2/12/2013. Topics. 14-Per Unit Text: Per Unit. Per Unit. Base Selection. Per Unit

Size: px
Start display at page:

Download "2/12/2013. Topics. 14-Per Unit Text: Per Unit. Per Unit. Base Selection. Per Unit"

Transcription

1 //03 Topics 4 Text: Definitions Analysis & Transformers ThreePhase ECEGR 45 Power ystems Per unit () simplifies system calculations eliminates partitions introduced by transformers erroneous values are easily spotted Normalizes values in the system per unit quantity = actual quantity base value of quantity oltage ase Current ase Power ase mpedance ase Note: base values are scalars 3 4 ase election if is selected to be 5,000 volts and = 37,500 at zero degrees, then 37, ,000 Note: units cancel, so is technicay unitless, but it is common to add a per unit at the end Proper selection of base quantities is essential to simplify the problem base must be a real scalar select base quantities to obey Ohm s Law therefore: 5 6

2 //03 We foow the same procedure to define the power base P Q P jq P Q note error in the book For impedance: R X Y R R X jx 7 8 Let = 00k and = 50A, compute and. Let = 00k and = 50A, compute and MA 9 0 ase election There are two equations that govern the relationship between base values There are four base values that can be assigned,,, Convention is to select and and compute and is typicay selected such that the voltage levels are between 0.95 to.05 Let = 77 = 69.5 A Compute and = 77 R = 554

3 //03 Let = 77 = 69.5 A Compute and A = 77 R = 554 = R = 0.5 We can easily solve the circuit j0 We may wish to convert back to current and power: = /0.5 = 0.5A = /69.5 = 38.5A = R = & Transformers One of the most important advantages of using per unit is realized when transformers are involved n side bases side bases a n & Transformers We then get n,a'n',an n,a'n',,an, And can remove the ideal transformer a a 5 6 Transformer nameplate: k Y/3.8 k Y rated = 60 MA (3 phase) jx L = j Ohms Load: R = 5 Ohms Generator: rated = k rated = 60 MA Find the power out of the generator Transformer nameplate: k Y/3.8 k Y rated = 60 MA (3 phase) jx L = j Ohms Load: R = 5 Ohms Generator: rated = k rated = 60 MA Assign bases generator side = k/(.73) =.7 k =0 MA load side =3.8k/(.73) = 7.9 k = 0 MA 7 8 3

4 //03 Assigned bases generator side = k/(.73) =.7 k =0 MA load side =3.8k/(.73) = 7.9 k = 0 MA Computed bases = ( ) / = 8.07 = ( ) / =3.74 = / =574.6 A = 50. A Transformer impedance () X l = /8.07= 0.0 Load (): R = (5/3.74) =.576 Generator (): =.7k/.7k = 9 0 Transformer X l = 0.0 Load: R =.575 Generator: = olving j MA MA.00 j0.0 R = j0.0 R =.575 To find current: A A Notes on the Transformer impedances are usuay given in (expressed as %) based on threephase power and lineline voltage i.e. X l = % = 0.0 A perphase diagram using per unit values is caed an impedance diagram We considered a YY case. For normal systems, phase shifts are ignored. ee text page 60 for other xfmr connection notes 3 4 4

5 //03 ThreePhase o far we have dealt with per unit as defined by single phase expressions nterested in extension to threephase lineline voltages are used for threephase power used for ThreePhase As with three phase circuits, convention is to always give power base as threephase, and voltage base as lineline Extra notation is given in this lecture and is omitted later ( ) ( ) Change of ase mpedance of machines may not be given in the same base as used in the system ase conversion of impedance can save time new new actual new new new new new (single vs threephase) Given: line = j00, load = 75 (per phase) and =3.8 k (lineline) First without using per unit 7.967k j j0.406 MA 3,an j.9 MA,an = k line =j00 perphase,an load = (single vs threephase) Now using per unit with = 3.8/sqrt(3), = MA Load Line j00 j line =j.575,an =.0 perphase,an load =.8 (single vs threephase) Now find the singlephase and threephase power from the generator: pu j j0.406 pu,pu pu j0.406 MA pu j.9 3,pu pu 3 pu 0.9 j.9 MA

6 //03 (single vs threephase) (single vs threephase) We found the singlephase power to be: pu j j0.406 MA and the threephase power to be: 0.9 j.9 3,pu j.9 MA We define the threephase base power as: 3 3 MA 3 3,pu 0.9 j.9 MA j MA f the single phase power is j0.406, the three phase power is also j0.406 A voltage of.0 in the single phase circuit implies that the lineline voltage is.0 When we do a perphase analysis, the results can be applied the threephase quantities; just remember to use the correct base when converting back to the actual values f we dealing with per unit values only, you need not distinguish between per phase and three phase power, nor lineline voltage and lineneutral voltage 3 3 (single vs threephase) For example: you are doing a problem with = k (lineline), and = 00 MA (threephase). You do a perphase analysis and find:,an,pu = 0.90 pu =.5 (per phase power) What is the lineline voltage at? 0.9 k 9.8k What about the three phase power? MA 50 MA (transformer connections) f we use the bases corresponding to the nameplate ratings, the per unit reactances have the same numerical values in the YY, DY, DD and YD connections as in the single phase case ee example 5. for details Analysis Procedure (normal systems). Pick a A base for the entire system (usuay largest generator rating). Arbitrarily select one voltage base. Relate a others by the ratio of the magnitudes of the opencircuit line voltages of each transformer bank 3. Find the impedance bases in the different sections and express a impedances in consistent per unit terms. 4. Draw the impedance diagram for the entire system, and solve for the desired per unit quantities. 5. Convert back to actual quantities, if needed. 35 6

2/7/2013. Topics. 15-System Model Text: One-Line Diagram. One-Line Diagram

2/7/2013. Topics. 15-System Model Text: One-Line Diagram. One-Line Diagram /7/013 Topics 15-ystem Model Text: 5.8 5.11 One-line Diagram ystem Modeling Regulating Transformers ECEGR 451 Power ystems Dr. Henry Louie 1 Dr. Henry Louie Generator us Transformer Transmission line Circuit

More information

The per unit system is based on the formula shown in Equation (1).

The per unit system is based on the formula shown in Equation (1). TECHNCAL ULLETN 007 Overview The per unit system is based on the formula shown in Equation (1). (1) per unit actual quantity base quantity Using this method, all quantities are expressed as ratios of some

More information

Lecture (5) Power Factor,threephase circuits, and Per Unit Calculations

Lecture (5) Power Factor,threephase circuits, and Per Unit Calculations Lecture (5) Power Factor,threephase circuits, and Per Unit Calculations 5-1 Repeating the Example on Power Factor Correction (Given last Class) P? Q? S? Light Motor From source 1000 volts @ 60 Htz 10kW

More information

Last Comments on Short-Circuit Analysis

Last Comments on Short-Circuit Analysis Last Comments on Short-Circuit Analysis.0 Exam summary Work all HW problems and know them; Read notes Read related book sections Topics:. Symmetrical faults (no book section) 2. Zbus building (9.3-9.6)

More information

ECE 420. Review of Three Phase Circuits. Copyright by Chanan Singh, Panida Jirutitijaroen, and Hangtian Lei, For educational use only-not for sale.

ECE 420. Review of Three Phase Circuits. Copyright by Chanan Singh, Panida Jirutitijaroen, and Hangtian Lei, For educational use only-not for sale. ECE 40 Review of Three Phase Circuits Outline Phasor Complex power Power factor Balanced 3Ф circuit Read Appendix A Phasors and in steady state are sinusoidal functions with constant frequency 5 0 15 10

More information

EE 205 Dr. A. Zidouri. Electric Circuits II. Two-Port Circuits Two-Port Parameters. Lecture #42

EE 205 Dr. A. Zidouri. Electric Circuits II. Two-Port Circuits Two-Port Parameters. Lecture #42 EE 05 Dr. A. Zidouri Electric Circuits Two-Port Circuits Two-Port Parameters Lecture #4-1 - EE 05 Dr. A. Zidouri The material to be covered in this lecture is as follows: o ntroduction to two-port circuits

More information

EE 581 Power Systems. Admittance Matrix: Development, Direct and Iterative solutions

EE 581 Power Systems. Admittance Matrix: Development, Direct and Iterative solutions EE 581 Power Systems Admittance Matrix: Development, Direct and Iterative solutions Overview and HW # 8 Chapter 2.4 Chapter 6.4 Chapter 6.1-6.3 Homework: Special Problem 1 and 2 (see handout) Overview

More information

SHORT QUESTIONS AND ANSWERS. Year/ Semester/ Class : III/ V/ EEE Academic Year: Subject Code/ Name: EE6501/ Power System Analysis

SHORT QUESTIONS AND ANSWERS. Year/ Semester/ Class : III/ V/ EEE Academic Year: Subject Code/ Name: EE6501/ Power System Analysis Srividya colllege of Engg & Tech,Virudhunagar Sri Vidya College of Engineering And Technology Virudhunagar 626 005 Department of Electrical and Electronics Engineering QUESTION BANK SHORT QUESTIONS AND

More information

0-2 Operations with Complex Numbers

0-2 Operations with Complex Numbers Simplify. 1. i 10 2. i 2 + i 8 3. i 3 + i 20 4. i 100 5. i 77 esolutions Manual - Powered by Cognero Page 1 6. i 4 + i 12 7. i 5 + i 9 8. i 18 Simplify. 9. (3 + 2i) + ( 4 + 6i) 10. (7 4i) + (2 3i) 11.

More information

0-2 Operations with Complex Numbers

0-2 Operations with Complex Numbers Simplify. 1. i 10 1 2. i 2 + i 8 0 3. i 3 + i 20 1 i esolutions Manual - Powered by Cognero Page 1 4. i 100 1 5. i 77 i 6. i 4 + i 12 2 7. i 5 + i 9 2i esolutions Manual - Powered by Cognero Page 2 8.

More information

EE 6501 POWER SYSTEMS UNIT I INTRODUCTION

EE 6501 POWER SYSTEMS UNIT I INTRODUCTION EE 6501 POWER SYSTEMS UNIT I INTRODUCTION PART A (2 MARKS) 1. What is single line diagram? A Single line diagram is diagrammatic representation of power system in which the components are represented by

More information

What to Add Next time you update?

What to Add Next time you update? What to Add Next time you update? Work sheet with 3 and 4 resistors Create worksheet of tables Add Hypothesis and Questions Add Lab and Lecture Objectives Add equipment needed Add science standards Review

More information

ELECTRIC POWER CIRCUITS BASIC CONCEPTS AND ANALYSIS

ELECTRIC POWER CIRCUITS BASIC CONCEPTS AND ANALYSIS Contents ELEC46 Power ystem Analysis Lecture ELECTRC POWER CRCUT BAC CONCEPT AND ANALY. Circuit analysis. Phasors. Power in single phase circuits 4. Three phase () circuits 5. Power in circuits 6. ingle

More information

ECE 3300 Standing Waves

ECE 3300 Standing Waves Standing Waves ECE3300 Lossless Transmission Lines Lossless Transmission Line: Transmission lines are characterized by: and Zo which are a function of R,L,G,C To minimize loss: Use high conductivity materials

More information

04-Electric Power. ECEGR 452 Renewable Energy Systems

04-Electric Power. ECEGR 452 Renewable Energy Systems 04-Electric Power ECEGR 452 Renewable Energy Systems Overview Review of Electric Circuits Phasor Representation Electrical Power Power Factor Dr. Louie 2 Introduction Majority of the electrical energy

More information

Lecture 14 Date:

Lecture 14 Date: Lecture 14 Date: 18.09.2014 L Type Matching Network Examples Nodal Quality Factor T- and Pi- Matching Networks Microstrip Matching Networks Series- and Shunt-stub Matching L Type Matching Network (contd.)

More information

Fault Calculation Methods

Fault Calculation Methods ELEC9713 Industrial and Commercial Power Systems Fault Calculation Methods There are two major problems that can occur in electrical systems: these are open circuits and short circuits. Of the two, the

More information

3W Transformer Test Report Impedance Calculator Equations. Use these Equations for: Primary Secondary Primary Tertiary Secondary - Tertiary

3W Transformer Test Report Impedance Calculator Equations. Use these Equations for: Primary Secondary Primary Tertiary Secondary - Tertiary W ransformer est Report Impedance Calculator Equations Loss = est Report Load Losses ot otal Losses Base = est Report MVA %Z = est Report rimary econdary %Impedance VHigh est = est Report rimary Voltage

More information

Exercise Dr.-Ing. Abdalkarim Awad. Informatik 7 Rechnernetze und Kommunikationssysteme

Exercise Dr.-Ing. Abdalkarim Awad. Informatik 7 Rechnernetze und Kommunikationssysteme Exercise1 1.10.015 Informatik 7 Rechnernetze und Kommunikationssysteme Review of Phasors Goal of phasor analysis is to simplify the analysis of constant frequency ac systems v(t) = max cos(wt + q v ) i(t)

More information

4 Fault Calculations. Introduction 4.1. Three phase fault calculations 4.2. Symmetrical component analysis 4.3 of a three-phase network

4 Fault Calculations. Introduction 4.1. Three phase fault calculations 4.2. Symmetrical component analysis 4.3 of a three-phase network ault Calculations ntroduction 4. Three phase fault calculations 4. Symmetrical component analysis 4.3 of a three-phase network Equations and network connections 4.4 for various types of faults Current

More information

Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur 1

Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur 1 Module 4 Single-phase A ircuits ersion EE IIT, Kharagpur esson 4 Solution of urrent in -- Series ircuits ersion EE IIT, Kharagpur In the last lesson, two points were described:. How to represent a sinusoidal

More information

Module 4. Single-phase AC Circuits

Module 4. Single-phase AC Circuits Module 4 Single-phase AC Circuits Lesson 14 Solution of Current in R-L-C Series Circuits In the last lesson, two points were described: 1. How to represent a sinusoidal (ac) quantity, i.e. voltage/current

More information

Power Systems - Basic Concepts and Applications - Part I

Power Systems - Basic Concepts and Applications - Part I PDHonline Course E104 (1 PDH) Power ystems Basic Concepts and Applications Part I Instructor: hihmin Hsu PhD PE 01 PDH Online PDH Center 57 Meadow Estates Drive Fairfax A 006658 Phone & Fax: 709880088

More information

Imaginary Impedance Axis. Real Impedance Axis. Smith Chart. The circles, tangent to the right side of the chart, are constant resistance circles

Imaginary Impedance Axis. Real Impedance Axis. Smith Chart. The circles, tangent to the right side of the chart, are constant resistance circles The Smith Chart The Smith Chart is simply a graphical calculator for computing impedance as a function of reflection coefficient. Many problems can be easily visualized with the Smith Chart The Smith chart

More information

Per Unit Analysis. Single-Phase systems

Per Unit Analysis. Single-Phase systems Per Unit Analyi The per unit method of power ytem analyi eliminate the need for converion of voltae, current and impedance acro every tranformer in the circuit. n addition, the need to tranform from 3-

More information

Revised October 6, EEL , Henry Zmuda. 2. Three-Phase Circuits 1

Revised October 6, EEL , Henry Zmuda. 2. Three-Phase Circuits 1 Three Phase Circuitsit Revised October 6, 008. Three-Phase Circuits 1 Preliminary Comments and a quick review of phasors. We live in the time domain. We also assume a causal (nonpredictive) world. Real-world

More information

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems Modified for Physics 18, Brooklyn College I. Overview of Experiment In this

More information

Fault Analysis Power System Representation

Fault Analysis Power System Representation .1. Power System Representation Single Line Diagram: Almost all modern power systems are three phase systems with the phases of equal magnitude and equal phase difference (i.e., 10 o ). These three phase

More information

SESSION 3. Short Circuit Calculations, Unsymmetrical Faults. Leonard Bohmann, Michigan State University Elham Makram, Clemson University

SESSION 3. Short Circuit Calculations, Unsymmetrical Faults. Leonard Bohmann, Michigan State University Elham Makram, Clemson University SESSON Short Circuit Calculations, Unsymmetrical Faults Leonard Bohmann, Michigan State University Elham Makram, Clemson University Short Circuit Calculations Leonard Bohmann Michigan State University

More information

Power system model. Olof Samuelsson. EIEN15 Electric Power Systems L2 1

Power system model. Olof Samuelsson. EIEN15 Electric Power Systems L2 1 Power system model Olof Samuelsson 1 Outline Previously: Models for lines, generator, power electronic converter, transformer Single line diagram Per unit Bus admittance matrix Bus impedance matrix Thévenin

More information

In the previous chapter, attention was confined

In the previous chapter, attention was confined 4 4 Principles of Power System CHAPTE CHAPTE 8 Unsymmetrical Fault Calculations 8. Usymmetrical Faults on -Phase System 8. Symmetrical Components Method 8. Operator a 8.4 Symmetrical Components in Terms

More information

EE 451 Power System Stability

EE 451 Power System Stability EE 451 Power System Stability Power system operates in synchronous mode Power system is subjected to a wide range of disturbances (small and large) - Loads and generation changes - Network changes - Faults

More information

Unit 21 Capacitance in AC Circuits

Unit 21 Capacitance in AC Circuits Unit 21 Capacitance in AC Circuits Objectives: Explain why current appears to flow through a capacitor in an AC circuit. Discuss capacitive reactance. Discuss the relationship of voltage and current in

More information

Physics-272 Lecture 20. AC Power Resonant Circuits Phasors (2-dim vectors, amplitude and phase)

Physics-272 Lecture 20. AC Power Resonant Circuits Phasors (2-dim vectors, amplitude and phase) Physics-7 ecture 0 A Power esonant ircuits Phasors (-dim vectors, amplitude and phase) What is reactance? You can think of it as a frequency-dependent resistance. 1 ω For high ω, χ ~0 - apacitor looks

More information

Intro Activities Worksheet

Intro Activities Worksheet Intro Activities Worksheet Understanding the cience and Mathematics Note: You may use the definitions to help you complete the activities below. Activity 1: Discovering Nondestructive Testing (NDT) You

More information

ELEC273 Lecture Notes Set 11 AC Circuit Theorems

ELEC273 Lecture Notes Set 11 AC Circuit Theorems ELEC273 Lecture Notes Set C Circuit Theorems The course web site is: http://users.encs.concordia.ca/~trueman/web_page_273.htm Final Exam (confirmed): Friday December 5, 207 from 9:00 to 2:00 (confirmed)

More information

Impedance and Admittance Parameters

Impedance and Admittance Parameters 1/31/011 mpedance and Admittance Parameters lecture 1/ mpedance and Admittance Parameters Say we wish to connect the put of one circuit to the input of another. #1 put port input port # The terms input

More information

How to measure complex impedance at high frequencies where phase measurement is unreliable.

How to measure complex impedance at high frequencies where phase measurement is unreliable. Objectives In this course you will learn the following Various applications of transmission lines. How to measure complex impedance at high frequencies where phase measurement is unreliable. How and why

More information

Ch 8. Three-phase systems

Ch 8. Three-phase systems Ch 8. Three-ase systems Lecture outcomes (what you are supposed to learn): Generation of three-ase voltages Connection of three-ase circuits Wye-Delta transformation Power of three-ase connected loads

More information

Power system model. Olof Samuelsson. EIEN15 Electric Power Systems L2

Power system model. Olof Samuelsson. EIEN15 Electric Power Systems L2 Power system model Olof Samuelsson EIEN15 Electric Power Systems L2 1 Outline Previously: Models for lines, generator, power electronic converter, transformer Single line diagram Per unit Bus admittance

More information

ELG4125: Power Transmission Lines Steady State Operation

ELG4125: Power Transmission Lines Steady State Operation ELG4125: Power Transmission Lines Steady State Operation Two-Port Networks and ABCD Models A transmission line can be represented by a two-port network, that is a network that can be isolated from the

More information

KEEP THIS QUIZ CLOSED AND FACE UP UNTIL YOU ARE TOLD TO BEGIN.

KEEP THIS QUIZ CLOSED AND FACE UP UNTIL YOU ARE TOLD TO BEGIN. Name: Signature Date: (rint) ECE 300 -- Quiz #6 S.. Brankovic Section MW 11:30 AM Dec. 5th, 005 KEE THIS QUI CLOSED AND FACE U UNTIL YOU AE TOLD TO BEGIN. 1. is quiz is closed book, closed notes. You can

More information

At point G V = = = = = = RB B B. IN RB f

At point G V = = = = = = RB B B. IN RB f Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F

More information

Microwave Circuit Design I

Microwave Circuit Design I 9 1 Microwave Circuit Design I Lecture 9 Topics: 1. Admittance Smith Chart 2. Impedance Matching 3. Single-Stub Tuning Reading: Pozar pp. 228 235 The Admittance Smith Chart Since the following is also

More information

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, 2006 6-7 pm, Room TBA First retrieve your EE2110 final and other course papers and notes! The test will be closed book

More information

ELEC Introduction to power and energy systems. The per unit system. Thierry Van Cutsem

ELEC Introduction to power and energy systems. The per unit system. Thierry Van Cutsem ELEC0014 - Introduction to power and energy systems The per unit system Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 12 Principle The per unit system Principle

More information

JFET Homework. Nov. 4, 2007, rev. Nov. 12, 2015

JFET Homework. Nov. 4, 2007, rev. Nov. 12, 2015 Nov. 4, 2007, rev. Nov. 12, 2015 These homework problems provide practice with analysis and design involving the most common type of JFET circuits. There is one problem for each type of circuit. Answers

More information

Electrical Machines-I Prof. D. Kastha Department of Electrical Engineering Indian Institute of Technology, Kharagpur

Electrical Machines-I Prof. D. Kastha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Electrical Machines-I Prof. D. Kastha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Potential and Current Transformers (Refer Slide Time: 00:37) So far we

More information

In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents

In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents around an electrical circuit. This is a short lecture,

More information

SOME USEFUL NETWORK THEOREMS

SOME USEFUL NETWORK THEOREMS APPENDIX D SOME USEFUL NETWORK THEOREMS Introduction In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin s theorem Norton s theorem

More information

DISTRIBUTION TRANSFORMERS MODELING WITH ANGULAR DISPLACEMENT - ACTUAL VALUES AND PER UNIT ANALYSIS

DISTRIBUTION TRANSFORMERS MODELING WITH ANGULAR DISPLACEMENT - ACTUAL VALUES AND PER UNIT ANALYSIS DISTRIBUTION TRANSFORMERS MODELING WITH ANGULAR DISPLACEMENT - ACTUAL VALUES AND PER UNIT ANALYSIS Dario E Rodas R drodas@utpeduco Luis F Ochoa luis_ochoa@ieeeorg Antonio Padilha-Feltrin padilha@deefeisunespbr

More information

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur Module 4 Single-phase circuits ersion EE T, Kharagpur esson 6 Solution of urrent in Parallel and Seriesparallel ircuits ersion EE T, Kharagpur n the last lesson, the following points were described:. How

More information

Calculations of Capacitance for Transposed Bundled Conductor Transmission Lines

Calculations of Capacitance for Transposed Bundled Conductor Transmission Lines Calculations of Capacitance for Transposed Bundled Conductor Transmission Lines Multi-conductor Lines. An example with a conductor bundle r: conductor radius, d: distance between conductors of the same

More information

Three Phase Circuits

Three Phase Circuits Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/ OUTLINE Previously on ELCN102 Three Phase Circuits Balanced

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-4 Biasing

More information

SSC-JE EE POWER SYSTEMS: GENERATION, TRANSMISSION & DISTRIBUTION SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL

SSC-JE EE POWER SYSTEMS: GENERATION, TRANSMISSION & DISTRIBUTION SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL 1 SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL Power Systems: Generation, Transmission and Distribution Power Systems: Generation, Transmission and Distribution Power Systems:

More information

EE301 RESISTANCE AND OHM S LAW

EE301 RESISTANCE AND OHM S LAW Learning Objectives a. Describe the concept of resistance b. Use Ohm s law to calculate current, voltage, and resistance values in a circuit c. Discuss the difference between an open circuit and a short

More information

09-Circuit Theorems Text: , 4.8. ECEGR 210 Electric Circuits I

09-Circuit Theorems Text: , 4.8. ECEGR 210 Electric Circuits I 09Circuit Theorems Text: 4.1 4.3, 4.8 ECEGR 210 Electric Circuits I Overview Introduction Linearity Superposition Maximum Power Transfer Dr. Louie 2 Introduction Nodal and mesh analysis can be tedious

More information

THE UNIVERSITY OF NEW SOUTH WALES. School of Electrical Engineering & Telecommunications FINALEXAMINATION. Session

THE UNIVERSITY OF NEW SOUTH WALES. School of Electrical Engineering & Telecommunications FINALEXAMINATION. Session Name: Student ID: Signature: THE UNIVERSITY OF NEW SOUTH WALES School of Electrical Engineering & Telecommunications FINALEXAMINATION Session 00 ELEC46 Power System Analysis TIME ALLOWED: 3 hours TOTAL

More information

Power System Engineering Prof. Debapriya Das Department of Electrical Engineering Indian Institute of Technology, Kharagpur

Power System Engineering Prof. Debapriya Das Department of Electrical Engineering Indian Institute of Technology, Kharagpur Power System Engineering Prof. Debapriya Das Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture 41 Application of capacitors in distribution system (Contd.) (Refer Slide

More information

TRANSMISSION LINES AND MATCHING

TRANSMISSION LINES AND MATCHING TRANSMISSION LINES AND MATCHING for High-Frequency Circuit Design Elective by Michael Tse September 2003 Contents Basic models The Telegrapher s equations and solutions Transmission line equations The

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK Course Name : Computer Methods in Power Systems Course Code : A60222

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 4 120906 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Voltage Divider Current Divider Node-Voltage Analysis 3 Network Analysis

More information

Lesson 17: Synchronous Machines

Lesson 17: Synchronous Machines Lesson 17: Synchronous Machines ET 332b Ac Motors, Generators and Power Systems Lesson 17_et332b.pptx 1 Learning Objectives After this presentation you will be able to: Explain how synchronous machines

More information

Electric Circuits II Power Measurement. Dr. Firas Obeidat

Electric Circuits II Power Measurement. Dr. Firas Obeidat Electric Circuits II Power Measurement Dr. Firas Obeidat 1 Table of contents 1 Single-Phase Power Measurement 2 Three-Phase Power Measurement 2 Single-Phase Power Measurement The wattmeter is the instrument

More information

Power system conductor volume calculation

Power system conductor volume calculation Power system conductor volume calculation Dr Audih alfaoury T&D power systems 2017-1018 Electrical Energy Engineering Department Dr Audih alfaoury 1 The transmission of electric power is carried at high

More information

QUIZ 1 SOLUTION. One way of labeling voltages and currents is shown below.

QUIZ 1 SOLUTION. One way of labeling voltages and currents is shown below. F 14 1250 QUIZ 1 SOLUTION EX: Find the numerical value of v 2 in the circuit below. Show all work. SOL'N: One method of solution is to use Kirchhoff's and Ohm's laws. The first step in this approach is

More information

EE2351 POWER SYSTEM OPERATION AND CONTROL UNIT I THE POWER SYSTEM AN OVERVIEW AND MODELLING PART A

EE2351 POWER SYSTEM OPERATION AND CONTROL UNIT I THE POWER SYSTEM AN OVERVIEW AND MODELLING PART A EE2351 POWER SYSTEM OPERATION AND CONTROL UNIT I THE POWER SYSTEM AN OVERVIEW AND MODELLING PART A 1. What are the advantages of an inter connected system? The advantages of an inter-connected system are

More information

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras Lecture No - 42 Fully Differential Single Stage Opamp Hello and welcome

More information

Direct Current (DC): In a DC circuit the current and voltage are constant as a function of time. Power (P): Rate of doing work P = dw/dt units = Watts

Direct Current (DC): In a DC circuit the current and voltage are constant as a function of time. Power (P): Rate of doing work P = dw/dt units = Watts Lecture 1: Introduction Some Definitions: Current (I): Amount of electric charge (Q) moving past a point per unit time I dq/dt Coulombs/sec units Amps (1 Coulomb 6x10 18 electrons) oltage (): Work needed

More information

Chapter 4: Higher-Order Differential Equations Part 3

Chapter 4: Higher-Order Differential Equations Part 3 Chapter 4: Higher-Order Differential Equations Part 3 王奕翔 Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 29, 2013 1 / 24 王奕翔 DE Lecture 7 1 Solving Systems of

More information

Transmission Line Input Impedance

Transmission Line Input Impedance 1/22/23 Transmission e Input Impedance.doc 1/9 Transmission e Input Impedance Consider a lossless le, length, termated with a load. I(z) I + V (z) -, β + V - z z What is the put impedance of this le? Q:

More information

ECEN 667 Power System Stability Lecture 18: Voltage Stability, Load Models

ECEN 667 Power System Stability Lecture 18: Voltage Stability, Load Models ECEN 667 Power System Stability Lecture 18: Voltage Stability, Load Models Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, overbye@tamu.edu 1 Announcements Read Chapter

More information

Design of Narrow Band Filters Part 1

Design of Narrow Band Filters Part 1 E.U.I.T. Telecomunicación 2010, Madrid, Spain, 27.09 30.09.2010 Design of Narrow Band Filters Part 1 Thomas Buch Institute of Communications Engineering University of Rostock Th. Buch, Institute of Communications

More information

Circuit Analysis and Ohm s Law

Circuit Analysis and Ohm s Law Study Unit Circuit Analysis and Ohm s Law By Robert Cecci Circuit analysis is one of the fundamental jobs of an electrician or electronics technician With the knowledge of how voltage, current, and resistance

More information

3-3 Complex Numbers. Simplify. SOLUTION: 2. SOLUTION: 3. (4i)( 3i) SOLUTION: 4. SOLUTION: 5. SOLUTION: esolutions Manual - Powered by Cognero Page 1

3-3 Complex Numbers. Simplify. SOLUTION: 2. SOLUTION: 3. (4i)( 3i) SOLUTION: 4. SOLUTION: 5. SOLUTION: esolutions Manual - Powered by Cognero Page 1 1. Simplify. 2. 3. (4i)( 3i) 4. 5. esolutions Manual - Powered by Cognero Page 1 6. 7. Solve each equation. 8. Find the values of a and b that make each equation true. 9. 3a + (4b + 2)i = 9 6i Set the

More information

Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi

Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi AC Machines Operating Principles: Synchronous Motor In synchronous motors, the stator of the motor has a rotating magnetic

More information

Impedance Matching. Generally, Z L = R L + jx L, X L 0. You need to turn two knobs to achieve match. Example z L = 0.5 j

Impedance Matching. Generally, Z L = R L + jx L, X L 0. You need to turn two knobs to achieve match. Example z L = 0.5 j Impedance Matching Generally, Z L = R L + jx L, X L 0. You need to turn two knobs to achieve match. Example z L = 0.5 j This time, we do not want to cut the line to insert a matching network. Instead,

More information

Logic Design II (17.342) Spring Lecture Outline

Logic Design II (17.342) Spring Lecture Outline Logic Design II (17.342) Spring 2012 Lecture Outline Class # 10 April 12, 2012 Dohn Bowden 1 Today s Lecture First half of the class Circuits for Arithmetic Operations Chapter 18 Should finish at least

More information

1 CHAPTER 13 ALTERNATING CURRENTS + A B FIGURE XIII.1

1 CHAPTER 13 ALTERNATING CURRENTS + A B FIGURE XIII.1 3. Alternating current in an inductance CHAPTE 3 ALTENATNG CUENTS & + A B FGUE X. n the figure we see a current increasing to the right and passing through an inductor. As a consequence of the inductance,

More information

You know for EE 303 that electrical speed for a generator equals the mechanical speed times the number of poles, per eq. (1).

You know for EE 303 that electrical speed for a generator equals the mechanical speed times the number of poles, per eq. (1). Stability 1 1. Introduction We now begin Chapter 14.1 in your text. Our previous work in this course has focused on analysis of currents during faulted conditions in order to design protective systems

More information

Power Transformers 1. Download/read notes on transformers from website. 2. Download HW4 on website; I will give due-date next week. 3.

Power Transformers 1. Download/read notes on transformers from website. 2. Download HW4 on website; I will give due-date next week. 3. Power Transformers. Download/read notes on transformers from website.. Download HW4 on website; I will give due-date next week.. Read Chapters 5 and 6 in Kirtley s text Power Industry Uses of Transformers

More information

University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department

University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department EE471: Electrical Machines-II Tutorial # 2: 3-ph Induction Motor/Generator Question #1 A 100 hp, 60-Hz, three-phase

More information

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When more devices are added to a series circuit, the total circuit resistance: a.

More information

Z n. 100 kv. 15 kv. pu := 1. MVA := 1000.kW. Transformer nameplate data: X T_pu := 0.1pu S T := 10MVA. V L := 15kV. V H := 100kV

Z n. 100 kv. 15 kv. pu := 1. MVA := 1000.kW. Transformer nameplate data: X T_pu := 0.1pu S T := 10MVA. V L := 15kV. V H := 100kV /9 j := pu := MVA :=.kw 7.. Three MVA, -5 kv transformers have nameplate impedances of % and are connected Δ-Y with the high voltage side Δ. Find the zero sequence equivalent circuit. kv Z n 5 kv Transformer

More information

Chapter 6. Induction Motors. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 6. Induction Motors. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Induction Motors 1 The Development of Induced Torque in an Induction Motor Figure 6-6 The development of induced torque in an induction motor. (a) The rotating stator field B S induces a voltage

More information

Transmission Line Fault Analysis using Bus Impedance Matrix Method

Transmission Line Fault Analysis using Bus Impedance Matrix Method Transmission Line Fault Analysis using Bus mpedance Matrix Method Prajakta. Dhole 1 First Year Engineering Department, JSPM's mperial College of Engg. & Research, Wagholi, Pune Savitribai Phule Pune University,

More information

(Refer Slide Time: 1:49)

(Refer Slide Time: 1:49) Analog Electronic Circuits Professor S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology Delhi Lecture no 14 Module no 01 Midband analysis of FET Amplifiers (Refer Slide

More information

Lecture 7: Two-Ports (2)

Lecture 7: Two-Ports (2) Lecture 7: Two-Ports (2) Amin Arbabian Jan M. Rabaey EE142 Fall 2010 Sept. 16 th, 2010 Announcements HW3 Posted, due Thursday September 23 rd, 330pm EE142 drop box. Office hours Two-Port notes by Professor

More information

Power Factor Improvement

Power Factor Improvement Salman bin AbdulazizUniversity College of Engineering Electrical Engineering Department EE 2050Electrical Circuit Laboratory Power Factor Improvement Experiment # 4 Objectives: 1. To introduce the concept

More information

Two Port Networks. Definition of 2-Port Network A two-port network is an electrical network with two separate ports for input and output

Two Port Networks. Definition of 2-Port Network A two-port network is an electrical network with two separate ports for input and output Two Port Networks Definition of 2-Port Network A two-port network is an electrical network with two separate ports for input and output What is a Port? It is a pair of terminals through which a current

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II )

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) Most of the content is from the textbook: Electronic devices and circuit theory,

More information

Regulating Transformers in Sequence Domain

Regulating Transformers in Sequence Domain ECE523: Lecture 25; Page 1/8 pu 1 Regulating Transformers in Sequence Domain A three-phase voltage regulating transformer has a per unit leakage reactance of.1, and steps the voltage from 69 kv to 35 kv.

More information

Lecture Outline. Scattering at an Impedance Discontinuity Power on a Transmission Line Voltage Standing Wave Ratio (VSWR) 8/10/2018

Lecture Outline. Scattering at an Impedance Discontinuity Power on a Transmission Line Voltage Standing Wave Ratio (VSWR) 8/10/2018 Course Instructor Dr. Raymond C. Rumpf Office: A 337 Phone: (95) 747 6958 E Mail: rcrumpf@utep.edu EE 4347 Applied Electromagnetics Topic 4d Scattering on a Transmission Line Scattering These on a notes

More information

What s Your (real or imaginary) LCR IQ?

What s Your (real or imaginary) LCR IQ? Chroma Systems Solutions, Inc. What s Your (real or imaginary) LCR IQ? 11021, 11025 LCR Meter Keywords:. Impedance, Inductance, Capacitance, Resistance, Admittance, Conductance, Dissipation Factor, 4-Terminal

More information

KINGS COLLEGE OF ENGINEERING Punalkulam

KINGS COLLEGE OF ENGINEERING Punalkulam KINGS COLLEGE OF ENGINEERING Punalkulam 613 303 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING POWER SYSTEM ANALYSIS QUESTION BANK UNIT I THE POWER SYSTEM AN OVERVIEW AND MODELLING PART A (TWO MARK

More information

Fig. 1-1 Current Flow in a Resistive load

Fig. 1-1 Current Flow in a Resistive load 1 Electric Circuits: Current flow in a resistive load flows either from (-) to () which is labeled below as Electron flow or the Conventional flow from () to (-). We will use conventional flow in this

More information

CHAPTER 5 STEADY-STATE ANALYSIS OF THREE-PHASE SELF-EXCITED INDUCTION GENERATORS

CHAPTER 5 STEADY-STATE ANALYSIS OF THREE-PHASE SELF-EXCITED INDUCTION GENERATORS 6 CHAPTER 5 STEADY-STATE ANALYSIS OF THREE-PHASE SELF-EXCITED INDUCTION GENERATORS 5.. INTRODUCTION The steady-state analysis of six-phase SEIG has been discussed in the previous chapters. In this chapter,

More information

ENE 104 Electric Circuit Theory

ENE 104 Electric Circuit Theory Electric Circuit Theory Lecture 11: : Dejwoot KHAWPARSUTH http://webstaff.kmutt.ac.th/~dejwoot.kha/ Objectives : Ch12 Page 2 single-phase and polyphase systems Y- and Δ- connected three-phase system per-phase

More information

Two Port Characterizations

Two Port Characterizations lectronc Crcuts Two Port Characterzatons Contents Input and output resstances Two port networks Models Prof. C.K. Tse: -port networks Impedances and loadng effects Voltage amplfers R s R out smaller the

More information