A Bayesian Approach to Stein-Optimal Covariance Matrix Estimation

Size: px
Start display at page:

Download "A Bayesian Approach to Stein-Optimal Covariance Matrix Estimation"

Transcription

1 A Bayesan Approach to Sten-Optmal Covarance Matrx Estmaton Ben Gllen Calforna Insttute of Technology Unversty of Calforna Irvne Econometrcs Semnar November 5 013

2 Estmatng Large Covarance Matrces Central parameter n portfolo mean-varance optmzaton and hgh-dmensonal IV problem

3 Estmatng Large Covarance Matrces Central parameter n portfolo mean-varance optmzaton and hgh-dmensonal IV problem Dffcult to Estmate due to Curse of Dmensonalty N assets requre estmatng N(N+1)/ parameters Number of equtes under consderaton commonly exceeds number of observatons (T)

4 Estmatng Large Covarance Matrces Central parameter n portfolo mean-varance optmzaton and hgh-dmensonal IV problem Dffcult to Estmate due to Curse of Dmensonalty N assets requre estmatng N(N+1)/ parameters Number of equtes under consderaton commonly exceeds number of observatons (T) Sample Covarance Matrx Estmator Problems Estmator s effectvely undentfed when N > T Frequently non-nvertble n fnte samples Performs poorly n out of sample applcatons

5 Sparse Approach to Covarance Estmaton Lnear k-factor structure for the covarance matrx r F F F t 1 1 t k kt t t t cov F t Fjt j cov Ft jt 0 cov t jt 0 j j Jacobs Levy & Markowtz (013) Sharpe (1963) Markowtz & Perold (1985)

6 Sparse Approach to Covarance Estmaton Lnear k-factor structure for the covarance matrx r F F F t 1 1 t k kt t t t cov F t Fjt j cov Ft jt 0 cov t jt 0 j j Impled covarance matrx structure & plug-n estmator BB Bˆˆ Bˆˆ F S F Jacobs Levy & Markowtz (013) Sharpe (1963) Markowtz & Perold (1985)

7 Sparse Approach to Covarance Estmaton Lnear k-factor structure for the covarance matrx r F F F t 1 1 t k kt t t t cov F t Fjt j cov Ft jt 0 cov t jt 0 j j Impled covarance matrx structure & plug-n estmator BB Bˆˆ Bˆˆ F S F Factor structure facltates varance optmzaton Jacobs Levy & Markowtz (013) Sharpe (1963) Markowtz & Perold (1985)

8 Sparse Approach to Covarance Estmaton Lnear k-factor structure for the covarance matrx r F F F t 1 1 t k kt t t t cov F t Fjt j cov Ft jt 0 cov t jt 0 j j Impled covarance matrx structure & plug-n estmator BB Bˆˆ Bˆˆ Factor structure facltates varance optmzaton F S F Number of factors and factor models can be selected usng lkelhood-rato type approaches Connor & Koracyzk (1996) Ba & Ng (00) Jacobs Levy & Markowtz (013) Ng (008) Sharpe (1963) Markowtz & Perold (1985)

9 Sparse Approach to Covarance Estmaton Lnear k-factor structure for the covarance matrx r F F F t 1 1 t k kt t t t cov F t Fjt j cov Ft jt 0 cov t jt 0 j j Impled covarance matrx structure & plug-n estmator BB Bˆˆ Bˆˆ Factor structure facltates varance optmzaton F S F Number of factors and factor models can be selected usng lkelhood-rato type approaches Recent approaches apply LASSO model-selecton devces to select factor model Connor & Koracyzk (1996) Ba & Ng (00) Lam & Fan (009) Ng (008) Fan Lao & Mncheva (011) Fan Lv & Q (011)

10 Ledot & Wolf Shrnkage Approach Model structured covarance matrx as a pror belef Estmator shrnks unbased covarance matrx estmator toward a target covarance matrx: ˆ * S (1 ) S F Ledot & Wolf ( ) Ledot & Wolf (01 013)

11 Ledot & Wolf Shrnkage Approach Model structured covarance matrx as a pror belef Estmator shrnks unbased covarance matrx estmator toward a target covarance matrx: * ˆ S (1 ) F S Optmzes Shrnkage Intensty () to mnmze expected loss under Frobenus Norm: * arg mn E SF 1S 01 Ledot & Wolf ( ) Ledot & Wolf (01 013)

12 Ledot & Wolf Shrnkage Approach Model structured covarance matrx as a pror belef Estmator shrnks unbased covarance matrx estmator toward a target covarance matrx: * ˆ S (1 ) F S Optmzes Shrnkage Intensty () to mnmze expected loss under Frobenus Norm: * arg mn E SF 1S 01 Shrnkage towards dentty matrx corresponds to standard regularzaton technques Tkhonov regularzaton for covarance matrx nverse Quadratc constrant on optmal portfolo weghts Ledot & Wolf ( ) Ledot & Wolf (01 013) Smon & Smon (011) Garlapp Uppal & Wang (010) Fan Zhang & Yu (01)

13 Bayesan Regresson Model of Covarance Objectves of Analyss Provde flexble devce for nterpretng structured covarance matrx estmators Characterze pror belefs consstent wth standard regularzaton technques Derve optmal regularzaton wthn ths framework

14 Bayesan Regresson Model of Covarance Objectves of Analyss Provde flexble devce for nterpretng structured covarance matrx estmators Characterze pror belefs consstent wth standard regularzaton technques Derve optmal regularzaton wthn ths framework Represent unrestrcted return generatng process as factor model wth N mean zero orthogonal factors r F F F t 1 1 t k Nt t t t Central Idea: Use pror belefs to mpose structure on posteror expected factor loadngs ( 1 N )

15 Bayesan Structure for Covarance Matrx Estmaton Bayesan Lnear Regresson Model as a devce for mposng structure on the Posteror Expected Covarance Matrx

16 Bayesan Regresson Model of Covarance Represent unrestrcted return generatng process as factor model wth N mean zero orthogonal factors r F F F t 1 1 t k Nt t t t Assumpton: Means and factor covarance matrx known

17 Bayesan Regresson Model of Covarance Represent unrestrcted return generatng process as factor model wth N mean zero orthogonal factors r F F F t 1 1 t k Nt t t t Assumpton: Means and factor covarance matrx known Example: Prncpal component factors and covarance matrx egenstructure Factor covarance matrx corresponds to egenvalues The factor loadngs ( 1 N ) correspond to the th row of the matrx of egenvectors The cross secton of factor loadngs ( 1k Nk ) correspond to the k th egenvector Ledot & Wolf (01 013)

18 Bayesan Regresson Model of Covarance Represent unrestrcted return generatng process as factor model wth N mean zero orthogonal factors r F F F Structure: Informatve prors shrnk factor loadngs t 1 1 t k Nt t t t Sngle Factor Pror: f k 1 k ~ pror N 0 Vk Vk c otherwse Cross-Sectonal Mean-Revertng Pror: 1 N ~ N V ˆ V c k pror k k k N 1 k k

19 Bayesan Regresson Model of Covarance Represent unrestrcted return generatng process as factor model wth N mean zero orthogonal factors r F F F t 1 1 t k Nt t t t Problem: Zero resdual varance mples degenerate lkelhood for data Smlar to overft n nonparametrc regresson

20 Bayesan Regresson Model of Covarance Represent unrestrcted return generatng process as factor model wth N mean zero orthogonal factors r F F F Problem: Zero resdual varance mples degenerate lkelhood for data Smlar to overft n nonparametrc regresson Requres ntroducng addtonal dosyncratc nose wth a bandwdth parameter h such that: Var h t T t 1 1 t k Nt t t t The bandwdth affects optmal mplementaton but not propertes of models wth pre-specfed prors

21 Normal-Gamma Conjugate Model of Covarance Lkelhood of data for seres n terms of ˆ 1 p r 1 1 ;0 h N FF p G T

22 Normal-Gamma Conjugate Model of Covarance Lkelhood of data for seres n terms of ˆ 1 p r 1 1 ;0 h N FF p G T Conjugate Pror for Factor Loadngs 1 s ~ - v pror NG

23 Normal-Gamma Conjugate Model of Covarance 1 s ~ - v pror NG 1 F lkelhood N G FF 1 ˆ ˆ h 1 L ; ~ - T

24 Normal-Gamma Conjugate Model of Covarance 1 s ~ - v pror NG 1 F lkelhood N G FF 1 ˆ ˆ h 1 L ; ~ - T Happly Natural Conjugate Posteror T 1 s ~ - 1 v r t Ft N G t 1 1 FF 1 FF ˆ 1 1 FF v v T s vs T N s FF 1 1 ˆ ˆ v T 1

25 Normal-Gamma Conjugate Model of Covarance 1 s ~ - v pror NG 1 F lkelhood N G FF 1 ˆ ˆ h 1 L ; ~ - T Happly Natural Conjugate Posteror T 1 s ~ - 1 v r t Ft N G t 1 1 FF 1 FF ˆ 1 1 FF v v T 1 1 ˆ s ˆ v T vs T N s FF 1

26 Posteror Covarance Matrx Expectaton The posteror covarance matrx expectaton s: B T r F N G s v ~ - 1 t t t1 1 1 FF 1 FF ˆ s vs T N s FF 1 1 ˆ ˆ v T 1 B B * k s k 0 s s N k1 k kk N

27 Posteror Factor Loadngs for Orthogonal Model Lkelhood and Data 1 ˆ p r 1 1 ;0 h N FF p G T dag... ; FF T * 11 NN

28 Posteror Factor Loadngs for Orthogonal Model Lkelhood and Data 1 ˆ p r 1 1 ;0 h N FF p G T Conjugate Pror 1 s ~ - v pror NG dag... ; FF T * 11 dag NN... ; 1 N

29 Posteror Factor Loadngs for Orthogonal Model Lkelhood and Data 1 ˆ p r 1 1 ;0 h N FF p G T Conjugate Pror 1 s ~ - v pror NG dag... ; FF T * 11 dag... ; 1 N Then T 1 s ~ - 1 v r t Ft N G t where ˆ 1 ˆ k Tkk k k Tkk k 1 k k k k k NN

30 Bayesan Representatons for Shrnkage Estmators Emprcally-specfed prors mpose structure consstent wth shrnkage-based estmators

31 Shrnkage Representaton for Orthogonal Model Denote T 1 s ~ - 1 v r t Ft N G t 1 ˆ k k k k k B B 1 Bˆ k 1 k k N k k k k k

32 Shrnkage Representaton for Orthogonal Model Denote T 1 s ~ - 1 v r t Ft N G t 1 ˆ Here the posteror covarance matrx expectaton has a shrnkage representaton N kk k k kk k k k k k k k1 k1 N k 1 BB BB 1 BB ˆ ˆ BB 1 BB ˆ ˆ k k k k k B B 1 Bˆ k 1 k k N k k k k k N k kk k k k kk k k

33 Pror Representaton for Ledot & Wolf Shrnkage Specfy orthogonal (emprcal) pror belefs such that: 1 s ~ v pror N G dag N ˆ 1 k 1 1 k ; k Tkk 0 k 0 1 vs 1 v T ˆ ˆ FF ˆ

34 Pror Representaton for Ledot & Wolf Shrnkage Specfy orthogonal (emprcal) pror belefs such that: 1 s ~ v pror N G dag N ˆ 1 k 1 1 k ; k Tkk 0 k 0 1 vs 1 v T ˆ ˆ FF ˆ Then the posteror covarance matrx s equvalent to the Ledot & Wolf Sngle-Factor Shrnkage Model 1 ˆ ˆ 1 BB BB S SF SF

35 Pror Representaton for General Shrnkage Suppose a covarance matrx estmator takes the form: * ˆ 1 S 0

36 Pror Representaton for General Shrnkage Suppose a covarance matrx estmator takes the form: * ˆ 1 S Consder the egenvalue decomposton: B B ˆ

37 Pror Representaton for General Shrnkage Suppose a covarance matrx estmator takes the form: * ˆ 1 S Consder the egenvalue decomposton: B B ˆ Then s the posteror expected covarance matrx n the orthogonal model wth pror belefs: s ~ - v pror NG dag... 1 N 1 B T k 0 k k kk

38 Pror Belefs and Non-negatve GMVP Weghts Non-negatvty of GMVP s equvalent to a style of shrnkage of the sample covarance matrx Jagannathan & Ma (003)

39 Pror Belefs and Non-negatve GMVP Weghts Non-negatvty of GMVP s equvalent to a style of shrnkage of the sample covarance matrx Consder the problem: * w arg mn wsw w N 1 st.. w 0 Jagannathan & Ma (003)

40 Pror Belefs and Non-negatve GMVP Weghts Non-negatvty of GMVP s equvalent to a style of shrnkage of the sample covarance matrx Consder the problem: * w arg mn wsw w N 1 st.. w 0 Let be the vector of shadow costs for the nonnegatvty constrant then the soluton s equvalent to: * * w arg mn w w w N 1 * N 0.5S 0.5 S 1 1 N Jagannathan & Ma (003)

41 Pror Belefs and Non-negatve GMVP Weghts Non-negatvty of GMVP s equvalent to a style of shrnkage of the sample covarance matrx Consder the problem: * w arg mn wsw w N 1 st.. w 0 Let be the vector of shadow costs for the nonnegatvty constrant then the soluton s equvalent to: * * w arg mn w w w N 1 * N 0.5S 0.5 S 1 1 As such weght constrants can be ratonalzed by pror belefs but belefs are not a pror ntutve Jagannathan & Ma (003) N

42 Admssble Bayesan Covarance Matrx Estmators Dervng optmal pror belefs n the Bayesan lnear regresson settng for covarance matrx estmaton

43 Posteror Mean Square Error for Covarance Matrx Advantage of shrnkage formulaton les n ts facltaton of dervng optmal shrnkage ntenstes * arg mn E SF 1S 01 Ths optmzaton mmedately mples admssblty wthn the class of shrnkage estmators wth a fxed target

44 Posteror Mean Square Error for Covarance Matrx Advantage of shrnkage formulaton les n ts facltaton of dervng optmal shrnkage ntenstes * arg mn E SF 1S 01 Ths optmzaton mmedately mples admssblty wthn the class of shrnkage estmators wth a fxed target For orthogonal model we can consder the problem of specfyng admssble pror belefs: N k 1 1 ˆ ˆ k kkbb k k k kkbb k k * arg mn 01 N E

45 Admssble Posteror for Sten Loss Admssble posteror shrnkage solves a set of lnear equatons balancng estmator bas and varance

46 Admssble Posteror for Sten Loss Admssble posteror shrnkage solves a set of lnear equatons balancng estmator bas and varance RHS = varance-weghted expected posteror bas N k l 1 F lk l

47 Admssble Posteror for Sten Loss Admssble posteror shrnkage solves a set of lnear equatons balancng estmator bas and varance RHS = varance-weghted expected posteror bas N k l 1 F lk l The ndvdual bas and varance terms are defned as: jk l jl l jl N N E N N cov ˆ ˆ ˆ ˆ kl 1 j1 k jk k kl 1 j1 k jk l jl

48 Admssble Posteror for Sten Loss Admssble posteror shrnkage solves a set of lnear equatons balancng estmator bas and varance RHS = varance-weghted expected posteror bas LHS = varance-weghted expected posteror MSE The ndvdual bas and varance terms are defned as: N N E N N cov ˆ ˆ ˆ ˆ kl 1 j1 k jk k jk l jl l jl N k l 1 F lk l Fl kl kl kl kl 1 j1 k jk l jl

49 Admssble Pror Belefs for Sten Loss We can reverse-engneer the pror belefs that are consstent wth admssble posteror shrnkage

50 Admssble Pror Belefs for Sten Loss We can reverse-engneer the pror belefs that are consstent wth admssble posteror shrnkage In the orthogonal model wth prncpal component factors and zero pror expectaton the optmal pror belefs are: 1 s ~ - v pror NG dag... 1 N T kk k 0 k 1 N 1 ˆ ˆ ˆ N h vs v T FF

51 Proof by Puddng Smulatons compare fnte-sample performance of estmators

52 Monte Carlo Smulatons Standard battery of tests: Mean Square Error Mnmum Varance portfolo (Constraned and Unconstraned)

53 Monte Carlo Smulatons Standard battery of tests: Mean Square Error Mnmum Varance portfolo (Constraned and Unconstraned) Asset Unverses: Country portfolos Industry portfolos Style portfolos US Stocks European Stocks European Mutual Funds

54 Monte Carlo Smulatons Standard battery of tests: Mean Square Error Mnmum Varance portfolo (Constraned and Unconstraned) Asset Unverses: Country portfolos Industry portfolos Style portfolos US Stocks European Stocks European Mutual Funds Usual suspects n the lneup: Sample covarance matrx Ledot & Wolf Factor Model (Post-LASSO and absolute) 1/N 1/V Pror structures Sngle Factor Pror (V chosen by cross-valdaton) Mean-Revertng Pror (V chosen by cross-valdaton) Sten-Optmal Pror (h chosen by cross-valdaton)

55 Horse Race Summary: Portfolos T = 5 Best Estmator Sten Optmal Underperformance Reference Portfolos N MSE Volatlty MSE Volatlty Country 0 MR SOP 11% Sze & Book to Market 5 LWCC LW1P 4% 0.5 Industry 49 MR SOP 9% Sze & Momentum 5 LW1P LW1P 5% 0.54 Sze & Reversal 5 LW1P LW1P 9% 0.4 Sze & Long Term Rev 5 LW1P LW1P 4% Industry 30 MR SOP 10% Gbl Sze & Book Market 5 LW1P LW1P 4% 0.49 Gbl Sze & Momentum 5 LW1P LW1P 3% 0.51 Sze & Book Market 100 LWCC SOP 8%

56 Horse Race Summary: Portfolos T = 5 Best Estmator Sten Optmal Underperformance Reference Portfolos N MSE Volatlty MSE Volatlty Country 0 MR SOP 11% Sze & Book to Market 5 LWCC LW1P 4% 0.5 Industry 49 MR SOP 9% Sze & Momentum 5 LW1P LW1P 5% 0.54 Sze & Reversal 5 LW1P LW1P 9% 0.4 Sze & Long Term Rev 5 LW1P LW1P 4% Industry 30 MR SOP 10% Gbl Sze & Book Market 5 LW1P LW1P 4% 0.49 Gbl Sze & Momentum 5 LW1P LW1P 3% 0.51 Sze & Book Market 100 LWCC SOP 8%

57 Horse Race Summary: Portfolos T = 5 Best Estmator Sten Optmal Underperformance Reference Portfolos N MSE Volatlty MSE Volatlty Country 0 MR SOP 11% Sze & Book to Market 5 LWCC LW1P 4% 0.5 Industry 49 MR SOP 9% Sze & Momentum 5 LW1P LW1P 5% 0.54 Sze & Reversal 5 LW1P LW1P 9% 0.4 Sze & Long Term Rev 5 LW1P LW1P 4% Industry 30 MR SOP 10% Gbl Sze & Book Market 5 LW1P LW1P 4% 0.49 Gbl Sze & Momentum 5 LW1P LW1P 3% 0.51 Sze & Book Market 100 LWCC SOP 8%

58 Horse Race Summary: Securtes T = 5 Best Estmator Sten Optmal Underperformance Asset Unverse N MSE Volatlty MSE Volatlty US Stocks 5 LWCC SOP 34% (CRSP) 50 LWCC SOP 37% 100 LWCC LWSF 35% 0.09 European Stocks 5 LWCC SOP 47% (DataStream) 50 LWCC SOP 53% 100 LWCC SOP 58% European Mutual Funds 5 LWCC LW1P 3% 0.98 (Lpper) 50 LWCC LW1P 5% LW1P LWSF 6% 0.47

59 Horse Race Summary: Securtes T = 5 Best Estmator Sten Optmal Underperformance Asset Unverse N MSE Volatlty MSE Volatlty US Stocks 5 LWCC SOP 34% (CRSP) 50 LWCC SOP 37% 100 LWCC LWSF 35% 0.09 European Stocks 5 LWCC SOP 47% (DataStream) 50 LWCC SOP 53% 100 LWCC SOP 58% European Mutual Funds 5 LWCC LW1P 3% 0.98 (Lpper) 50 LWCC LW1P 5% LW1P LWSF 6% 0.47

60 Key Contrbutons Develop an ntutve Bayesan model for analyzng and estmatng covarance matrces

61 Key Contrbutons Develop an ntutve Bayesan model for analyzng and estmatng covarance matrces Derve a closed-form soluton for the posteror expectaton of the covarance matrx n a factor model Reverse-engneer pror belefs consstent wth shrnkage covarance matrx estmators Optmze belefs for fxed expected pror factor loadngs

62 Key Contrbutons Develop an ntutve Bayesan model for analyzng and estmatng covarance matrces Derve a closed-form soluton for the posteror expectaton of the covarance matrx n a factor model Reverse-engneer pror belefs consstent wth shrnkage covarance matrx estmators Optmze belefs for fxed expected pror factor loadngs Introduce new covarance matrx estmator that does qute well n fnte sample MSE

63 A Bayesan Approach to Sten-Optmal Covarance Matrx Estmaton Ben Gllen Calforna Insttute of Technology Thanks for your Tme!

Statistical pattern recognition

Statistical pattern recognition Statstcal pattern recognton Bayes theorem Problem: decdng f a patent has a partcular condton based on a partcular test However, the test s mperfect Someone wth the condton may go undetected (false negatve

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 31 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 6. Rdge regresson The OLSE s the best lnear unbased

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Explaining the Stein Paradox

Explaining the Stein Paradox Explanng the Sten Paradox Kwong Hu Yung 1999/06/10 Abstract Ths report offers several ratonale for the Sten paradox. Sectons 1 and defnes the multvarate normal mean estmaton problem and ntroduces Sten

More information

A Comparative Study for Estimation Parameters in Panel Data Model

A Comparative Study for Estimation Parameters in Panel Data Model A Comparatve Study for Estmaton Parameters n Panel Data Model Ahmed H. Youssef and Mohamed R. Abonazel hs paper examnes the panel data models when the regresson coeffcents are fxed random and mxed and

More information

Machine Learning for Signal Processing Linear Gaussian Models

Machine Learning for Signal Processing Linear Gaussian Models Machne Learnng for Sgnal Processng Lnear Gaussan Models Class 7. 30 Oct 204 Instructor: Bhksha Raj 755/8797 Recap: MAP stmators MAP (Mamum A Posteror: Fnd a best guess for (statstcall, gven knon = argma

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Maxmum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models

More information

[ ] λ λ λ. Multicollinearity. multicollinearity Ragnar Frisch (1934) perfect exact. collinearity. multicollinearity. exact

[ ] λ λ λ. Multicollinearity. multicollinearity Ragnar Frisch (1934) perfect exact. collinearity. multicollinearity. exact Multcollnearty multcollnearty Ragnar Frsch (934 perfect exact collnearty multcollnearty K exact λ λ λ K K x+ x+ + x 0 0.. λ, λ, λk 0 0.. x perfect ntercorrelated λ λ λ x+ x+ + KxK + v 0 0.. v 3 y β + β

More information

Factor models with many assets: strong factors, weak factors, and the two-pass procedure

Factor models with many assets: strong factors, weak factors, and the two-pass procedure Factor models wth many assets: strong factors, weak factors, and the two-pass procedure Stanslav Anatolyev 1 Anna Mkusheva 2 1 CERGE-EI and NES 2 MIT December 2017 Stanslav Anatolyev and Anna Mkusheva

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Testing for seasonal unit roots in heterogeneous panels

Testing for seasonal unit roots in heterogeneous panels Testng for seasonal unt roots n heterogeneous panels Jesus Otero * Facultad de Economía Unversdad del Rosaro, Colomba Jeremy Smth Department of Economcs Unversty of arwck Monca Gulett Aston Busness School

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede Fall 0 Analyss of Expermental easurements B. Esensten/rev. S. Errede We now reformulate the lnear Least Squares ethod n more general terms, sutable for (eventually extendng to the non-lnear case, and also

More information

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980 MT07: Multvarate Statstcal Methods Mke Tso: emal mke.tso@manchester.ac.uk Webpage for notes: http://www.maths.manchester.ac.uk/~mkt/new_teachng.htm. Introducton to multvarate data. Books Chat eld, C. and

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Review: Fit a line to N data points

Review: Fit a line to N data points Revew: Ft a lne to data ponts Correlated parameters: L y = a x + b Orthogonal parameters: J y = a (x ˆ x + b For ntercept b, set a=0 and fnd b by optmal average: ˆ b = y, Var[ b ˆ ] = For slope a, set

More information

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin Proceedngs of the 007 Wnter Smulaton Conference S G Henderson, B Bller, M-H Hseh, J Shortle, J D Tew, and R R Barton, eds LOW BIAS INTEGRATED PATH ESTIMATORS James M Calvn Department of Computer Scence

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Mamum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models for

More information

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise. Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the

More information

e i is a random error

e i is a random error Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where + β + β e for,..., and are observable varables e s a random error How can an estmaton rule be constructed for the unknown

More information

Improved Forecasts of Higher-Order Co-moments and Implications for Portfolio Selection

Improved Forecasts of Higher-Order Co-moments and Implications for Portfolio Selection EDHEC RISK AND ASSET MANAGEMENT RESEARCH CENTRE 9-00 promenade des Anglas 060 Nce Cedex Tel.: + (0) 9 18 5 E-mal: research@edhec-rsk.com Web: www.edhec-rsk.com Improved Forecasts of Hgher-Order Co-moments

More information

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of Chapter 7 Generalzed and Weghted Least Squares Estmaton The usual lnear regresson model assumes that all the random error components are dentcally and ndependently dstrbuted wth constant varance. When

More information

Lecture 12: Classification

Lecture 12: Classification Lecture : Classfcaton g Dscrmnant functons g The optmal Bayes classfer g Quadratc classfers g Eucldean and Mahalanobs metrcs g K Nearest Neghbor Classfers Intellgent Sensor Systems Rcardo Guterrez-Osuna

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

CHAPTER 5 MINIMAX MEAN SQUARE ESTIMATION

CHAPTER 5 MINIMAX MEAN SQUARE ESTIMATION 110 CHAPTER 5 MINIMAX MEAN SQUARE ESTIMATION 5.1 INTRODUCTION The problem of parameter estmaton n lnear model s pervasve n sgnal processng and communcaton applcatons. It s often common to restrct attenton

More information

Fisher Linear Discriminant Analysis

Fisher Linear Discriminant Analysis Fsher Lnear Dscrmnant Analyss Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan Fsher lnear

More information

A New Method for Estimating Overdispersion. David Fletcher and Peter Green Department of Mathematics and Statistics

A New Method for Estimating Overdispersion. David Fletcher and Peter Green Department of Mathematics and Statistics A New Method for Estmatng Overdsperson Davd Fletcher and Peter Green Department of Mathematcs and Statstcs Byron Morgan Insttute of Mathematcs, Statstcs and Actuaral Scence Unversty of Kent, England Overvew

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

Classification as a Regression Problem

Classification as a Regression Problem Target varable y C C, C,, ; Classfcaton as a Regresson Problem { }, 3 L C K To treat classfcaton as a regresson problem we should transform the target y nto numercal values; The choce of numercal class

More information

Systems of Equations (SUR, GMM, and 3SLS)

Systems of Equations (SUR, GMM, and 3SLS) Lecture otes on Advanced Econometrcs Takash Yamano Fall Semester 4 Lecture 4: Sstems of Equatons (SUR, MM, and 3SLS) Seemngl Unrelated Regresson (SUR) Model Consder a set of lnear equatons: $ + ɛ $ + ɛ

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

A Monte Carlo Study for Swamy s Estimate of Random Coefficient Panel Data Model

A Monte Carlo Study for Swamy s Estimate of Random Coefficient Panel Data Model A Monte Carlo Study for Swamy s Estmate of Random Coeffcent Panel Data Model Aman Mousa, Ahmed H. Youssef and Mohamed R. Abonazel Department of Appled Statstcs and Econometrcs, Instute of Statstcal Studes

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements CS 750 Machne Learnng Lecture 5 Densty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square CS 750 Machne Learnng Announcements Homework Due on Wednesday before the class Reports: hand n before

More information

Feb 14: Spatial analysis of data fields

Feb 14: Spatial analysis of data fields Feb 4: Spatal analyss of data felds Mappng rregularly sampled data onto a regular grd Many analyss technques for geophyscal data requre the data be located at regular ntervals n space and/or tme. hs s

More information

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition EG 880/988 - Specal opcs n Computer Engneerng: Pattern Recognton Memoral Unversty of ewfoundland Pattern Recognton Lecture 7 May 3, 006 http://wwwengrmunca/~charlesr Offce Hours: uesdays hursdays 8:30-9:30

More information

The Ordinary Least Squares (OLS) Estimator

The Ordinary Least Squares (OLS) Estimator The Ordnary Least Squares (OLS) Estmator 1 Regresson Analyss Regresson Analyss: a statstcal technque for nvestgatng and modelng the relatonshp between varables. Applcatons: Engneerng, the physcal and chemcal

More information

GMM Method (Single-equation) Pongsa Pornchaiwiseskul Faculty of Economics Chulalongkorn University

GMM Method (Single-equation) Pongsa Pornchaiwiseskul Faculty of Economics Chulalongkorn University GMM Method (Sngle-equaton Pongsa Pornchawsesul Faculty of Economcs Chulalongorn Unversty Stochastc ( Gven that, for some, s random COV(, ε E(( µ ε E( ε µ E( ε E( ε (c Pongsa Pornchawsesul, Faculty of Economcs,

More information

Bayesian Principal Component Analysis

Bayesian Principal Component Analysis Bayesan Prncpal Component Analyss Mohamed N. Nounou, Bhavk R. Baksh * Department of Chemcal Engneerng Prem K. Goel and aotong Shen Department of Statstcs The Oho State Unversty Columbus, OH 432, USA Abstract

More information

Professor Chris Murray. Midterm Exam

Professor Chris Murray. Midterm Exam Econ 7 Econometrcs Sprng 4 Professor Chrs Murray McElhnney D cjmurray@uh.edu Mdterm Exam Wrte your answers on one sde of the blank whte paper that I have gven you.. Do not wrte your answers on ths exam.

More information

β0 + β1xi and want to estimate the unknown

β0 + β1xi and want to estimate the unknown SLR Models Estmaton Those OLS Estmates Estmators (e ante) v. estmates (e post) The Smple Lnear Regresson (SLR) Condtons -4 An Asde: The Populaton Regresson Functon B and B are Lnear Estmators (condtonal

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

The Prncpal Component Transform The Prncpal Component Transform s also called Karhunen-Loeve Transform (KLT, Hotellng Transform, oregenvector Transfor

The Prncpal Component Transform The Prncpal Component Transform s also called Karhunen-Loeve Transform (KLT, Hotellng Transform, oregenvector Transfor Prncpal Component Transform Multvarate Random Sgnals A real tme sgnal x(t can be consdered as a random process and ts samples x m (m =0; ;N, 1 a random vector: The mean vector of X s X =[x0; ;x N,1] T

More information

ANOMALIES OF THE MAGNITUDE OF THE BIAS OF THE MAXIMUM LIKELIHOOD ESTIMATOR OF THE REGRESSION SLOPE

ANOMALIES OF THE MAGNITUDE OF THE BIAS OF THE MAXIMUM LIKELIHOOD ESTIMATOR OF THE REGRESSION SLOPE P a g e ANOMALIES OF THE MAGNITUDE OF THE BIAS OF THE MAXIMUM LIKELIHOOD ESTIMATOR OF THE REGRESSION SLOPE Darmud O Drscoll ¹, Donald E. Ramrez ² ¹ Head of Department of Mathematcs and Computer Studes

More information

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values Fall 007 Soluton to Mdterm Examnaton STAT 7 Dr. Goel. [0 ponts] For the general lnear model = X + ε, wth uncorrelated errors havng mean zero and varance σ, suppose that the desgn matrx X s not necessarly

More information

A Rigorous Framework for Robust Data Assimilation

A Rigorous Framework for Robust Data Assimilation A Rgorous Framework for Robust Data Assmlaton Adran Sandu 1 wth Vshwas Rao 1, Elas D. Nno 1, and Mchael Ng 2 1 Computatonal Scence Laboratory (CSL) Department of Computer Scence Vrgna Tech 2 Hong Kong

More information

T E C O L O T E R E S E A R C H, I N C.

T E C O L O T E R E S E A R C H, I N C. T E C O L O T E R E S E A R C H, I N C. B rdg n g En g neern g a nd Econo mcs S nce 1973 THE MINIMUM-UNBIASED-PERCENTAGE ERROR (MUPE) METHOD IN CER DEVELOPMENT Thrd Jont Annual ISPA/SCEA Internatonal Conference

More information

Solutions Homework 4 March 5, 2018

Solutions Homework 4 March 5, 2018 1 Solutons Homework 4 March 5, 018 Soluton to Exercse 5.1.8: Let a IR be a translaton and c > 0 be a re-scalng. ˆb1 (cx + a) cx n + a (cx 1 + a) c x n x 1 cˆb 1 (x), whch shows ˆb 1 s locaton nvarant and

More information

Lecture 2: Prelude to the big shrink

Lecture 2: Prelude to the big shrink Lecture 2: Prelude to the bg shrnk Last tme A slght detour wth vsualzaton tools (hey, t was the frst day... why not start out wth somethng pretty to look at?) Then, we consdered a smple 120a-style regresson

More information

x i1 =1 for all i (the constant ).

x i1 =1 for all i (the constant ). Chapter 5 The Multple Regresson Model Consder an economc model where the dependent varable s a functon of K explanatory varables. The economc model has the form: y = f ( x,x,..., ) xk Approxmate ths by

More information

Chapter 3. Two-Variable Regression Model: The Problem of Estimation

Chapter 3. Two-Variable Regression Model: The Problem of Estimation Chapter 3. Two-Varable Regresson Model: The Problem of Estmaton Ordnary Least Squares Method (OLS) Recall that, PRF: Y = β 1 + β X + u Thus, snce PRF s not drectly observable, t s estmated by SRF; that

More information

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution.

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution. Solutons HW #2 Dual of general LP. Fnd the dual functon of the LP mnmze subject to c T x Gx h Ax = b. Gve the dual problem, and make the mplct equalty constrants explct. Soluton. 1. The Lagrangan s L(x,

More information

Low default modelling: a comparison of techniques based on a real Brazilian corporate portfolio

Low default modelling: a comparison of techniques based on a real Brazilian corporate portfolio Low default modellng: a comparson of technques based on a real Brazlan corporate portfolo MSc Gulherme Fernandes and MSc Carlos Rocha Credt Scorng and Credt Control Conference XII August 2011 Analytcs

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

Unified Subspace Analysis for Face Recognition

Unified Subspace Analysis for Face Recognition Unfed Subspace Analyss for Face Recognton Xaogang Wang and Xaoou Tang Department of Informaton Engneerng The Chnese Unversty of Hong Kong Shatn, Hong Kong {xgwang, xtang}@e.cuhk.edu.hk Abstract PCA, LDA

More information

9. Binary Dependent Variables

9. Binary Dependent Variables 9. Bnar Dependent Varables 9. Homogeneous models Log, prob models Inference Tax preparers 9.2 Random effects models 9.3 Fxed effects models 9.4 Margnal models and GEE Appendx 9A - Lkelhood calculatons

More information

Outline. Zero Conditional mean. I. Motivation. 3. Multiple Regression Analysis: Estimation. Read Wooldridge (2013), Chapter 3.

Outline. Zero Conditional mean. I. Motivation. 3. Multiple Regression Analysis: Estimation. Read Wooldridge (2013), Chapter 3. Outlne 3. Multple Regresson Analyss: Estmaton I. Motvaton II. Mechancs and Interpretaton of OLS Read Wooldrdge (013), Chapter 3. III. Expected Values of the OLS IV. Varances of the OLS V. The Gauss Markov

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrcs of Panel Data Jakub Mućk Meetng # 8 Jakub Mućk Econometrcs of Panel Data Meetng # 8 1 / 17 Outlne 1 Heterogenety n the slope coeffcents 2 Seemngly Unrelated Regresson (SUR) 3 Swamy s random

More information

Hierarchical State Estimation Using Phasor Measurement Units

Hierarchical State Estimation Using Phasor Measurement Units Herarchcal State Estmaton Usng Phasor Measurement Unts Al Abur Northeastern Unversty Benny Zhao (CA-ISO) and Yeo-Jun Yoon (KPX) IEEE PES GM, Calgary, Canada State Estmaton Workng Group Meetng July 28,

More information

Lecture 3 Specification

Lecture 3 Specification Lecture 3 Specfcaton 1 OLS Estmaton - Assumptons CLM Assumptons (A1) DGP: y = X + s correctly specfed. (A) E[ X] = 0 (A3) Var[ X] = σ I T (A4) X has full column rank rank(x)=k-, where T k. Q: What happens

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

Time-Varying Coefficient Model with Linear Smoothing Function for Longitudinal Data in Clinical Trial

Time-Varying Coefficient Model with Linear Smoothing Function for Longitudinal Data in Clinical Trial Tme-Varyng Coeffcent Model wth Lnear Smoothng Functon for Longtudnal Data n Clncal Tral Masanor Ito, Toshhro Msum and Hdek Hrooka Bostatstcs Group, Data Scence Dept., Astellas Pharma Inc. Introducton In

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Pitfalls in the use of systemic risk measures*

Pitfalls in the use of systemic risk measures* Ptfalls n the use of systemc rsk measures* Peter Raupach, Deutsche Bundesbank; jont work wth Gunter Löffler, Unversty of Ulm, Germany ESCB Research Cluster 3, 1st Workshop, Athens * To appear n the Journal

More information

Bose (1942) showed b t r 1 is a necessary condition. PROOF (Murty 1961): Assume t is a multiple of k, i.e. t nk, where n is an integer.

Bose (1942) showed b t r 1 is a necessary condition. PROOF (Murty 1961): Assume t is a multiple of k, i.e. t nk, where n is an integer. Resolvable BIBD: An ncomplete bloc desgn n whch each treatment appears r tmes s resolvable f the blocs can be dvded nto r groups such that each group s a complete replcaton of the treatments (.e. each

More information

Estimation: Part 2. Chapter GREG estimation

Estimation: Part 2. Chapter GREG estimation Chapter 9 Estmaton: Part 2 9. GREG estmaton In Chapter 8, we have seen that the regresson estmator s an effcent estmator when there s a lnear relatonshp between y and x. In ths chapter, we generalzed the

More information

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS)

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS) Some Comments on Acceleratng Convergence of Iteratve Sequences Usng Drect Inverson of the Iteratve Subspace (DIIS) C. Davd Sherrll School of Chemstry and Bochemstry Georga Insttute of Technology May 1998

More information

Directional Nonparametric Least Absolute Deviations Method for Estimating the Boundary of a Convex Set

Directional Nonparametric Least Absolute Deviations Method for Estimating the Boundary of a Convex Set Drectonal Nonparametrc Least Absolute Devatons Method for Estmatng the Boundary of a Convex Set Tmo Kuosmanen Sebastán Lozano Kansantalousteteen pävät Jyväskylä 13.-14.2.2008 Background Kuosmanen, T. (2008):

More information

Lecture 4 Hypothesis Testing

Lecture 4 Hypothesis Testing Lecture 4 Hypothess Testng We may wsh to test pror hypotheses about the coeffcents we estmate. We can use the estmates to test whether the data rejects our hypothess. An example mght be that we wsh to

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maxmum Lkelhood Estmaton INFO-2301: Quanttatve Reasonng 2 Mchael Paul and Jordan Boyd-Graber MARCH 7, 2017 INFO-2301: Quanttatve Reasonng 2 Paul and Boyd-Graber Maxmum Lkelhood Estmaton 1 of 9 Why MLE?

More information

Selecting the Number of Factors in Approximate Factor Models using Group Variable regularization. February 15, 2017

Selecting the Number of Factors in Approximate Factor Models using Group Variable regularization. February 15, 2017 Selectng the Number of Factors n Approxmate Factor Models usng Group Varable regularzaton Maurzo Danele 1 February 15, 2017 1 Department of Economcs, Unversty of Konstanz, P.O. Box 124, Unverstaetstrasse

More information

Projection estimators for autoregressive panel data models

Projection estimators for autoregressive panel data models Econometrcs Journal (2002), volume 5, pp 457 479 Projecton estmators for autoregressve panel data models STEPHEN BOND AND FRANK WINDMEIJER Nuffeld College, Unversty of Oxford, Oxford, OX1 1NF, UK CEMMAP,

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

Bayesian Planning of Hit-Miss Inspection Tests

Bayesian Planning of Hit-Miss Inspection Tests Bayesan Plannng of Ht-Mss Inspecton Tests Yew-Meng Koh a and Wllam Q Meeker a a Center for Nondestructve Evaluaton, Department of Statstcs, Iowa State Unversty, Ames, Iowa 5000 Abstract Although some useful

More information

Lecture 4: Universal Hash Functions/Streaming Cont d

Lecture 4: Universal Hash Functions/Streaming Cont d CSE 5: Desgn and Analyss of Algorthms I Sprng 06 Lecture 4: Unversal Hash Functons/Streamng Cont d Lecturer: Shayan Oves Gharan Aprl 6th Scrbe: Jacob Schreber Dsclamer: These notes have not been subjected

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

ECONOMETRICS II (ECO 2401S) University of Toronto. Department of Economics. Winter 2017 Instructor: Victor Aguirregabiria

ECONOMETRICS II (ECO 2401S) University of Toronto. Department of Economics. Winter 2017 Instructor: Victor Aguirregabiria ECOOMETRICS II ECO 40S Unversty of Toronto Department of Economcs Wnter 07 Instructor: Vctor Agurregabra SOLUTIO TO FIAL EXAM Tuesday, Aprl 8, 07 From :00pm-5:00pm 3 hours ISTRUCTIOS: - Ths s a closed-book

More information

Tracking with Kalman Filter

Tracking with Kalman Filter Trackng wth Kalman Flter Scott T. Acton Vrgna Image and Vdeo Analyss (VIVA), Charles L. Brown Department of Electrcal and Computer Engneerng Department of Bomedcal Engneerng Unversty of Vrgna, Charlottesvlle,

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

2016 Wiley. Study Session 2: Ethical and Professional Standards Application

2016 Wiley. Study Session 2: Ethical and Professional Standards Application 6 Wley Study Sesson : Ethcal and Professonal Standards Applcaton LESSON : CORRECTION ANALYSIS Readng 9: Correlaton and Regresson LOS 9a: Calculate and nterpret a sample covarance and a sample correlaton

More information

Sampling Theory MODULE V LECTURE - 17 RATIO AND PRODUCT METHODS OF ESTIMATION

Sampling Theory MODULE V LECTURE - 17 RATIO AND PRODUCT METHODS OF ESTIMATION Samplng Theory MODULE V LECTURE - 7 RATIO AND PRODUCT METHODS OF ESTIMATION DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOG KANPUR Propertes of separate rato estmator:

More information

Empirical Methods for Corporate Finance. Identification

Empirical Methods for Corporate Finance. Identification mprcal Methods for Corporate Fnance Identfcaton Causalt Ultmate goal of emprcal research n fnance s to establsh a causal relatonshp between varables.g. What s the mpact of tangblt on leverage?.g. What

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Parametric fractional imputation for missing data analysis

Parametric fractional imputation for missing data analysis Secton on Survey Research Methods JSM 2008 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Wayne Fuller Abstract Under a parametrc model for mssng data, the EM algorthm s a popular tool

More information

10) Activity analysis

10) Activity analysis 3C3 Mathematcal Methods for Economsts (6 cr) 1) Actvty analyss Abolfazl Keshvar Ph.D. Aalto Unversty School of Busness Sldes orgnally by: Tmo Kuosmanen Updated by: Abolfazl Keshvar 1 Outlne Hstorcal development

More information

CS4495/6495 Introduction to Computer Vision. 3C-L3 Calibrating cameras

CS4495/6495 Introduction to Computer Vision. 3C-L3 Calibrating cameras CS4495/6495 Introducton to Computer Vson 3C-L3 Calbratng cameras Fnally (last tme): Camera parameters Projecton equaton the cumulatve effect of all parameters: M (3x4) f s x ' 1 0 0 0 c R 0 I T 3 3 3 x1

More information

LECTURE 9 CANONICAL CORRELATION ANALYSIS

LECTURE 9 CANONICAL CORRELATION ANALYSIS LECURE 9 CANONICAL CORRELAION ANALYSIS Introducton he concept of canoncal correlaton arses when we want to quantfy the assocatons between two sets of varables. For example, suppose that the frst set of

More information

Regression Analysis. Regression Analysis

Regression Analysis. Regression Analysis Regresson Analyss Smple Regresson Multvarate Regresson Stepwse Regresson Replcaton and Predcton Error 1 Regresson Analyss In general, we "ft" a model by mnmzng a metrc that represents the error. n mn (y

More information

Supporting Information

Supporting Information Supportng Informaton The neural network f n Eq. 1 s gven by: f x l = ReLU W atom x l + b atom, 2 where ReLU s the element-wse rectfed lnear unt, 21.e., ReLUx = max0, x, W atom R d d s the weght matrx to

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

13 Principal Components Analysis

13 Principal Components Analysis Prncpal Components Analyss 13 Prncpal Components Analyss We now dscuss an unsupervsed learnng algorthm, called Prncpal Components Analyss, or PCA. The method s unsupervsed because we are learnng a mappng

More information

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger JAB Chan Long-tal clams development ASTIN - September 2005 B.Verder A. Klnger Outlne Chan Ladder : comments A frst soluton: Munch Chan Ladder JAB Chan Chan Ladder: Comments Black lne: average pad to ncurred

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

Representation Theorem for Convex Nonparametric Least Squares. Timo Kuosmanen

Representation Theorem for Convex Nonparametric Least Squares. Timo Kuosmanen Representaton Theorem or Convex Nonparametrc Least Squares Tmo Kuosmanen 4th Nordc Econometrc Meetng, Tartu, Estona, 4-6 May 007 Motvaton Inerences oten depend crtcally upon the algebrac orm chosen. It

More information

Penalized Covariance Matrix Estimation using a Matrix- Logarithm Transformation

Penalized Covariance Matrix Estimation using a Matrix- Logarithm Transformation Ths artcle was downloaded by: [Xnwe Deng] On: 1 September 212, At: 17:22 Publsher: Taylor & Francs Informa Ltd Regstered n England and Wales Regstered Number: 172954 Regstered offce: Mortmer House, 37-41

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Statistical learning

Statistical learning Statstcal learnng Model the data generaton process Learn the model parameters Crteron to optmze: Lkelhood of the dataset (maxmzaton) Maxmum Lkelhood (ML) Estmaton: Dataset X Statstcal model p(x;θ) (θ parameters)

More information

How its computed. y outcome data λ parameters hyperparameters. where P denotes the Laplace approximation. k i k k. Andrew B Lawson 2013

How its computed. y outcome data λ parameters hyperparameters. where P denotes the Laplace approximation. k i k k. Andrew B Lawson 2013 Andrew Lawson MUSC INLA INLA s a relatvely new tool that can be used to approxmate posteror dstrbutons n Bayesan models INLA stands for ntegrated Nested Laplace Approxmaton The approxmaton has been known

More information

Outline. Multivariate Parametric Methods. Multivariate Data. Basic Multivariate Statistics. Steven J Zeil

Outline. Multivariate Parametric Methods. Multivariate Data. Basic Multivariate Statistics. Steven J Zeil Outlne Multvarate Parametrc Methods Steven J Zel Old Domnon Unv. Fall 2010 1 Multvarate Data 2 Multvarate ormal Dstrbuton 3 Multvarate Classfcaton Dscrmnants Tunng Complexty Dscrete Features 4 Multvarate

More information

Biostatistics 360 F&t Tests and Intervals in Regression 1

Biostatistics 360 F&t Tests and Intervals in Regression 1 Bostatstcs 360 F&t Tests and Intervals n Regresson ORIGIN Model: Y = X + Corrected Sums of Squares: X X bar where: s the y ntercept of the regresson lne (translaton) s the slope of the regresson lne (scalng

More information