratory Topic 9 A word about factorials Specifying interactions among factorial effects in SAS The relationship between factors and treatment Interpreting results of an

More information

13: Additional ANOVA Topics. Post hoc Comparisons

13: Additional ANOVA Topics. Post hoc Comparisons 13: Additional ANOVA Topics Post hoc Comparisons ANOVA Assumptions Assessing Group Variances When Distributional Assumptions are Severely Violated Post hoc Comparisons In the prior chapter we used ANOVA

More information

One-Way ANOVA. Some examples of when ANOVA would be appropriate include:

One-Way ANOVA. Some examples of when ANOVA would be appropriate include: One-Way ANOVA 1. Purpose Analysis of variance (ANOVA) is used when one wishes to determine whether two or more groups (e.g., classes A, B, and C) differ on some outcome of interest (e.g., an achievement

More information

22s:152 Applied Linear Regression. Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA)

22s:152 Applied Linear Regression. Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA) 22s:152 Applied Linear Regression Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA) We now consider an analysis with only categorical predictors (i.e. all predictors are

More information

Lecture 11: Simple Linear Regression

Lecture 11: Simple Linear Regression Lecture 11: Simple Linear Regression Readings: Sections 3.1-3.3, 11.1-11.3 Apr 17, 2009 In linear regression, we examine the association between two quantitative variables. Number of beers that you drink

More information

Multiple comparisons - subsequent inferences for two-way ANOVA

Multiple comparisons - subsequent inferences for two-way ANOVA 1 Multiple comparisons - subsequent inferences for two-way ANOVA the kinds of inferences to be made after the F tests of a two-way ANOVA depend on the results if none of the F tests lead to rejection of

More information

LAMPIRAN. Ket. tn = tidak berbeda nyata

LAMPIRAN. Ket. tn = tidak berbeda nyata LAMPIRAN Lampiran 1.Tabel. Analisis Sidik Ragam Konsumsi ahan Kering analisis sidik ragam Sk Db JK KT Fhit Ftabel 0.05 0.01 Periode 3 4483.91 1494.63 61.23 tn 3.86 6.99 Sapi 3 15.66 5.22 0.21 tn 3.86 6.99

More information

STA2601. Tutorial letter 203/2/2017. Applied Statistics II. Semester 2. Department of Statistics STA2601/203/2/2017. Solutions to Assignment 03

STA2601. Tutorial letter 203/2/2017. Applied Statistics II. Semester 2. Department of Statistics STA2601/203/2/2017. Solutions to Assignment 03 STA60/03//07 Tutorial letter 03//07 Applied Statistics II STA60 Semester Department of Statistics Solutions to Assignment 03 Define tomorrow. university of south africa QUESTION (a) (i) The normal quantile

More information

Tukey Complete Pairwise Post-Hoc Comparison

Tukey Complete Pairwise Post-Hoc Comparison Tukey Complete Pairwise Post-Hoc Comparison Engineering Statistics II Section 10.2 Josh Engwer TTU 2018 Josh Engwer (TTU) Tukey Complete Pairwise Post-Hoc Comparison 2018 1 / 23 PART I PART I: Gosset s

More information

An Analysis of College Algebra Exam Scores December 14, James D Jones Math Section 01

An Analysis of College Algebra Exam Scores December 14, James D Jones Math Section 01 An Analysis of College Algebra Exam s December, 000 James D Jones Math - Section 0 An Analysis of College Algebra Exam s Introduction Students often complain about a test being too difficult. Are there

More information

UV Absorbance by Fish Slime

UV Absorbance by Fish Slime Data Set 1: UV Absorbance by Fish Slime Statistical Setting This handout describes a repeated-measures ANOVA, with two crossed amongsubjects factors and repeated-measures on a third (within-subjects) factor.

More information

Inference About Two Means: Independent Samples

Inference About Two Means: Independent Samples Inference About Two Means: Independent Samples MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Motivation Suppose we wish to study the mean absorption in muscle

More information

1 One-way Analysis of Variance

1 One-way Analysis of Variance 1 One-way Analysis of Variance Suppose that a random sample of q individuals receives treatment T i, i = 1,,... p. Let Y ij be the response from the jth individual to be treated with the ith treatment

More information