Lecture 3 Specification

Size: px
Start display at page:

Download "Lecture 3 Specification"

Transcription

1 Lecture 3 Specfcaton 1 OLS Estmaton - Assumptons CLM Assumptons (A1) DGP: y = X + s correctly specfed. (A) E[ X] = 0 (A3) Var[ X] = σ I T (A4) X has full column rank rank(x)=k-, where T k. Q: What happens when (A1) s not correctly specfed? In ths lecture, we look at (A1), always n the contet of lnearty. Are we omttng a relevant regressor? Are we ncludng an rrelevant varable? What happens when we mpose restrctons n the DGP? 1

2 Specfcaton Errors: Omtted Varables Omttng relevant varables: Suppose the correct model s y = X X + -.e., wth two sets of varables. But, we compute OLS omttng X. That s, y = X <= the short regresson. Some easly proved results: (1) E[b 1 X] = E [(X 1 X 1 ) -1 X 1 y]= 1 + (X 1 X 1 ) -1 X 1 X 1. So, unless X 1 X =0, b 1 s based. The bas can be huge. It can reverse the sgn of a prce coeffcent n a demand equaton. () Var[b 1 X] Var[b 1. X]. (The latter s the northwest submatr of the full covarance matr.) The proof uses M, the resdual maker. We get a smaller varance when we omt X. Specfcaton Errors: Omtted Varables We get a smaller varance when we omt X. Interpretaton: Omttng X amounts to usng etra nformaton -- = 0. Even f the nformaton s wrong, t reduces the varance. (3) MSE b 1 may be more precse. Precson = Mean squared error = varance + squared bas. Smaller varance but postve bas. If bas s small, may stll favor the short regresson. Note: Suppose X 1 X = 0. Then the bas goes away. Interpretaton, the nformaton s not rght, t s rrelevant. b 1 s the same as b 1..

3 Omtted Varables Eample: Gasolne Demand We have a lnear model for the demand for gasolne: G = PG 1 + Y +, Q: What happens when you wrongly eclude Income (Y)? E[b 1 X] = 1 + Cov[ Prce, Income] Var[ Prce] In tme seres data, 1 < 0, > 0 (usually) Cov[Prce,Income] > 0 n tme seres data. => The short regresson wll overestmate the prce coeffcent. In a smple regresson of G (demand) on a constant and PG, the Prce Coeffcent ( 1 ) should be negatve. Estmaton of a Demand Equaton (Greene): Shouldn t the Prce Coeffcent be Negatve? 3

4 Estmaton of a Demand Equaton (Greene): Multple Regresson - Theory Works. Ordnary least squares regresson... LHS=G Mean = Standard devaton = Number of observs. = 36 Model sze Parameters = 3 Degrees of freedom = 33 Resduals Sum of squares = Standard error of e = Ft R-squared = Adjusted R-squared =.9856 Model test F[, 33] (prob) = 987.1(.0000) Varable Coeffcent Standard Error t-rato P[ T >t] Constant *** Y.0369*** PG *** Note: Income s helpng us to dentfy a demand equaton.e., wth a negatve slope for the prce varable. Specfcaton Errors: Irrelevant Varables Irrelevant varables. Suppose the correct model s y = X e., wth one set of varables. But, we estmate y = X X + <= the long regresson. Some easly proved results: Includng rrelevant varables just reverse the results: It ncreases varance -the cost of not usng nformaton-; but does not create bases. => Snce the varables n X are truly rrelevant, then = 0, so E[b 1. X] = 1. 4

5 Specfcaton Errors: Irrelevant Varables A smple eample Suppose the correct model s: y = 1 + X + But, we estmate: y = 1 + X + 3 X 3 + Unbased: gven that 3 =0 =>E[b X]= Effcency: b 1 X 1 r X X, X X X 3 Note: These are the results n general. Note that f X and X 3 are uncorrelated, there wll be no loss of effcency after all. 9 Other Models Lookng ahead to nonlnear models: nether of the precedng results etend beyond the lnear regresson model. Omttng relevant varables from a model s always costly. (No eceptons.) The bengn result above almost never carres over to more nvolved nonlnear models. (Greene) 5

6 Specfcaton and Functonal Form: Non-lnearty In the contet of OLS estmaton, we can ntroduce some nonlneartes: quadratc, cubc and nteracton effects can be easly estmated by OLS. For eample: y = 1 + X + 3 X + 4 X X 3 + Partal effects, y/x, (and standard errors) can be dfferent. In the above model y/x = + 3 X + 4 X 3 Note: Recall that n a smple lnear model: y = 1 + X + 3 X 3 + the partal effect s equal to the coeffcent: y/x =. Specfcaton and Functonal Form: Non-lnearty The estmator of partal effects and ther varances are dfferent from b and Var[b X] n the presence of non-lneartes Eample: Quadratc Effect Populaton Estmators y 1 3 4z yˆ b1 b b3 b4z E[ y, z] ˆ 3 b b3 Estmator of the varance of ˆ ˆ r[ b3] 4 Cov[ b, b3] EstVar. [ ] Var[ b ] 4 Va Note: Now, the partal effect and the varance are a functon of the data! Usually, an average s used n the estmaton. 6

7 Applcaton (Greene): Log Income Equaton Ordnary least squares regresson... LHS=LOGY Mean = Estmated Cov[b1,b] Standard devaton = Number of observs. = 73 Model sze Parameters = 7 Degrees of freedom = 7315 Resduals Sum of squares = Standard error of e = Ft R-squared = Varable Coeffcent Standard Error b/st.er. P[ Z >z] Mean of X AGE.065*** AGESQ ***.448D Constant *** MARRIED.3153*** HHKIDS *** FEMALE EDUC.0554*** At Average Age = = Estmated Partal effect =.0665 (.00074) = Estmated Varance e-6 + 4(43.57) *( e-10) + 4(43.57)* (-5.185e-8) = e-08. Estmated standard error = Specfcaton and Functonal Form: Non-lnearty Eample: Interactve Effect Populaton Estmators y z z yˆ b b b z b z E[ y, z] ˆ 4z b b4z Estm ator of the varance of ˆ ˆ r[ b4 ] zcov[ b, b4 ] EstVar. [ ] Var[ b ] z Va 7

8 Applcaton (Greene): Interacton Effect Ordnary least squares regresson... LHS=LOGY Mean = Standard devaton = Number of observs. = 73 Model sze Parameters = 4 Degrees of freedom = 7318 Resduals Sum of squares = Standard error of e = Ft R-squared = Adjusted R-squared = Model test F[ 3, 7318] (prob) = 8.4(.0000) Varable Coeffcent Standard Error b/st.er. P[ Z >z] Mean of X Constant -1.59*** AGE.007*** FEMALE.139*** AGE_FEM *** Do women earn more than men (n ths sample?) The coeffcent on FEMALE would suggest so. But, the female dfference.e., partal effect- s: *Age. At average Age, the effect s: (43.57) = OLS Subject to Restrctons Restrctons: Theory mposes certan restrctons on parameters. Eamples: (1) Droppng varables from the equaton. That s, certan coeffcents n b forced to equal 0. (Is varable 3 =sze sgnfcant? ) () Addng up condtons: Sums of certan coeffcents must equal fed values. Addng up condtons n demand systems. Constant returns to scale n producton functons (α+β=1 n a Cobb-Douglas producton functon). (3) Equalty restrctons: Certan coeffcents must equal other coeffcents. Usng real vs. nomnal varables n equatons. Common formulaton: Mn b {S(, θ) =Σ e = e e = (y- Xb) (y- Xb)} s.t. Rb = q 8

9 Restrcted Least Squares In practce, restrctons can usually be mposed by solvng them out. (1) Droppng varables.e., force a coeffcent to equal zero. n Problem: mn y b b b s. t. b 0 mn b b 1 n y b 1 1 b. () Addng up. Do least squares subject to b 1 +b +b 3 =1. Then, b 3 = 1- b 1 -b. Make the substtuton so (y- 3 ) = b 1 ( 1-3 ) + b ( - 3 ) + e. n Problem: Mn b ( y ) b ( ) b ( 1 n ) (3) Equalty. If b 3 = b, then y= b 1 1 b +b 3 +e = b 1 1 +b ( + 3 )+e Problem: Mn b y b1 1 b ( 3) 3 Restrcted Least Squares Theoretcal results provde nsghts and the foundaton of several tests. Programmng problem: Mnmze wrt b L * = (y - Xb)(y - Xb) subject to Rb = q Quadratc programmng problem => Mnmze a quadratc crteron s.t. a set of lnear restrctons. - Concave programmng problem, all bndng constrants. No need for Kuhn-Tucker - Solve usng a Lagrangean formulaton The Lagrangean approach Mn b, L* = (y - Xb)(y - Xb) + (Rb q) --the s for convenence. 9

10 Restrcted Least Squares The Lagrangean approach Mn b, L* = (y - Xb)(y - Xb) + (Rb q) f.o.c: L*/b = -X(y-Xb*) + R = 0 => -X(y-Xb*) + R = 0 L*/ = (Rb* - q) = 0. => (Rb * - q) = 0 Then, from the 1 st equaton (and assumng full rank for X): -Xy + XXb* + R = 0 => b * = (XX) -1 Xy - (XX) -1 R = b - (XX) -1 R Premultply both sdes by R and then subtract q Rb* - q = Rb - R(XX) -1 R - q 0 = - R(XX) -1 R + (Rb q) Solvng for => = [R(XX) -1 R] -1 (Rb - q) Substtutng n b* => b*= b - (XX) -1 R[R(XX) -1 R] -1 (R b q) Lnear Restrctons Q: How do lnear restrctons affect the propertes of the least squares estmator? Model ( DGP): y = X + Theory (nformaton): R - q = 0 Restrcted LS estmator: b* = b -(XX) -1 R[R(XX) -1 R] -1 (Rb - q) 1. Unbased? E[b* X] = -(XX) -1 R[R(XX) -1 R] -1 E[(Rb - q) X] =. Effcency? Var[b* X] = (XX) -1 - (XX) -1 R[R(XX) -1 R] -1 R(XX) -1 Var[b* X] =Var[b X] a nonnegatve defnte matr<var[b X] 3. b* may be more precse. Precson = Mean squared error = varance + squared bas. 10

11 Lnear Restrctons 1. b* = b - Cm, m = the dscrepancy vector Rb - q. Note: If m = 0 => b* = b. (Q: What does m = 0 mean?). =[R(XX) -1 R] -1 (Rb - q) = [R(XX) -1 R] -1 m When does = 0? What does ths mean? 3. Combnng results: b* = b -(XX) -1 R 4. Recall: ee = (y -Xb)(y-Xb) e*e* = (y Xb*)(y-Xb*) => Restrctons cannot ncrease R => R R * Lnear Restrctons - Interpretaton Two cases - Case 1: Theory s correct: R - q = 0 (restrctons hold). b* s unbased & Var[b* X] Var[b X] - Case : Theory s ncorrect: R - q 0 (restrctons do not hold). b* s based & Var[b* X] Var[b X]. Interpretaton - The theory gves us nformaton. Bad nformaton produces bas (away from the truth. ) Any nformaton, good or bad, makes us more certan of our answer. In ths contet, any nformaton reduces varance. 11

12 Lnear Restrctons - Interpretaton - What about gnorng nformaton (theory)? Not usng the correct nformaton does not produce bas. Not usng nformaton foregoes the varance reducton. 1

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise. Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

e i is a random error

e i is a random error Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where + β + β e for,..., and are observable varables e s a random error How can an estmaton rule be constructed for the unknown

More information

Economics 130. Lecture 4 Simple Linear Regression Continued

Economics 130. Lecture 4 Simple Linear Regression Continued Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do

More information

x i1 =1 for all i (the constant ).

x i1 =1 for all i (the constant ). Chapter 5 The Multple Regresson Model Consder an economc model where the dependent varable s a functon of K explanatory varables. The economc model has the form: y = f ( x,x,..., ) xk Approxmate ths by

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Outline. Zero Conditional mean. I. Motivation. 3. Multiple Regression Analysis: Estimation. Read Wooldridge (2013), Chapter 3.

Outline. Zero Conditional mean. I. Motivation. 3. Multiple Regression Analysis: Estimation. Read Wooldridge (2013), Chapter 3. Outlne 3. Multple Regresson Analyss: Estmaton I. Motvaton II. Mechancs and Interpretaton of OLS Read Wooldrdge (013), Chapter 3. III. Expected Values of the OLS IV. Varances of the OLS V. The Gauss Markov

More information

Chapter 14 Simple Linear Regression

Chapter 14 Simple Linear Regression Chapter 4 Smple Lnear Regresson Chapter 4 - Smple Lnear Regresson Manageral decsons often are based on the relatonshp between two or more varables. Regresson analss can be used to develop an equaton showng

More information

Properties of Least Squares

Properties of Least Squares Week 3 3.1 Smple Lnear Regresson Model 3. Propertes of Least Squares Estmators Y Y β 1 + β X + u weekly famly expendtures X weekly famly ncome For a gven level of x, the expected level of food expendtures

More information

Chapter 3. Two-Variable Regression Model: The Problem of Estimation

Chapter 3. Two-Variable Regression Model: The Problem of Estimation Chapter 3. Two-Varable Regresson Model: The Problem of Estmaton Ordnary Least Squares Method (OLS) Recall that, PRF: Y = β 1 + β X + u Thus, snce PRF s not drectly observable, t s estmated by SRF; that

More information

Now we relax this assumption and allow that the error variance depends on the independent variables, i.e., heteroskedasticity

Now we relax this assumption and allow that the error variance depends on the independent variables, i.e., heteroskedasticity ECON 48 / WH Hong Heteroskedastcty. Consequences of Heteroskedastcty for OLS Assumpton MLR. 5: Homoskedastcty var ( u x ) = σ Now we relax ths assumpton and allow that the error varance depends on the

More information

Econ Statistical Properties of the OLS estimator. Sanjaya DeSilva

Econ Statistical Properties of the OLS estimator. Sanjaya DeSilva Econ 39 - Statstcal Propertes of the OLS estmator Sanjaya DeSlva September, 008 1 Overvew Recall that the true regresson model s Y = β 0 + β 1 X + u (1) Applyng the OLS method to a sample of data, we estmate

More information

The Ordinary Least Squares (OLS) Estimator

The Ordinary Least Squares (OLS) Estimator The Ordnary Least Squares (OLS) Estmator 1 Regresson Analyss Regresson Analyss: a statstcal technque for nvestgatng and modelng the relatonshp between varables. Applcatons: Engneerng, the physcal and chemcal

More information

Linear regression. Regression Models. Chapter 11 Student Lecture Notes Regression Analysis is the

Linear regression. Regression Models. Chapter 11 Student Lecture Notes Regression Analysis is the Chapter 11 Student Lecture Notes 11-1 Lnear regresson Wenl lu Dept. Health statstcs School of publc health Tanjn medcal unversty 1 Regresson Models 1. Answer What Is the Relatonshp Between the Varables?.

More information

β0 + β1xi. You are interested in estimating the unknown parameters β

β0 + β1xi. You are interested in estimating the unknown parameters β Ordnary Least Squares (OLS): Smple Lnear Regresson (SLR) Analytcs The SLR Setup Sample Statstcs Ordnary Least Squares (OLS): FOCs and SOCs Back to OLS and Sample Statstcs Predctons (and Resduals) wth OLS

More information

[ ] λ λ λ. Multicollinearity. multicollinearity Ragnar Frisch (1934) perfect exact. collinearity. multicollinearity. exact

[ ] λ λ λ. Multicollinearity. multicollinearity Ragnar Frisch (1934) perfect exact. collinearity. multicollinearity. exact Multcollnearty multcollnearty Ragnar Frsch (934 perfect exact collnearty multcollnearty K exact λ λ λ K K x+ x+ + x 0 0.. λ, λ, λk 0 0.. x perfect ntercorrelated λ λ λ x+ x+ + KxK + v 0 0.. v 3 y β + β

More information

β0 + β1xi and want to estimate the unknown

β0 + β1xi and want to estimate the unknown SLR Models Estmaton Those OLS Estmates Estmators (e ante) v. estmates (e post) The Smple Lnear Regresson (SLR) Condtons -4 An Asde: The Populaton Regresson Functon B and B are Lnear Estmators (condtonal

More information

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of Chapter 7 Generalzed and Weghted Least Squares Estmaton The usual lnear regresson model assumes that all the random error components are dentcally and ndependently dstrbuted wth constant varance. When

More information

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction ECONOMICS 35* -- NOTE 7 ECON 35* -- NOTE 7 Interval Estmaton n the Classcal Normal Lnear Regresson Model Ths note outlnes the basc elements of nterval estmaton n the Classcal Normal Lnear Regresson Model

More information

Chapter 4: Regression With One Regressor

Chapter 4: Regression With One Regressor Chapter 4: Regresson Wth One Regressor Copyrght 2011 Pearson Addson-Wesley. All rghts reserved. 1-1 Outlne 1. Fttng a lne to data 2. The ordnary least squares (OLS) lne/regresson 3. Measures of ft 4. Populaton

More information

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics ECOOMICS 35*-A Md-Term Exam -- Fall Term 000 Page of 3 pages QUEE'S UIVERSITY AT KIGSTO Department of Economcs ECOOMICS 35* - Secton A Introductory Econometrcs Fall Term 000 MID-TERM EAM ASWERS MG Abbott

More information

Primer on High-Order Moment Estimators

Primer on High-Order Moment Estimators Prmer on Hgh-Order Moment Estmators Ton M. Whted July 2007 The Errors-n-Varables Model We wll start wth the classcal EIV for one msmeasured regressor. The general case s n Erckson and Whted Econometrc

More information

a. (All your answers should be in the letter!

a. (All your answers should be in the letter! Econ 301 Blkent Unversty Taskn Econometrcs Department of Economcs Md Term Exam I November 8, 015 Name For each hypothess testng n the exam complete the followng steps: Indcate the test statstc, ts crtcal

More information

β0 + β1xi. You are interested in estimating the unknown parameters β

β0 + β1xi. You are interested in estimating the unknown parameters β Revsed: v3 Ordnar Least Squares (OLS): Smple Lnear Regresson (SLR) Analtcs The SLR Setup Sample Statstcs Ordnar Least Squares (OLS): FOCs and SOCs Back to OLS and Sample Statstcs Predctons (and Resduals)

More information

Y = β 0 + β 1 X 1 + β 2 X β k X k + ε

Y = β 0 + β 1 X 1 + β 2 X β k X k + ε Chapter 3 Secton 3.1 Model Assumptons: Multple Regresson Model Predcton Equaton Std. Devaton of Error Correlaton Matrx Smple Lnear Regresson: 1.) Lnearty.) Constant Varance 3.) Independent Errors 4.) Normalty

More information

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Regression Analysis

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Regression Analysis Resource Allocaton and Decson Analss (ECON 800) Sprng 04 Foundatons of Regresson Analss Readng: Regresson Analss (ECON 800 Coursepak, Page 3) Defntons and Concepts: Regresson Analss statstcal technques

More information

Statistics for Economics & Business

Statistics for Economics & Business Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

Statistics for Business and Economics

Statistics for Business and Economics Statstcs for Busness and Economcs Chapter 11 Smple Regresson Copyrght 010 Pearson Educaton, Inc. Publshng as Prentce Hall Ch. 11-1 11.1 Overvew of Lnear Models n An equaton can be ft to show the best lnear

More information

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X).

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X). 11.4.1 Estmaton of Multple Regresson Coeffcents In multple lnear regresson, we essentally solve n equatons for the p unnown parameters. hus n must e equal to or greater than p and n practce n should e

More information

Tests of Exclusion Restrictions on Regression Coefficients: Formulation and Interpretation

Tests of Exclusion Restrictions on Regression Coefficients: Formulation and Interpretation ECONOMICS 5* -- NOTE 6 ECON 5* -- NOTE 6 Tests of Excluson Restrctons on Regresson Coeffcents: Formulaton and Interpretaton The populaton regresson equaton (PRE) for the general multple lnear regresson

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

Lecture Notes for STATISTICAL METHODS FOR BUSINESS II BMGT 212. Chapters 14, 15 & 16. Professor Ahmadi, Ph.D. Department of Management

Lecture Notes for STATISTICAL METHODS FOR BUSINESS II BMGT 212. Chapters 14, 15 & 16. Professor Ahmadi, Ph.D. Department of Management Lecture Notes for STATISTICAL METHODS FOR BUSINESS II BMGT 1 Chapters 14, 15 & 16 Professor Ahmad, Ph.D. Department of Management Revsed August 005 Chapter 14 Formulas Smple Lnear Regresson Model: y =

More information

Introduction to Dummy Variable Regressors. 1. An Example of Dummy Variable Regressors

Introduction to Dummy Variable Regressors. 1. An Example of Dummy Variable Regressors ECONOMICS 5* -- Introducton to Dummy Varable Regressors ECON 5* -- Introducton to NOTE Introducton to Dummy Varable Regressors. An Example of Dummy Varable Regressors A model of North Amercan car prces

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Mamum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models for

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Regression Analysis. Regression Analysis

Regression Analysis. Regression Analysis Regresson Analyss Smple Regresson Multvarate Regresson Stepwse Regresson Replcaton and Predcton Error 1 Regresson Analyss In general, we "ft" a model by mnmzng a metrc that represents the error. n mn (y

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 31 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 6. Rdge regresson The OLSE s the best lnear unbased

More information

Exercise 1 The General Linear Model : Answers

Exercise 1 The General Linear Model : Answers Eercse The General Lnear Model Answers. Gven the followng nformaton on 67 pars of values on and -.6 - - - 9 a fnd the OLS coeffcent estmate from a regresson of on. Usng b 9 So. 9 b Suppose that now also

More information

,, MRTS is the marginal rate of technical substitution

,, MRTS is the marginal rate of technical substitution Mscellaneous Notes on roducton Economcs ompled by eter F Orazem September 9, 00 I Implcatons of conve soquants Two nput case, along an soquant 0 along an soquant Slope of the soquant,, MRTS s the margnal

More information

Systems of Equations (SUR, GMM, and 3SLS)

Systems of Equations (SUR, GMM, and 3SLS) Lecture otes on Advanced Econometrcs Takash Yamano Fall Semester 4 Lecture 4: Sstems of Equatons (SUR, MM, and 3SLS) Seemngl Unrelated Regresson (SUR) Model Consder a set of lnear equatons: $ + ɛ $ + ɛ

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Maxmum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede Fall 0 Analyss of Expermental easurements B. Esensten/rev. S. Errede We now reformulate the lnear Least Squares ethod n more general terms, sutable for (eventually extendng to the non-lnear case, and also

More information

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6 Department of Quanttatve Methods & Informaton Systems Tme Seres and Ther Components QMIS 30 Chapter 6 Fall 00 Dr. Mohammad Zanal These sldes were modfed from ther orgnal source for educatonal purpose only.

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

ECON 351* -- Note 23: Tests for Coefficient Differences: Examples Introduction. Sample data: A random sample of 534 paid employees.

ECON 351* -- Note 23: Tests for Coefficient Differences: Examples Introduction. Sample data: A random sample of 534 paid employees. Model and Data ECON 35* -- NOTE 3 Tests for Coeffcent Dfferences: Examples. Introducton Sample data: A random sample of 534 pad employees. Varable defntons: W hourly wage rate of employee ; lnw the natural

More information

[The following data appear in Wooldridge Q2.3.] The table below contains the ACT score and college GPA for eight college students.

[The following data appear in Wooldridge Q2.3.] The table below contains the ACT score and college GPA for eight college students. PPOL 59-3 Problem Set Exercses n Smple Regresson Due n class /8/7 In ths problem set, you are asked to compute varous statstcs by hand to gve you a better sense of the mechancs of the Pearson correlaton

More information

Basic Business Statistics, 10/e

Basic Business Statistics, 10/e Chapter 13 13-1 Basc Busness Statstcs 11 th Edton Chapter 13 Smple Lnear Regresson Basc Busness Statstcs, 11e 009 Prentce-Hall, Inc. Chap 13-1 Learnng Objectves In ths chapter, you learn: How to use regresson

More information

Linear Regression Analysis: Terminology and Notation

Linear Regression Analysis: Terminology and Notation ECON 35* -- Secton : Basc Concepts of Regresson Analyss (Page ) Lnear Regresson Analyss: Termnology and Notaton Consder the generc verson of the smple (two-varable) lnear regresson model. It s represented

More information

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 008 Recall: man dea of lnear regresson Lnear regresson can be used to study

More information

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding Recall: man dea of lnear regresson Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 8 Lnear regresson can be used to study an

More information

Lecture 6: Introduction to Linear Regression

Lecture 6: Introduction to Linear Regression Lecture 6: Introducton to Lnear Regresson An Manchakul amancha@jhsph.edu 24 Aprl 27 Lnear regresson: man dea Lnear regresson can be used to study an outcome as a lnear functon of a predctor Example: 6

More information

/ n ) are compared. The logic is: if the two

/ n ) are compared. The logic is: if the two STAT C141, Sprng 2005 Lecture 13 Two sample tests One sample tests: examples of goodness of ft tests, where we are testng whether our data supports predctons. Two sample tests: called as tests of ndependence

More information

Lecture 2: Prelude to the big shrink

Lecture 2: Prelude to the big shrink Lecture 2: Prelude to the bg shrnk Last tme A slght detour wth vsualzaton tools (hey, t was the frst day... why not start out wth somethng pretty to look at?) Then, we consdered a smple 120a-style regresson

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 13 The Smple Lnear Regresson Model and Correlaton 1999 Prentce-Hall, Inc. Chap. 13-1 Chapter Topcs Types of Regresson Models Determnng the Smple Lnear

More information

Production Function Estimation

Production Function Estimation Producton Functon Estmaton Producton functon L: labor nput K: captal nput m: other nput Q = f (L, K, m ) Example, Cobb-Douglas Producton functon Q = AL α K β exp(ɛ ) ln(q ) = ln(a) + αln(l ) + βln(k )

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE)

ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE) ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE) June 7, 016 15:30 Frst famly name: Name: DNI/ID: Moble: Second famly Name: GECO/GADE: Instructor: E-mal: Queston 1 A B C Blank Queston A B C Blank Queston

More information

Improvement in Estimating the Population Mean Using Exponential Estimator in Simple Random Sampling

Improvement in Estimating the Population Mean Using Exponential Estimator in Simple Random Sampling Bulletn of Statstcs & Economcs Autumn 009; Volume 3; Number A09; Bull. Stat. Econ. ISSN 0973-70; Copyrght 009 by BSE CESER Improvement n Estmatng the Populaton Mean Usng Eponental Estmator n Smple Random

More information

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA 4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth one-way ANOVA If the populatons ncluded n the study are selected

More information

Lecture 3 Stat102, Spring 2007

Lecture 3 Stat102, Spring 2007 Lecture 3 Stat0, Sprng 007 Chapter 3. 3.: Introducton to regresson analyss Lnear regresson as a descrptve technque The least-squares equatons Chapter 3.3 Samplng dstrbuton of b 0, b. Contnued n net lecture

More information

Correlation and Regression

Correlation and Regression Correlaton and Regresson otes prepared by Pamela Peterson Drake Index Basc terms and concepts... Smple regresson...5 Multple Regresson...3 Regresson termnology...0 Regresson formulas... Basc terms and

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VIII LECTURE - 34 ANALYSIS OF VARIANCE IN RANDOM-EFFECTS MODEL AND MIXED-EFFECTS EFFECTS MODEL Dr Shalabh Department of Mathematcs and Statstcs Indan

More information

Representation Theorem for Convex Nonparametric Least Squares. Timo Kuosmanen

Representation Theorem for Convex Nonparametric Least Squares. Timo Kuosmanen Representaton Theorem or Convex Nonparametrc Least Squares Tmo Kuosmanen 4th Nordc Econometrc Meetng, Tartu, Estona, 4-6 May 007 Motvaton Inerences oten depend crtcally upon the algebrac orm chosen. It

More information

CHAPTER 8. Exercise Solutions

CHAPTER 8. Exercise Solutions CHAPTER 8 Exercse Solutons 77 Chapter 8, Exercse Solutons, Prncples of Econometrcs, 3e 78 EXERCISE 8. When = N N N ( x x) ( x x) ( x x) = = = N = = = N N N ( x ) ( ) ( ) ( x x ) x x x x x = = = = Chapter

More information

Natural Language Processing and Information Retrieval

Natural Language Processing and Information Retrieval Natural Language Processng and Informaton Retreval Support Vector Machnes Alessandro Moschtt Department of nformaton and communcaton technology Unversty of Trento Emal: moschtt@ds.untn.t Summary Support

More information

A Comparative Study for Estimation Parameters in Panel Data Model

A Comparative Study for Estimation Parameters in Panel Data Model A Comparatve Study for Estmaton Parameters n Panel Data Model Ahmed H. Youssef and Mohamed R. Abonazel hs paper examnes the panel data models when the regresson coeffcents are fxed random and mxed and

More information

Correlation and Regression. Correlation 9.1. Correlation. Chapter 9

Correlation and Regression. Correlation 9.1. Correlation. Chapter 9 Chapter 9 Correlaton and Regresson 9. Correlaton Correlaton A correlaton s a relatonshp between two varables. The data can be represented b the ordered pars (, ) where s the ndependent (or eplanator) varable,

More information

Continuous vs. Discrete Goods

Continuous vs. Discrete Goods CE 651 Transportaton Economcs Charsma Choudhury Lecture 3-4 Analyss of Demand Contnuous vs. Dscrete Goods Contnuous Goods Dscrete Goods x auto 1 Indfference u curves 3 u u 1 x 1 0 1 bus Outlne Data Modelng

More information

CHAPER 11: HETEROSCEDASTICITY: WHAT HAPPENS WHEN ERROR VARIANCE IS NONCONSTANT?

CHAPER 11: HETEROSCEDASTICITY: WHAT HAPPENS WHEN ERROR VARIANCE IS NONCONSTANT? Basc Econometrcs, Gujarat and Porter CHAPER 11: HETEROSCEDASTICITY: WHAT HAPPENS WHEN ERROR VARIANCE IS NONCONSTANT? 11.1 (a) False. The estmators are unbased but are neffcent. (b) True. See Sec. 11.4

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

Biostatistics. Chapter 11 Simple Linear Correlation and Regression. Jing Li

Biostatistics. Chapter 11 Simple Linear Correlation and Regression. Jing Li Bostatstcs Chapter 11 Smple Lnear Correlaton and Regresson Jng L jng.l@sjtu.edu.cn http://cbb.sjtu.edu.cn/~jngl/courses/2018fall/b372/ Dept of Bonformatcs & Bostatstcs, SJTU Recall eat chocolate Cell 175,

More information

Topic 7: Analysis of Variance

Topic 7: Analysis of Variance Topc 7: Analyss of Varance Outlne Parttonng sums of squares Breakdown the degrees of freedom Expected mean squares (EMS) F test ANOVA table General lnear test Pearson Correlaton / R 2 Analyss of Varance

More information

Tests of Single Linear Coefficient Restrictions: t-tests and F-tests. 1. Basic Rules. 2. Testing Single Linear Coefficient Restrictions

Tests of Single Linear Coefficient Restrictions: t-tests and F-tests. 1. Basic Rules. 2. Testing Single Linear Coefficient Restrictions ECONOMICS 35* -- NOTE ECON 35* -- NOTE Tests of Sngle Lnear Coeffcent Restrctons: t-tests and -tests Basc Rules Tests of a sngle lnear coeffcent restrcton can be performed usng ether a two-taled t-test

More information

Economics 101. Lecture 4 - Equilibrium and Efficiency

Economics 101. Lecture 4 - Equilibrium and Efficiency Economcs 0 Lecture 4 - Equlbrum and Effcency Intro As dscussed n the prevous lecture, we wll now move from an envronment where we looed at consumers mang decsons n solaton to analyzng economes full of

More information

Marginal Effects of Explanatory Variables: Constant or Variable? 1. Constant Marginal Effects of Explanatory Variables: A Starting Point

Marginal Effects of Explanatory Variables: Constant or Variable? 1. Constant Marginal Effects of Explanatory Variables: A Starting Point CONOMICS * -- NOT CON * -- NOT Margnal ffects of xplanatory Varables: Constant or Varable?. Constant Margnal ffects of xplanatory Varables: A Startng Pont Nature: A contnuous explanatory varable has a

More information

Chapter 8 Multivariate Regression Analysis

Chapter 8 Multivariate Regression Analysis Chapter 8 Multvarate Regresson Analyss 8.3 Multple Regresson wth K Independent Varables 8.4 Sgnfcance tests of Parameters Populaton Regresson Model For K ndependent varables, the populaton regresson and

More information

Polynomial Regression Models

Polynomial Regression Models LINEAR REGRESSION ANALYSIS MODULE XII Lecture - 6 Polynomal Regresson Models Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Test of sgnfcance To test the sgnfcance

More information

DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR. Introductory Econometrics 1 hour 30 minutes

DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR. Introductory Econometrics 1 hour 30 minutes 25/6 Canddates Only January Examnatons 26 Student Number: Desk Number:...... DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR Department Module Code Module Ttle Exam Duraton

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

Bose (1942) showed b t r 1 is a necessary condition. PROOF (Murty 1961): Assume t is a multiple of k, i.e. t nk, where n is an integer.

Bose (1942) showed b t r 1 is a necessary condition. PROOF (Murty 1961): Assume t is a multiple of k, i.e. t nk, where n is an integer. Resolvable BIBD: An ncomplete bloc desgn n whch each treatment appears r tmes s resolvable f the blocs can be dvded nto r groups such that each group s a complete replcaton of the treatments (.e. each

More information

2016 Wiley. Study Session 2: Ethical and Professional Standards Application

2016 Wiley. Study Session 2: Ethical and Professional Standards Application 6 Wley Study Sesson : Ethcal and Professonal Standards Applcaton LESSON : CORRECTION ANALYSIS Readng 9: Correlaton and Regresson LOS 9a: Calculate and nterpret a sample covarance and a sample correlaton

More information

T E C O L O T E R E S E A R C H, I N C.

T E C O L O T E R E S E A R C H, I N C. T E C O L O T E R E S E A R C H, I N C. B rdg n g En g neern g a nd Econo mcs S nce 1973 THE MINIMUM-UNBIASED-PERCENTAGE ERROR (MUPE) METHOD IN CER DEVELOPMENT Thrd Jont Annual ISPA/SCEA Internatonal Conference

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Empirical Methods for Corporate Finance. Identification

Empirical Methods for Corporate Finance. Identification mprcal Methods for Corporate Fnance Identfcaton Causalt Ultmate goal of emprcal research n fnance s to establsh a causal relatonshp between varables.g. What s the mpact of tangblt on leverage?.g. What

More information

III. Econometric Methodology Regression Analysis

III. Econometric Methodology Regression Analysis Page Econ07 Appled Econometrcs Topc : An Overvew of Regresson Analyss (Studenmund, Chapter ) I. The Nature and Scope of Econometrcs. Lot s of defntons of econometrcs. Nobel Prze Commttee Paul Samuelson,

More information

Professor Chris Murray. Midterm Exam

Professor Chris Murray. Midterm Exam Econ 7 Econometrcs Sprng 4 Professor Chrs Murray McElhnney D cjmurray@uh.edu Mdterm Exam Wrte your answers on one sde of the blank whte paper that I have gven you.. Do not wrte your answers on ths exam.

More information

Radar Trackers. Study Guide. All chapters, problems, examples and page numbers refer to Applied Optimal Estimation, A. Gelb, Ed.

Radar Trackers. Study Guide. All chapters, problems, examples and page numbers refer to Applied Optimal Estimation, A. Gelb, Ed. Radar rackers Study Gude All chapters, problems, examples and page numbers refer to Appled Optmal Estmaton, A. Gelb, Ed. Chapter Example.0- Problem Statement wo sensors Each has a sngle nose measurement

More information

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers Psychology 282 Lecture #24 Outlne Regresson Dagnostcs: Outlers In an earler lecture we studed the statstcal assumptons underlyng the regresson model, ncludng the followng ponts: Formal statement of assumptons.

More information

Outline. 9. Heteroskedasticity Cross Sectional Analysis. Homoskedastic Case

Outline. 9. Heteroskedasticity Cross Sectional Analysis. Homoskedastic Case Outlne 9. Heteroskedastcty Cross Sectonal Analyss Read Wooldrdge (013), Chapter 8 I. Consequences of Heteroskedastcty II. Testng for Heteroskedastcty III. Heteroskedastcty Robust Inference IV. Weghted

More information

Rockefeller College University at Albany

Rockefeller College University at Albany Rockefeller College Unverst at Alban PAD 705 Handout: Maxmum Lkelhood Estmaton Orgnal b Davd A. Wse John F. Kenned School of Government, Harvard Unverst Modfcatons b R. Karl Rethemeer Up to ths pont n

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

Regression. The Simple Linear Regression Model

Regression. The Simple Linear Regression Model Regresson Smple Lnear Regresson Model Least Squares Method Coeffcent of Determnaton Model Assumptons Testng for Sgnfcance Usng the Estmated Regresson Equaton for Estmaton and Predcton Resdual Analss: Valdatng

More information

Chapter 12 Analysis of Covariance

Chapter 12 Analysis of Covariance Chapter Analyss of Covarance Any scentfc experment s performed to know somethng that s unknown about a group of treatments and to test certan hypothess about the correspondng treatment effect When varablty

More information

Scatter Plot x

Scatter Plot x Construct a scatter plot usng excel for the gven data. Determne whether there s a postve lnear correlaton, negatve lnear correlaton, or no lnear correlaton. Complete the table and fnd the correlaton coeffcent

More information