i (x i x) 2 1 N i x i(y i y) Var(x) = P (x 1 x) Var(x)

Size: px
Start display at page:

Download "i (x i x) 2 1 N i x i(y i y) Var(x) = P (x 1 x) Var(x)"

Transcription

1 ECO 6375 Prof Millimet Problem Set #2: Answer Key Stata problem 2 Q 3 Q (a) The sample average of the individual-specific marginal effects is 0039 for educw and for white Thus, on average, an extra year of education raises the probability of a woman working by 39% and being white reduces the probability of working by 54% (b) These are identical to those reported by -margins-, but differ from those reported by -dprobit- The marginal effects reported by -dprobit- are the marginal effects computed at the sample mean of the covariates This is verified in the attached do file While the marginal effects are asymptotically equivalent, they do differ slightly for the sample -margins- can also be used to obtain marginal effects at the mean (or any other data point) (a) We know the OLS estimator is β = = = i (x i x)(y i y) i (x i x) 2 = N i x i(y i y) Var(x) N = N i (x i x)(y i y) i (x i x) 2 i x i N N i x iy i y N Var(x) i:y i = x i yx = P (x x) Var(x) Var(x) = P (x P x ( P )x 0 ) Var(x) = P ( P ) Var(x) (x x 0 ) where P = N /N is the proportion of the sample with y = (also equal to y) Thus, the slope estimator is a scaled version of the mean difference in x across the sub-samples with y = and y = 0 (b) In the LPM, we have Pr(y i = x i ) = x i β Thus, the log-likelihood is given by which becomes undefined if x i β / (0, ) ln[l(θ)] = i ln[pr(y i x i, θ)] = i ln[x iβ] y i ln[ x i β] ( y i) (a) In a probit model, the probability that y i = is given by Pr(y i = x i ) = Φ(x i β) where Φ( ) is the standard normal CDF So, given the estimation results, Pr(y i = male =, exp = 0) = Φ[003(0) + 074() ] = Φ[6] 868%

2 (b) Similarly, Pr(y i = male = 0, exp = 5) = Φ[003(5) + 074(0) ] = Φ[0787] 784% (c) Marginal effects in the probit model give the change in the probability that y i = given a change in x For experience, this is given by Pr(y i = x i ) exp = Φ(x iβ) exp = φ(x i β)β exp 4 Q which is equal to φ(003 exp i )β exp for males Thus, the marginal effect is not constant for males, but varies with experience (d) For females, the marginal effect is φ(003 exp i +0632)β exp (e) For a male and female with the same years of experience, the marginal effects are different since the 074 is missing in (d) In other words, even holding experience constant, the marginal effect of an additional year of experience will vary by gender as long as the coefficient on gender is not zero (a) Disturbance term can take only two discrete values, so standard errors are invalid LPM can give nonsense predictions of probabilities greater than or less than 0 Unrealistic assumption that the marginal effects are constant (b) The standard errors are (asymptotically) valid because the model is fitted using MLE The predicted probabilities are constrained to lie in the range 0 to The assumption of constant marginal effects to be relaxed (c) Since p is a function of Z, and Z is a linear function of the X variables, the marginal effect of X j is p = dp Z = dp X j dz X j dz β j where β j is the coefficient of X j in the expression for Z In the case of probit analysis, p = F (Z) is the standard normal CDF Hence, dp/dz is just the standard normal PDF For males, this is 0368 when evaluated at the means Hence, the marginal effect of AGE is = 0050 and that of S is = 0049 For females, the corresponding figures are = 0042 and = 0026, respectively So for every extra year of age, the probability is reduced by 50 percent for males and 42 percent for females For every extra year of schooling, the probability increases by 49 percent for males and 26 percent for females (d) Two possibilities i Derive the covariance matrix of the estimated marginal effects for males and females using the delta method Then perform a test of equality of the marginal effects 2

3 ii Fit a probit regression for the combined sample, adding a male intercept dummy and male slope dummies for AGE and S Test the joint hypothesis that all coefficients involving the male dummy are equal to zero Note, if any of the coefficients for male are non-zero, then the marginal effects will very by gender since the marginal effects depend on all parameters in the model 5 Q (a) The marginal effect is given by Pr(y = z, z 2 ) z 2 = (γ + 2γ 2 z 2 )φ(z β + γ z 2 + γ 2 z 2 2) with the corresponding estimator given by replacing the parameters with the probit estimates (b) The marginal effect of z 2 is given by Pr(y = z, z 2, d) z 2 = (γ + γ 3 d)φ(z β + γ z 2 + γ 2 d + γ 3 z 2 d) with the corresponding estimator given by replacing the parameters with the probit estimates The partial effect of d is given by Pr(y = z, z 2, d = ) Pr(y = z, z 2, d = 0) = Φ(z β + (γ + γ 3 )z 2 + γ 2 ) Φ(z β + γ z 2 ) with the corresponding estimator given by replacing the parameters with the probit estimates 6 The Poisson density must be adjusted to represent the density of y condition on y > 0 This is accomplished by dividing the density by Pr(y > 0) Formally, The log-likelihood is given by f(y y > 0) = f(y, y > 0) f(y > 0) = exp{ λ}λy y! = exp{ λ}λy y! = f(y) f(y > 0) /[ Pr(y = 0)] /[ exp{ λ}] ln[l(θ)] = i { λ + y i ln λ ln(y!) ln[ exp{ λ}]} = N{λ ln[ exp{ λ}]} + ln λ i y i i ln(y!) 7 Q (a) The log-likelihood function is ln[l(θ)] = ln[pr(p t x t, θ)] i = [ λ t + P t ln λ t ln(y t!)] i 3

4 (b) Two concerns are i over- or under-dispersion (ie, Var(y x) E[y x]), and ii that zeros may be prevalent in the data such that we would want to model the effect of going from zero to positive values as different than changes among positive values (i) may be tested using the regression-based test from class Specifcally, H o : Var(y i ) = E[y i ] which can be tested using by regressing H : Var(y i ) = E[y i ] + αg(e[y i ]) z t = ( P t λ t ) 2 Pt λ t 2 on either (i) a constant or (ii) λ t and no constant The t-statistic is a test of the null hypothesis (ii) may be assessed simply by looking at the frequency of zeros in the data If the proportion of zeros is large, then one may wish to use a zero-inflated poisson model (c) The coefficients give the percentage change in the number of patents from a unit change in each variable (d) Here, we need to compute the marginal effect of an additional research employee, and then multiply this by ten Formally, 0 E[P t x t ] R t = 0λ t β2 = exp{ β RD t + β 2 R t + β 3 N t }(0 β 2 ) Thus, the expected effect depends on the values of RD, R, and N There are three common ways to quantify the expected effect for the firm i calculate the value at the sample mean: RD, R, and N ii calculate the value for each year in the sample, and then report the average exp{ β RD t + β 2 R t + β 3 N t }(0 β 2 ) t= iii calculate the value at some particular value of the variables that seem reasonable, say RD, R, and N exp{ β RD + β 2 R + β 3 N }(0 β 2 ) 4

5 ps2 - Printed on 9/20/20 8:4:06 AM cap log cl 2 clear all 3 set mem 50m 4 set more off 5 cd c:\eco6375\ps 6 7 log using ps2log, replace 8 9 use "C:\eco7377\ps\ejdta", clear 0 g lfpw=laborw>0 probit lfpw white educw agew 2 3 **obtain obs-specific marginal effects 4 predict xb, xb 5 g me_educw=normalden(xb)*_b[educw] 6 g xb=xb if white== 7 replace xb=xb+_b[white] if white==0 8 g xb0=xb if white==0 9 replace xb0=xb-_b[white] if white== 20 g me_white=normal(xb)-normal(xb0) 2 **get sample average of obs-specific marginal effects 22 su me_* probit lfpw iwhite educw agew 25 margins white 26 margins, dydx(educw agew) 27 dprobit lfpw white educw agew **are these commands getting marginal effects at sample average? compute and compare 30 foreach v of varlist white educw agew { 3 su `v' 32 loc m`v'=r(mean) 33 } 34 qui probit lfpw white educw agew 35 g xbm=_b[_cons]+`mwhite'*_b[white]+`meducw'*_b[educw]+`magew'*_b[agew] 36 di "Marginal Effect for educw computed at sample mean = " %27f normalden(xbm)*_b[educw] 37 di "Marginal Effect for white computed at sample mean = " %27f normal(xbm+(-`mwhite')*_b[white])-normal(xbm- `mwhite'*_b[white]) log cl 4 Page

6 ps name: <unnamed> log: c:\eco6375\ps\ps2log log type: text opened on: 20 Sep 20, 08:39:43 use "C:\eco7377\ps\ejdta", clear g lfpw=laborw>0 probit lfpw white educw agew Iteration 0: log likelihood = Iteration : log likelihood = Iteration 2: log likelihood = Iteration 3: log likelihood = Probit regression Number of obs = 485 LR chi2(3) = 6730 Prob > chi2 = Log likelihood = Pseudo R2 = lfpw Coef Std Err z P> z [95% Conf Interval] white educw agew _cons **obtain obs-specific marginal effects predict xb, xb g me_educw=normalden(xb)*_b[educw] g xb=xb if white== (496 missing values generated) replace xb=xb+_b[white] if white==0 (496 real changes made) g xb0=xb if white==0 (989 missing values generated) replace xb0=xb-_b[white] if white== (989 real changes made) g me_white=normal(xb)-normal(xb0) **get sample average of obs-specific marginal effects su me_* Variable Obs Mean Std Dev Min Max me_educw me_white probit lfpw iwhite educw agew Iteration 0: log likelihood = Iteration : log likelihood = Iteration 2: log likelihood = Iteration 3: log likelihood = Probit regression Number of obs = 485 LR chi2(3) = 6730 Prob > chi2 = Log likelihood = Pseudo R2 = Page

7 lfpw Coef Std Err z P> z [95% Conf Interval] white educw agew _cons margins white Predictive margins Number of obs = 485 Model VCE : OIM ps2 Expression : Pr(lfpw), predict() Delta-method Margin Std Err z P> z [95% Conf Interval] white margins, dydx(educw agew) Average marginal effects Number of obs = 485 Model VCE : OIM Expression : Pr(lfpw), predict() dy/dx wrt : educw agew Delta-method dy/dx Std Err z P> z [95% Conf Interval] educw agew dprobit lfpw white educw agew Iteration 0: log likelihood = Iteration : log likelihood = Iteration 2: log likelihood = Probit regression, reporting marginal effects Number of obs = 485 LR chi2(3) = 6730 Prob > chi2 = Log likelihood = Pseudo R2 = lfpw df/dx Std Err z P> z x-bar [ 95% CI ] white* educw agew obs P pred P (at x-bar) (*) df/dx is for discrete change of dummy variable from 0 to z and P> z correspond to the test of the underlying coefficient being 0 **are these commands getting marginal effects at sample average? compute and compare foreach v of varlist white educw agew { 2 su `v' 3 loc m`v'=r(mean) 4 } Page 2

8 ps2 Variable Obs Mean Std Dev Min Max white Variable Obs Mean Std Dev Min Max educw Variable Obs Mean Std Dev Min Max agew qui probit lfpw white educw agew g xbm=_b[_cons]+`mwhite'*_b[white]+`meducw'*_b[educw]+`magew'*_b[agew] di "Marginal Effect for educw computed at sample mean = " %27f normalden(xbm)*_b[educw] Marginal Effect for educw computed at sample mean = di "Marginal Effect for white computed at sample mean = " %27f normal(xbm+(-`mwhite')*_b[white])-normal(xbm-`mwhite'*_b[white]) Marginal Effect for white computed at sample mean = log cl name: <unnamed> log: c:\eco6375\ps\ps2log log type: text closed on: 20 Sep 20, 08:39: Page 3

Binary Dependent Variables

Binary Dependent Variables Binary Dependent Variables In some cases the outcome of interest rather than one of the right hand side variables - is discrete rather than continuous Binary Dependent Variables In some cases the outcome

More information

2. We care about proportion for categorical variable, but average for numerical one.

2. We care about proportion for categorical variable, but average for numerical one. Probit Model 1. We apply Probit model to Bank data. The dependent variable is deny, a dummy variable equaling one if a mortgage application is denied, and equaling zero if accepted. The key regressor is

More information

Homework Solutions Applied Logistic Regression

Homework Solutions Applied Logistic Regression Homework Solutions Applied Logistic Regression WEEK 6 Exercise 1 From the ICU data, use as the outcome variable vital status (STA) and CPR prior to ICU admission (CPR) as a covariate. (a) Demonstrate that

More information

ECON 594: Lecture #6

ECON 594: Lecture #6 ECON 594: Lecture #6 Thomas Lemieux Vancouver School of Economics, UBC May 2018 1 Limited dependent variables: introduction Up to now, we have been implicitly assuming that the dependent variable, y, was

More information

Lab 10 - Binary Variables

Lab 10 - Binary Variables Lab 10 - Binary Variables Spring 2017 Contents 1 Introduction 1 2 SLR on a Dummy 2 3 MLR with binary independent variables 3 3.1 MLR with a Dummy: different intercepts, same slope................. 4 3.2

More information

Marginal Effects for Continuous Variables Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 20, 2018

Marginal Effects for Continuous Variables Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 20, 2018 Marginal Effects for Continuous Variables Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 20, 2018 References: Long 1997, Long and Freese 2003 & 2006 & 2014,

More information

Nonlinear Econometric Analysis (ECO 722) : Homework 2 Answers. (1 θ) if y i = 0. which can be written in an analytically more convenient way as

Nonlinear Econometric Analysis (ECO 722) : Homework 2 Answers. (1 θ) if y i = 0. which can be written in an analytically more convenient way as Nonlinear Econometric Analysis (ECO 722) : Homework 2 Answers 1. Consider a binary random variable y i that describes a Bernoulli trial in which the probability of observing y i = 1 in any draw is given

More information

ECON Introductory Econometrics. Lecture 11: Binary dependent variables

ECON Introductory Econometrics. Lecture 11: Binary dependent variables ECON4150 - Introductory Econometrics Lecture 11: Binary dependent variables Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 11 Lecture Outline 2 The linear probability model Nonlinear probability

More information

7/28/15. Review Homework. Overview. Lecture 6: Logistic Regression Analysis

7/28/15. Review Homework. Overview. Lecture 6: Logistic Regression Analysis Lecture 6: Logistic Regression Analysis Christopher S. Hollenbeak, PhD Jane R. Schubart, PhD The Outcomes Research Toolbox Review Homework 2 Overview Logistic regression model conceptually Logistic regression

More information

Nonlinear Regression Functions

Nonlinear Regression Functions Nonlinear Regression Functions (SW Chapter 8) Outline 1. Nonlinear regression functions general comments 2. Nonlinear functions of one variable 3. Nonlinear functions of two variables: interactions 4.

More information

Problem Set 4 ANSWERS

Problem Set 4 ANSWERS Economics 20 Problem Set 4 ANSWERS Prof. Patricia M. Anderson 1. Suppose that our variable for consumption is measured with error, so cons = consumption + e 0, where e 0 is uncorrelated with inc, educ

More information

Chapter 11. Regression with a Binary Dependent Variable

Chapter 11. Regression with a Binary Dependent Variable Chapter 11 Regression with a Binary Dependent Variable 2 Regression with a Binary Dependent Variable (SW Chapter 11) So far the dependent variable (Y) has been continuous: district-wide average test score

More information

Estimating and Interpreting Effects for Nonlinear and Nonparametric Models

Estimating and Interpreting Effects for Nonlinear and Nonparametric Models Estimating and Interpreting Effects for Nonlinear and Nonparametric Models Enrique Pinzón September 18, 2018 September 18, 2018 1 / 112 Objective Build a unified framework to ask questions about model

More information

General Linear Model (Chapter 4)

General Linear Model (Chapter 4) General Linear Model (Chapter 4) Outcome variable is considered continuous Simple linear regression Scatterplots OLS is BLUE under basic assumptions MSE estimates residual variance testing regression coefficients

More information

University of California at Berkeley Fall Introductory Applied Econometrics Final examination. Scores add up to 125 points

University of California at Berkeley Fall Introductory Applied Econometrics Final examination. Scores add up to 125 points EEP 118 / IAS 118 Elisabeth Sadoulet and Kelly Jones University of California at Berkeley Fall 2008 Introductory Applied Econometrics Final examination Scores add up to 125 points Your name: SID: 1 1.

More information

Sociology 362 Data Exercise 6 Logistic Regression 2

Sociology 362 Data Exercise 6 Logistic Regression 2 Sociology 362 Data Exercise 6 Logistic Regression 2 The questions below refer to the data and output beginning on the next page. Although the raw data are given there, you do not have to do any Stata runs

More information

Practice exam questions

Practice exam questions Practice exam questions Nathaniel Higgins nhiggins@jhu.edu, nhiggins@ers.usda.gov 1. The following question is based on the model y = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 3 + u. Discuss the following two hypotheses.

More information

5. Let W follow a normal distribution with mean of μ and the variance of 1. Then, the pdf of W is

5. Let W follow a normal distribution with mean of μ and the variance of 1. Then, the pdf of W is Practice Final Exam Last Name:, First Name:. Please write LEGIBLY. Answer all questions on this exam in the space provided (you may use the back of any page if you need more space). Show all work but do

More information

Lecture 3 Linear random intercept models

Lecture 3 Linear random intercept models Lecture 3 Linear random intercept models Example: Weight of Guinea Pigs Body weights of 48 pigs in 9 successive weeks of follow-up (Table 3.1 DLZ) The response is measures at n different times, or under

More information

fhetprob: A fast QMLE Stata routine for fractional probit models with multiplicative heteroskedasticity

fhetprob: A fast QMLE Stata routine for fractional probit models with multiplicative heteroskedasticity fhetprob: A fast QMLE Stata routine for fractional probit models with multiplicative heteroskedasticity Richard Bluhm May 26, 2013 Introduction Stata can easily estimate a binary response probit models

More information

Course Econometrics I

Course Econometrics I Course Econometrics I 3. Multiple Regression Analysis: Binary Variables Martin Halla Johannes Kepler University of Linz Department of Economics Last update: April 29, 2014 Martin Halla CS Econometrics

More information

CRE METHODS FOR UNBALANCED PANELS Correlated Random Effects Panel Data Models IZA Summer School in Labor Economics May 13-19, 2013 Jeffrey M.

CRE METHODS FOR UNBALANCED PANELS Correlated Random Effects Panel Data Models IZA Summer School in Labor Economics May 13-19, 2013 Jeffrey M. CRE METHODS FOR UNBALANCED PANELS Correlated Random Effects Panel Data Models IZA Summer School in Labor Economics May 13-19, 2013 Jeffrey M. Wooldridge Michigan State University 1. Introduction 2. Linear

More information

Functional Form. So far considered models written in linear form. Y = b 0 + b 1 X + u (1) Implies a straight line relationship between y and X

Functional Form. So far considered models written in linear form. Y = b 0 + b 1 X + u (1) Implies a straight line relationship between y and X Functional Form So far considered models written in linear form Y = b 0 + b 1 X + u (1) Implies a straight line relationship between y and X Functional Form So far considered models written in linear form

More information

Generalized linear models

Generalized linear models Generalized linear models Christopher F Baum ECON 8823: Applied Econometrics Boston College, Spring 2016 Christopher F Baum (BC / DIW) Generalized linear models Boston College, Spring 2016 1 / 1 Introduction

More information

Lecture 3.1 Basic Logistic LDA

Lecture 3.1 Basic Logistic LDA y Lecture.1 Basic Logistic LDA 0.2.4.6.8 1 Outline Quick Refresher on Ordinary Logistic Regression and Stata Women s employment example Cross-Over Trial LDA Example -100-50 0 50 100 -- Longitudinal Data

More information

Compare Predicted Counts between Groups of Zero Truncated Poisson Regression Model based on Recycled Predictions Method

Compare Predicted Counts between Groups of Zero Truncated Poisson Regression Model based on Recycled Predictions Method Compare Predicted Counts between Groups of Zero Truncated Poisson Regression Model based on Recycled Predictions Method Yan Wang 1, Michael Ong 2, Honghu Liu 1,2,3 1 Department of Biostatistics, UCLA School

More information

STATISTICS 110/201 PRACTICE FINAL EXAM

STATISTICS 110/201 PRACTICE FINAL EXAM STATISTICS 110/201 PRACTICE FINAL EXAM Questions 1 to 5: There is a downloadable Stata package that produces sequential sums of squares for regression. In other words, the SS is built up as each variable

More information

Outline. Linear OLS Models vs: Linear Marginal Models Linear Conditional Models. Random Intercepts Random Intercepts & Slopes

Outline. Linear OLS Models vs: Linear Marginal Models Linear Conditional Models. Random Intercepts Random Intercepts & Slopes Lecture 2.1 Basic Linear LDA 1 Outline Linear OLS Models vs: Linear Marginal Models Linear Conditional Models Random Intercepts Random Intercepts & Slopes Cond l & Marginal Connections Empirical Bayes

More information

covariance between any two observations

covariance between any two observations 1 Ordinary Least Squares (OLS) 1.1 Single Linear Regression Model assumptions of Classical Linear Regression Model (CLRM) (i) true relationship y i = α + βx i + ε i, i = 1,..., N where α, β = population

More information

Lecture 7: OLS with qualitative information

Lecture 7: OLS with qualitative information Lecture 7: OLS with qualitative information Dummy variables Dummy variable: an indicator that says whether a particular observation is in a category or not Like a light switch: on or off Most useful values:

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Chapter 9 Maximum Likelihood Estimatio 9.1 The Likelihood Fuctio The maximum likelihood estimator is the most widely used estimatio method. This chapter discusses the most importat cocepts behid maximum

More information

Binary Outcomes. Objectives. Demonstrate the limitations of the Linear Probability Model (LPM) for binary outcomes

Binary Outcomes. Objectives. Demonstrate the limitations of the Linear Probability Model (LPM) for binary outcomes Binary Outcomes Objectives Demonstrate the limitations of the Linear Probability Model (LPM) for binary outcomes Develop latent variable & transformational approach for binary outcomes Present several

More information

Modeling Binary Outcomes: Logit and Probit Models

Modeling Binary Outcomes: Logit and Probit Models Modeling Binary Outcomes: Logit and Probit Models Eric Zivot December 5, 2009 Motivating Example: Women s labor force participation y i = 1 if married woman is in labor force = 0 otherwise x i k 1 = observed

More information

Econ 371 Problem Set #6 Answer Sheet In this first question, you are asked to consider the following equation:

Econ 371 Problem Set #6 Answer Sheet In this first question, you are asked to consider the following equation: Econ 37 Problem Set #6 Answer Sheet 0. In this first question, you are asked to consider the following equation: Y it = β 0 + β X it + β 3 S t + u it. () You are asked how you might time-demean the data

More information

Gibbs Sampling in Latent Variable Models #1

Gibbs Sampling in Latent Variable Models #1 Gibbs Sampling in Latent Variable Models #1 Econ 690 Purdue University Outline 1 Data augmentation 2 Probit Model Probit Application A Panel Probit Panel Probit 3 The Tobit Model Example: Female Labor

More information

Multivariate probit regression using simulated maximum likelihood

Multivariate probit regression using simulated maximum likelihood Multivariate probit regression using simulated maximum likelihood Lorenzo Cappellari & Stephen P. Jenkins ISER, University of Essex stephenj@essex.ac.uk 1 Overview Introduction and motivation The model

More information

Week 3: Simple Linear Regression

Week 3: Simple Linear Regression Week 3: Simple Linear Regression Marcelo Coca Perraillon University of Colorado Anschutz Medical Campus Health Services Research Methods I HSMP 7607 2017 c 2017 PERRAILLON ALL RIGHTS RESERVED 1 Outline

More information

Question 1 carries a weight of 25%; Question 2 carries 20%; Question 3 carries 20%; Question 4 carries 35%.

Question 1 carries a weight of 25%; Question 2 carries 20%; Question 3 carries 20%; Question 4 carries 35%. UNIVERSITY OF EAST ANGLIA School of Economics Main Series PGT Examination 017-18 ECONOMETRIC METHODS ECO-7000A Time allowed: hours Answer ALL FOUR Questions. Question 1 carries a weight of 5%; Question

More information

Lecture 12: Effect modification, and confounding in logistic regression

Lecture 12: Effect modification, and confounding in logistic regression Lecture 12: Effect modification, and confounding in logistic regression Ani Manichaikul amanicha@jhsph.edu 4 May 2007 Today Categorical predictor create dummy variables just like for linear regression

More information

ECON2228 Notes 2. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 47

ECON2228 Notes 2. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 47 ECON2228 Notes 2 Christopher F Baum Boston College Economics 2014 2015 cfb (BC Econ) ECON2228 Notes 2 2014 2015 1 / 47 Chapter 2: The simple regression model Most of this course will be concerned with

More information

Applied Economics. Regression with a Binary Dependent Variable. Department of Economics Universidad Carlos III de Madrid

Applied Economics. Regression with a Binary Dependent Variable. Department of Economics Universidad Carlos III de Madrid Applied Economics Regression with a Binary Dependent Variable Department of Economics Universidad Carlos III de Madrid See Stock and Watson (chapter 11) 1 / 28 Binary Dependent Variables: What is Different?

More information

Problem set - Selection and Diff-in-Diff

Problem set - Selection and Diff-in-Diff Problem set - Selection and Diff-in-Diff 1. You want to model the wage equation for women You consider estimating the model: ln wage = α + β 1 educ + β 2 exper + β 3 exper 2 + ɛ (1) Read the data into

More information

ECON Introductory Econometrics. Lecture 5: OLS with One Regressor: Hypothesis Tests

ECON Introductory Econometrics. Lecture 5: OLS with One Regressor: Hypothesis Tests ECON4150 - Introductory Econometrics Lecture 5: OLS with One Regressor: Hypothesis Tests Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 5 Lecture outline 2 Testing Hypotheses about one

More information

Extensions to the Basic Framework II

Extensions to the Basic Framework II Topic 7 Extensions to the Basic Framework II ARE/ECN 240 A Graduate Econometrics Professor: Òscar Jordà Outline of this topic Nonlinear regression Limited Dependent Variable regression Applications of

More information

Jeffrey M. Wooldridge Michigan State University

Jeffrey M. Wooldridge Michigan State University Fractional Response Models with Endogenous Explanatory Variables and Heterogeneity Jeffrey M. Wooldridge Michigan State University 1. Introduction 2. Fractional Probit with Heteroskedasticity 3. Fractional

More information

Interpreting coefficients for transformed variables

Interpreting coefficients for transformed variables Interpreting coefficients for transformed variables! Recall that when both independent and dependent variables are untransformed, an estimated coefficient represents the change in the dependent variable

More information

Lab 07 Introduction to Econometrics

Lab 07 Introduction to Econometrics Lab 07 Introduction to Econometrics Learning outcomes for this lab: Introduce the different typologies of data and the econometric models that can be used Understand the rationale behind econometrics Understand

More information

Final Exam. Question 1 (20 points) 2 (25 points) 3 (30 points) 4 (25 points) 5 (10 points) 6 (40 points) Total (150 points) Bonus question (10)

Final Exam. Question 1 (20 points) 2 (25 points) 3 (30 points) 4 (25 points) 5 (10 points) 6 (40 points) Total (150 points) Bonus question (10) Name Economics 170 Spring 2004 Honor pledge: I have neither given nor received aid on this exam including the preparation of my one page formula list and the preparation of the Stata assignment for the

More information

Regression #8: Loose Ends

Regression #8: Loose Ends Regression #8: Loose Ends Econ 671 Purdue University Justin L. Tobias (Purdue) Regression #8 1 / 30 In this lecture we investigate a variety of topics that you are probably familiar with, but need to touch

More information

Soc 63993, Homework #7 Answer Key: Nonlinear effects/ Intro to path analysis

Soc 63993, Homework #7 Answer Key: Nonlinear effects/ Intro to path analysis Soc 63993, Homework #7 Answer Key: Nonlinear effects/ Intro to path analysis Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised February 20, 2015 Problem 1. The files

More information

2.1. Consider the following production function, known in the literature as the transcendental production function (TPF).

2.1. Consider the following production function, known in the literature as the transcendental production function (TPF). CHAPTER Functional Forms of Regression Models.1. Consider the following production function, known in the literature as the transcendental production function (TPF). Q i B 1 L B i K i B 3 e B L B K 4 i

More information

Measurement Error. Often a data set will contain imperfect measures of the data we would ideally like.

Measurement Error. Often a data set will contain imperfect measures of the data we would ideally like. Measurement Error Often a data set will contain imperfect measures of the data we would ideally like. Aggregate Data: (GDP, Consumption, Investment are only best guesses of theoretical counterparts and

More information

Binary Dependent Variable. Regression with a

Binary Dependent Variable. Regression with a Beykent University Faculty of Business and Economics Department of Economics Econometrics II Yrd.Doç.Dr. Özgür Ömer Ersin Regression with a Binary Dependent Variable (SW Chapter 11) SW Ch. 11 1/59 Regression

More information

Lab 3: Two levels Poisson models (taken from Multilevel and Longitudinal Modeling Using Stata, p )

Lab 3: Two levels Poisson models (taken from Multilevel and Longitudinal Modeling Using Stata, p ) Lab 3: Two levels Poisson models (taken from Multilevel and Longitudinal Modeling Using Stata, p. 376-390) BIO656 2009 Goal: To see if a major health-care reform which took place in 1997 in Germany was

More information

Econometrics II. Seppo Pynnönen. Spring Department of Mathematics and Statistics, University of Vaasa, Finland

Econometrics II. Seppo Pynnönen. Spring Department of Mathematics and Statistics, University of Vaasa, Finland Department of Mathematics and Statistics, University of Vaasa, Finland Spring 2018 Part III Limited Dependent Variable Models As of Jan 30, 2017 1 Background 2 Binary Dependent Variable The Linear Probability

More information

Using the same data as before, here is part of the output we get in Stata when we do a logistic regression of Grade on Gpa, Tuce and Psi.

Using the same data as before, here is part of the output we get in Stata when we do a logistic regression of Grade on Gpa, Tuce and Psi. Logistic Regression, Part III: Hypothesis Testing, Comparisons to OLS Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 14, 2018 This handout steals heavily

More information

Please discuss each of the 3 problems on a separate sheet of paper, not just on a separate page!

Please discuss each of the 3 problems on a separate sheet of paper, not just on a separate page! Econometrics - Exam May 11, 2011 1 Exam Please discuss each of the 3 problems on a separate sheet of paper, not just on a separate page! Problem 1: (15 points) A researcher has data for the year 2000 from

More information

Regression with Qualitative Information. Part VI. Regression with Qualitative Information

Regression with Qualitative Information. Part VI. Regression with Qualitative Information Part VI Regression with Qualitative Information As of Oct 17, 2017 1 Regression with Qualitative Information Single Dummy Independent Variable Multiple Categories Ordinal Information Interaction Involving

More information

Problem Set 10: Panel Data

Problem Set 10: Panel Data Problem Set 10: Panel Data 1. Read in the data set, e11panel1.dta from the course website. This contains data on a sample or 1252 men and women who were asked about their hourly wage in two years, 2005

More information

A Journey to Latent Class Analysis (LCA)

A Journey to Latent Class Analysis (LCA) A Journey to Latent Class Analysis (LCA) Jeff Pitblado StataCorp LLC 2017 Nordic and Baltic Stata Users Group Meeting Stockholm, Sweden Outline Motivation by: prefix if clause suest command Factor variables

More information

raise Coef. Std. Err. z P> z [95% Conf. Interval]

raise Coef. Std. Err. z P> z [95% Conf. Interval] 1 We will use real-world data, but a very simple and naive model to keep the example easy to understand. What is interesting about the example is that the outcome of interest, perhaps the probability or

More information

Testing Hypothesis after Probit Estimation

Testing Hypothesis after Probit Estimation Testing Hypothesis after Probit Estimation Quantitative Microeconomics R. Mora Department of Economics Universidad Carlos III de Madrid Outline Introduction 1 Introduction 2 3 The Probit Model and ML Estimation

More information

How To Do Piecewise Exponential Survival Analysis in Stata 7 (Allison 1995:Output 4.20) revised

How To Do Piecewise Exponential Survival Analysis in Stata 7 (Allison 1995:Output 4.20) revised WM Mason, Soc 213B, S 02, UCLA Page 1 of 15 How To Do Piecewise Exponential Survival Analysis in Stata 7 (Allison 1995:Output 420) revised 4-25-02 This document can function as a "how to" for setting up

More information

Recent Advances in the Field of Trade Theory and Policy Analysis Using Micro-Level Data

Recent Advances in the Field of Trade Theory and Policy Analysis Using Micro-Level Data Recent Advances in the Field of Trade Theory and Policy Analysis Using Micro-Level Data July 2012 Bangkok, Thailand Cosimo Beverelli (World Trade Organization) 1 Content a) Classical regression model b)

More information

Lecture 8: Functional Form

Lecture 8: Functional Form Lecture 8: Functional Form What we know now OLS - fitting a straight line y = b 0 + b 1 X through the data using the principle of choosing the straight line that minimises the sum of squared residuals

More information

From the help desk: Comparing areas under receiver operating characteristic curves from two or more probit or logit models

From the help desk: Comparing areas under receiver operating characteristic curves from two or more probit or logit models The Stata Journal (2002) 2, Number 3, pp. 301 313 From the help desk: Comparing areas under receiver operating characteristic curves from two or more probit or logit models Mario A. Cleves, Ph.D. Department

More information

Econ 371 Problem Set #6 Answer Sheet. deaths per 10,000. The 90% confidence interval for the change in death rate is 1.81 ±

Econ 371 Problem Set #6 Answer Sheet. deaths per 10,000. The 90% confidence interval for the change in death rate is 1.81 ± Econ 371 Problem Set #6 Answer Sheet 10.1 This question focuses on the regression model results in Table 10.1. a. The first part of this question asks you to predict the number of lives that would be saved

More information

ECON Introductory Econometrics. Lecture 6: OLS with Multiple Regressors

ECON Introductory Econometrics. Lecture 6: OLS with Multiple Regressors ECON4150 - Introductory Econometrics Lecture 6: OLS with Multiple Regressors Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 6 Lecture outline 2 Violation of first Least Squares assumption

More information

Estimating chopit models in gllamm Political efficacy example from King et al. (2002)

Estimating chopit models in gllamm Political efficacy example from King et al. (2002) Estimating chopit models in gllamm Political efficacy example from King et al. (2002) Sophia Rabe-Hesketh Department of Biostatistics and Computing Institute of Psychiatry King s College London Anders

More information

Binomial Model. Lecture 10: Introduction to Logistic Regression. Logistic Regression. Binomial Distribution. n independent trials

Binomial Model. Lecture 10: Introduction to Logistic Regression. Logistic Regression. Binomial Distribution. n independent trials Lecture : Introduction to Logistic Regression Ani Manichaikul amanicha@jhsph.edu 2 May 27 Binomial Model n independent trials (e.g., coin tosses) p = probability of success on each trial (e.g., p =! =

More information

Applied Statistics and Econometrics

Applied Statistics and Econometrics Applied Statistics and Econometrics Lecture 13 Nonlinearities Saul Lach October 2018 Saul Lach () Applied Statistics and Econometrics October 2018 1 / 91 Outline of Lecture 13 1 Nonlinear regression functions

More information

Lecture#12. Instrumental variables regression Causal parameters III

Lecture#12. Instrumental variables regression Causal parameters III Lecture#12 Instrumental variables regression Causal parameters III 1 Demand experiment, market data analysis & simultaneous causality 2 Simultaneous causality Your task is to estimate the demand function

More information

Lecture 10: Introduction to Logistic Regression

Lecture 10: Introduction to Logistic Regression Lecture 10: Introduction to Logistic Regression Ani Manichaikul amanicha@jhsph.edu 2 May 2007 Logistic Regression Regression for a response variable that follows a binomial distribution Recall the binomial

More information

Understanding the multinomial-poisson transformation

Understanding the multinomial-poisson transformation The Stata Journal (2004) 4, Number 3, pp. 265 273 Understanding the multinomial-poisson transformation Paulo Guimarães Medical University of South Carolina Abstract. There is a known connection between

More information

Handout 11: Measurement Error

Handout 11: Measurement Error Handout 11: Measurement Error In which you learn to recognise the consequences for OLS estimation whenever some of the variables you use are not measured as accurately as you might expect. A (potential)

More information

Lecture 2: Categorical Variable. A nice book about categorical variable is An Introduction to Categorical Data Analysis authored by Alan Agresti

Lecture 2: Categorical Variable. A nice book about categorical variable is An Introduction to Categorical Data Analysis authored by Alan Agresti Lecture 2: Categorical Variable A nice book about categorical variable is An Introduction to Categorical Data Analysis authored by Alan Agresti 1 Categorical Variable Categorical variable is qualitative

More information

ECON3150/4150 Spring 2015

ECON3150/4150 Spring 2015 ECON3150/4150 Spring 2015 Lecture 3&4 - The linear regression model Siv-Elisabeth Skjelbred University of Oslo January 29, 2015 1 / 67 Chapter 4 in S&W Section 17.1 in S&W (extended OLS assumptions) 2

More information

Description Remarks and examples Reference Also see

Description Remarks and examples Reference Also see Title stata.com example 20 Two-factor measurement model by group Description Remarks and examples Reference Also see Description Below we demonstrate sem s group() option, which allows fitting models in

More information

Greene, Econometric Analysis (7th ed, 2012)

Greene, Econometric Analysis (7th ed, 2012) EC771: Econometrics, Spring 2012 Greene, Econometric Analysis (7th ed, 2012) Chapters 2 3: Classical Linear Regression The classical linear regression model is the single most useful tool in econometrics.

More information

Logistic & Tobit Regression

Logistic & Tobit Regression Logistic & Tobit Regression Different Types of Regression Binary Regression (D) Logistic transformation + e P( y x) = 1 + e! " x! + " x " P( y x) % ln$ ' = ( + ) x # 1! P( y x) & logit of P(y x){ P(y

More information

Confidence Intervals for the Odds Ratio in Logistic Regression with One Binary X

Confidence Intervals for the Odds Ratio in Logistic Regression with One Binary X Chapter 864 Confidence Intervals for the Odds Ratio in Logistic Regression with One Binary X Introduction Logistic regression expresses the relationship between a binary response variable and one or more

More information

Investigating Models with Two or Three Categories

Investigating Models with Two or Three Categories Ronald H. Heck and Lynn N. Tabata 1 Investigating Models with Two or Three Categories For the past few weeks we have been working with discriminant analysis. Let s now see what the same sort of model might

More information

Applied Statistics and Econometrics

Applied Statistics and Econometrics Applied Statistics and Econometrics Lecture 5 Saul Lach September 2017 Saul Lach () Applied Statistics and Econometrics September 2017 1 / 44 Outline of Lecture 5 Now that we know the sampling distribution

More information

Lecture 12: Application of Maximum Likelihood Estimation:Truncation, Censoring, and Corner Solutions

Lecture 12: Application of Maximum Likelihood Estimation:Truncation, Censoring, and Corner Solutions Econ 513, USC, Department of Economics Lecture 12: Application of Maximum Likelihood Estimation:Truncation, Censoring, and Corner Solutions I Introduction Here we look at a set of complications with the

More information

sociology sociology Scatterplots Quantitative Research Methods: Introduction to correlation and regression Age vs Income

sociology sociology Scatterplots Quantitative Research Methods: Introduction to correlation and regression Age vs Income Scatterplots Quantitative Research Methods: Introduction to correlation and regression Scatterplots can be considered as interval/ratio analogue of cross-tabs: arbitrarily many values mapped out in -dimensions

More information

Appendix A. Numeric example of Dimick Staiger Estimator and comparison between Dimick-Staiger Estimator and Hierarchical Poisson Estimator

Appendix A. Numeric example of Dimick Staiger Estimator and comparison between Dimick-Staiger Estimator and Hierarchical Poisson Estimator Appendix A. Numeric example of Dimick Staiger Estimator and comparison between Dimick-Staiger Estimator and Hierarchical Poisson Estimator As described in the manuscript, the Dimick-Staiger (DS) estimator

More information

1: a b c d e 2: a b c d e 3: a b c d e 4: a b c d e 5: a b c d e. 6: a b c d e 7: a b c d e 8: a b c d e 9: a b c d e 10: a b c d e

1: a b c d e 2: a b c d e 3: a b c d e 4: a b c d e 5: a b c d e. 6: a b c d e 7: a b c d e 8: a b c d e 9: a b c d e 10: a b c d e Economics 102: Analysis of Economic Data Cameron Spring 2016 Department of Economics, U.C.-Davis Final Exam (A) Tuesday June 7 Compulsory. Closed book. Total of 58 points and worth 45% of course grade.

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 26 May :00 16:00

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 26 May :00 16:00 Two Hours MATH38052 Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER GENERALISED LINEAR MODELS 26 May 2016 14:00 16:00 Answer ALL TWO questions in Section

More information

Lecture 4: Multivariate Regression, Part 2

Lecture 4: Multivariate Regression, Part 2 Lecture 4: Multivariate Regression, Part 2 Gauss-Markov Assumptions 1) Linear in Parameters: Y X X X i 0 1 1 2 2 k k 2) Random Sampling: we have a random sample from the population that follows the above

More information

POLI 7050 Spring 2008 March 5, 2008 Unordered Response Models II

POLI 7050 Spring 2008 March 5, 2008 Unordered Response Models II POLI 7050 Spring 2008 March 5, 2008 Unordered Response Models II Introduction Today we ll talk about interpreting MNL and CL models. We ll start with general issues of model fit, and then get to variable

More information

Single-level Models for Binary Responses

Single-level Models for Binary Responses Single-level Models for Binary Responses Distribution of Binary Data y i response for individual i (i = 1,..., n), coded 0 or 1 Denote by r the number in the sample with y = 1 Mean and variance E(y) =

More information

crreg: A New command for Generalized Continuation Ratio Models

crreg: A New command for Generalized Continuation Ratio Models crreg: A New command for Generalized Continuation Ratio Models Shawn Bauldry Purdue University Jun Xu Ball State University Andrew Fullerton Oklahoma State University Stata Conference July 28, 2017 Bauldry

More information

Essential of Simple regression

Essential of Simple regression Essential of Simple regression We use simple regression when we are interested in the relationship between two variables (e.g., x is class size, and y is student s GPA). For simplicity we assume the relationship

More information

Question 1 [17 points]: (ch 11)

Question 1 [17 points]: (ch 11) Question 1 [17 points]: (ch 11) A study analyzed the probability that Major League Baseball (MLB) players "survive" for another season, or, in other words, play one more season. They studied a model of

More information

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent Latent Variable Models for Binary Data Suppose that for a given vector of explanatory variables x, the latent variable, U, has a continuous cumulative distribution function F (u; x) and that the binary

More information

Using generalized structural equation models to fit customized models without programming, and taking advantage of new features of -margins-

Using generalized structural equation models to fit customized models without programming, and taking advantage of new features of -margins- Using generalized structural equation models to fit customized models without programming, and taking advantage of new features of -margins- Isabel Canette Principal Mathematician and Statistician StataCorp

More information

Day 4 Nonlinear methods

Day 4 Nonlinear methods Day 4 Nonlinear methods c A. Colin Cameron Univ. of Calif.- Davis Frontiers in Econometrics Bavarian Graduate Program in Economics. Based on A. Colin Cameron and Pravin K. Trivedi (2009, 2010), Microeconometrics

More information

Marginal effects and extending the Blinder-Oaxaca. decomposition to nonlinear models. Tamás Bartus

Marginal effects and extending the Blinder-Oaxaca. decomposition to nonlinear models. Tamás Bartus Presentation at the 2th UK Stata Users Group meeting London, -2 Septermber 26 Marginal effects and extending the Blinder-Oaxaca decomposition to nonlinear models Tamás Bartus Institute of Sociology and

More information

Linear Regression With Special Variables

Linear Regression With Special Variables Linear Regression With Special Variables Junhui Qian December 21, 2014 Outline Standardized Scores Quadratic Terms Interaction Terms Binary Explanatory Variables Binary Choice Models Standardized Scores:

More information