Outline. Linear OLS Models vs: Linear Marginal Models Linear Conditional Models. Random Intercepts Random Intercepts & Slopes

Size: px
Start display at page:

Download "Outline. Linear OLS Models vs: Linear Marginal Models Linear Conditional Models. Random Intercepts Random Intercepts & Slopes"

Transcription

1 Lecture 2.1 Basic Linear LDA 1 Outline Linear OLS Models vs: Linear Marginal Models Linear Conditional Models Random Intercepts Random Intercepts & Slopes Cond l & Marginal Connections Empirical Bayes 2 1

2 Example: Weights of Guinea Pigs Body weights of 48 pigs in 9 successive weeks of follow-up (Table 3.1 DHLZ 2002) The response is measured at n i different times, or under n i different conditions. In the pigs example the time of measurement is referred to as a "withinunits" factor. For the pigs n i (weeks) = 9 Although the pigs example considers a single treatment factor, it is straightforward to extend the situation to one where the groups are formed as the results of a factorial design (for example, if the Pigs were separated into males and female and then allocated to the diet groups) 3 Pigs Data: Spaghetti (Profile) Plot Weight (Kg) sort id time. twoway line weight time, connect(ascending) Questions: Average weight increase per week? Variability in weights between Pigs? Variation in growth patterns? 48 pigs Week 4 2

3 Some Modelling Options 1. Ignore associations (OLS) 1. Y ij = week + ij 2. ij ~ N(0, 2 ) 2. Use a Marginal Model to estimate effects (PA - GEE) 1. Y ij = week + ij 2. ~ N(0, ) 3. = R 2 ; R is a working corr structure (ind,exch,ar,...) 3. Use a Conditional Model to estimate effects (RE) 1. Y ij u i = week + u i + ij 2. ij ~ N(0, 2 ) 3. u i ~ N(0, 2 ) 5. regress weight time Pigs model 1: OLS fit Source SS df MS Number of obs = F( 1, 430) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = weight Coef. Std. Err. t P> t [95% Conf. Interval] time _cons OLS results Assumptions? L - Linear I - Independent N - Normal errors E - Equal Variance 6 3

4 Some Modelling Options 1. Ignore associations (OLS) 1. Y ij = week + ij 2. ij ~ N(0, 2 ) 2. Use a Marginal Model to estimate effects (PA - GEE) 1. Y ij = week + ij 2. ~ N(0, ) 3. = R 2 ; R is a working corr structure (ind,exch,ar,...) 3. Use a Conditional Model to estimate effects (RE) 1. Y ij u i = week + u i + ij 2. ij ~ N(0, 2 ) 3. u i ~ N(0, 2 ) 7 Pigs Data: Spaghetti (Profile) Plot Weight (Kg) Recall Corr EDA yesterday: Suppose: 1. Y ij = week + ij 2. ~ N(0, ) 3. = R 2 48 pigs Week 8 4

5 1 Standardized Pigs Data: Scatterplot Matrix 2. graph matrix sweight1-sweight9, half 3 4 A Scatterplot Matrix helps to visualize multiple 2-way relationships 5 6 Note the decreasing corr as distance between weeks (lag) increases acf ACF Pigs Weights: ACF acf Lag lag 5

6 Some Modelling Options 1. Ignore associations (OLS) 1. Y ij = week + ij 2. ij ~ N(0, 2 ) 2. Use a Marginal Model to estimate effects (PA - GEE) 1. Y ij = week + ij 2. ~ N(0, ) 3. = R 2 ; R is a working corr structure (ind,exch,ar,...) 3. Use a Conditional Model to estimate effects (RE) 1. Y ij u i = week + u i + ij 2. ij ~ N(0, 2 ) 3. u i ~ N(0, 2 ) 11 Pigs model 1: PA-IND fit. xtreg weight time, pa i(id) corr(ind) GEE population-averaged model Number of obs = 432 Group variable: Id Number of groups = 48 Link: identity Obs per group: min = 9 Family: Gaussian avg = 9.0 Correlation: independent max = 9 Wald chi2(1) = Scale parameter: Prob > chi2 = Pearson chi2(432): Deviance = Dispersion (Pearson): Dispersion = time _cons Independence correlation model results 12 6

7 . regress weight time Pigs model 1: OLS fit Source SS df MS Number of obs = F( 1, 430) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = weight Coef. Std. Err. t P> t [95% Conf. Interval] time _cons OLS results E[ Y i ] = β 0 + β 1 time Corr = ind Marginal Model twoway (line weight time, connect(ascending)) /// (lfit weight time, clwidth(thick)) time weight Fitted values 14 7

8 Marginal Model with a Uniform correlation structure E[Y ij ] 0 1 t j Model for the mean cov(y ij ) ( 2 2 )[ 11' (1 )I] Same as Before where: R = Model for the covariance matrix 15 Pigs Marginal Model Exch. xtreg weight time, pa i(id) corr(exch) Iteration 1: tolerance = 5.585e-15 GEE population-averaged model Number of obs = 432 Group variable: Id Number of groups = 48 Link: identity Obs per group: min = 9 Family: Gaussian avg = 9.0 Correlation: exchangeable max = 9 Wald chi2(1) = Scale parameter: Prob > chi2 = time _cons Population Average, Marginal Model with Exchangeable Correlation structure results 16 8

9 Pigs Marginal Model Exch, GEE. xtgee weight time, i(id) corr(exch) Iteration 1: tolerance = 5.585e-15 GEE population-averaged model Number of obs = 432 Group variable: Id Number of groups = 48 Link: identity Obs per group: min = 9 Family: Gaussian avg = 9.0 Correlation: exchangeable max = 9 Wald chi2(1) = Scale parameter: Prob > chi2 = time _cons GEE fit Marginal Model with Exchangeable Correlation structure results 17 Pigs data model 1 GEE fit. xtgee weight time, i(id) corr(exch). xtcorr Estimated within-id correlation matrix R: c1 c2 c3 c4 c5 c6 c7 c8 c9 r r r r r r r r r GEE fit Marginal Model with Exchangeable Correlation structure results 18 9

10 Pigs Marginal Model AR1, GEE. xtgee weight time, i(id) corr(ar1) t(time) Iteration 1: tolerance = Iteration 2: tolerance = Iteration 3: tolerance = 4.366e-07 GEE population-averaged model Number of obs = 432 Group and time vars: Id time Number of groups = 48 Link: identity Obs per group: min = 9 Family: Gaussian avg = 9.0 Correlation: AR(1) max = 9 Wald chi2(1) = Scale parameter: Prob > chi2 = time _cons GEE fit Marginal Model with Auto Regressive(1) Correlation structure results 19 Pigs Marginal Model AR1, GEE. xtgee weight time, i(id) corr(ar1) t(time). xtcorr Estimated within-id correlation matrix R: c1 c2 c3 c4 c5 c6 c7 c8 c9 r r r r r r r r r GEE fit Marginal Model with AR1 Correlation structure results 20 10

11 Pigs Weights: ACF acf ACF Estimates from: Exch & AR Lag Common types of Corr models. help xtgee correlation description exchangeable exchangeable independent independent unstructured unstructured fixed matname user-specified ar # autoregressive of order # stationary # stationary of order # nonstationary # nonstationary of order # 22 11

12 Pigs Marginal Model Toeplitz, GEE. xtgee weight time, i(id) corr(stationary8) t(time) Iteration 4: tolerance = Iteration 5: tolerance = 3.968e-06 Iteration 6: tolerance = 7.862e-07 GEE population-averaged model Number of obs = 432 Group and time vars: Id time Number of groups = 48 Link: identity Obs per group: min = 9 Family: Gaussian avg = 9.0 Correlation: stationary(8) max = 9 Wald chi2(1) = Scale parameter: Prob > chi2 = time _cons GEE fit Marginal Model with Toeplitz Correlation structure results 23 Pigs Marginal Model Toeplitz, GEE. xtgee weight time, i(id) corr(stationary8) t(time). xtcorr Estimated within-id correlation matrix R: c1 c2 c3 c4 c5 c6 c7 c8 c9 r r r r r r r r r GEE fit Marginal Model with Toeplitz (stationary) Correlation structure results 24 12

13 Robust Standard Errors. xtgee weight time, i(id) corr(exch) robust Semi-robust time _cons xtgee weight time, i(id) corr(ar1) t(time) robust Semi-robust time _cons xtgee weight time, i(id) corr(stationary8) t(time) robust Semi-robust time _cons QIC in model selection. ssc install qic. help qic Description qic calculates the QIC and QIC_u criteria for model selection in GEE, which is an extension of the widely used AIC criterion in ordinary regression (Pan 2001). It allows for specification of all 7 distributions - gaussian, inverse Gaussian, Bernoulli/binomial, Poisson, negative binomial and gamma, all link functions and working correlation structures and all se/robust options, except for the vce option, avaiable in Stata 9.0. It also calculates the trace of the matrix O^{-1}V, where O is the variance estimate under the independent correlation structure and V is the variance estimate under the specified working correlation structure in GEE. When trace is close to the number of parametr p, the QIC_u is a good approximation to QIC

14 QIC in model selection 27 QIC in model selection QIC(R) a function of the assumed working correlation matrix R, so QIC(R) can be potentially useful in examining which correlation structures are better than others QIC u a measure that can be potentially useful in examining which subsets of covariates are better than others when Trace p. Common recommendation is to use QIC u (Independence) These are based on measures of deviance (distance from the data to the model based on the likelihood) so smaller is better Sometimes useful but rely on your EDA skills also 28 14

15 QIC in model selection qic weight time, i(id) corr(exch) robust qic weight time, i(id) corr(ar1) t(time) robust qic weight time, i(id) corr(stationary8) t(time) robust QIC and QIC_u Corr = exch Family = gau Link = iden p = 2 Trace = QIC = QIC_u = QIC and QIC_u Corr = ar1 Family = gau Link = iden p = 2 Trace = QIC = QIC_u = QIC and QIC_u Corr = stationary8 Family = gau Link = iden p = 2 Trace = QIC = QIC_u = Exch corr favored by QIC criterion? Some Modelling Options 1. Ignore associations (OLS) 1. Y ij = week + ij 2. ij ~ N(0, 2 ) 2. Use a Marginal Model to estimate effects (PA - GEE) 1. Y ij = week + ij 2. ~ N(0, ) 3. = R 2 ; R is a working corr structure (ind,exch,ar,...) 3. Use a Conditional Model to estimate effects (RE) 1. Y ij u i = week + u i + ij 2. ij ~ N(0, 2 ) 3. u i ~ N(0, 2 ) 30 15

16 Linear model with random intercept Note Shorthand, Y ij = Y ij u i Y ij U i 0 1 t j ij U i ~ N(0, 2 ) ij ~ N(0, 2 ) Cluster specific intercept U i Variance between Variance within Intraclass correlation coefficient 31 Pigs Conditional Model Ran Int.. xtreg weight time, re i(id) mle var Random-effects ML regression Number of obs = 432 Group variable (i): Id Number of groups = 48 Random effects u_i ~ Gaussian Obs per group: min = 9 avg = 9.0 max = 9 LR chi2(1) = Log likelihood = Prob > chi2 = time _cons /sigma_u /sigma_e rho Linear model with a random intercept - conditional model 32 16

17 Pigs Conditional Model Ran Int.. xtmixed weight time id:, mle Mixed-effects ML regression Number of obs = 432 Group variable: id Number of groups = 48 Obs per group: min = 9 avg = 9.0 max = 9 Wald chi2(1) = Log likelihood = Prob > chi2 = time _cons Random-effects Parameters Estimate Std. Err. [95% Conf. Interval] id: Identity sd(_cons) sd(residual) LR test vs. linear regression: chibar2(01) = Prob >= chibar2 = Same random intercept model - xtmixed 33 Pigs Conditional Model Ran Int.. xtmixed weight time id:, mle var Mixed-effects ML regression Number of obs = 432 Group variable: id Number of groups = 48 Obs per group: min = 9 avg = 9.0 max = 9 Wald chi2(1) = Log likelihood = Prob > chi2 = time _cons Random-effects Parameters Estimate Std. Err. [95% Conf. Interval] id: Identity var(_cons) var(residual) LR test vs. linear regression: chibar2(01) = Prob >= chibar2 = Same random intercept model - xtmixed, var option 34 17

18 Pigs Conditional Model Ran Int.. gllamm weight time, i(id) nip(12) adapt gllamm model log likelihood = time _cons Variance at level ( ) Variances and covariances of random effects ***level 2 (id) var(1): ( ) Linear model with a random intercept - conditional model Random Effects Model E[ Y i U i ] = β 0 + β 1 time + U i E[ Y i ] = β 0 + β 1 time 48 Pigs time weight Linear prediction Xb + u[id] 36 18

19 Random Effects Model E[ Y i U i ] = β 0 + β 1 time + U i E[ Y i ] = β 0 + β 1 time Goat #48: Data, Pred48 Goat #3: Data, Pred3 Marginal Predictor 2 Pigs time weight Linear prediction Xb + u[id] 37 Equivalence of RE & Marginal in the Linear, Exch Corr case (with no missing data) 38 19

20 Pigs Conditional Model Ran Int.. xtreg weight time, re i(id) mle var Random-effects ML regression Number of obs = 432 Group variable (i): Id Number of groups = 48 Random effects u_i ~ Gaussian Obs per group: min = 9 avg = 9.0 max = 9 LR chi2(1) = Log likelihood = Prob > chi2 = time _cons /sigma_u /sigma_e rho Linear model with a random intercept - conditional model 39 Pigs Marginal Model Exch, GEE. xtgee weight time, i(id) corr(exch) Iteration 1: tolerance = 5.585e-15 GEE population-averaged model Number of obs = 432 Group variable: Id Number of groups = 48 Link: identity Obs per group: min = 9 Family: Gaussian avg = 9.0 Correlation: exchangeable max = 9 Wald chi2(1) = Scale parameter: Prob > chi2 = time _cons GEE fit Marginal Model with Exchangeable Correlation structure results 40 20

21 Pigs Marginal Model Exch, GEE. xtgee weight time, i(id) corr(exch). xtcorr Estimated within-id correlation matrix R: c1 c2 c3 c4 c5 c6 c7 c8 c9 r r r r r r r r r GEE fit Marginal Model with Exchangeable Correlation structure results Linear Regression : Random Effects Model Mean Structure = Marginal Model Mean Structure? E[ Y i ] =? E[ Y i ] = E{ E[ Y i U i ] } = How About Correlation Structure? (For Exchangeable) 21

22 Other mean, E(Y ij ), models 43 Pigs Ran Int, linear trend. xtreg weight time, re i(id) mle var Random-effects ML regression Number of obs = 432 Group variable (i): Id Number of groups = 48 Random effects u_i ~ Gaussian Obs per group: min = 9 avg = 9.0 max = 9 LR chi2(1) = Log likelihood = Prob > chi2 = time _cons /sigma_u /sigma_e rho Linear model with a random intercept - conditional model 44 22

23 Pigs Ran Int, quadratic trend. gen timesq = time*time. xtreg weight time timesq, re i(id) mle Random-effects ML regression Number of obs = 432 Group variable (i): Id Number of groups = 48 Random effects u_i ~ Gaussian Obs per group: min = 9 avg = 9.0 max = 9 LR chi2(2) = Log likelihood = Prob > chi2 = time timesq _cons /sigma_u /sigma_e rho Random Intercept results Pigs Marg, quadratic trend. xtgee weight time timesq, i(id) corr(exch) GEE population-averaged model Number of obs = 432 Group variable: Id Number of groups = 48 Link: identity Obs per group: min = 9 Family: Gaussian avg = 9.0 Correlation: exchangeable max = 9 Wald chi2(2) = Scale parameter: Prob > chi2 = time timesq _cons Exchangeable Correlation structure results. xtcorr yields Corr estimate =

24 Equivalent Models E[ Y i U i ] = β 0 + β 1 time + β 2 time 2 + U i E[ Y i ] = Note, these are still called linear models: know why? time weight Xb + u[id] Linear prediction 47 Other Variance models 48 24

25 Pigs Data: Spaghetti (Profile) Plot Weight (Kg) sort id time. twoway line weight time, connect(ascending) Questions: Average weight increase per week? Variability in weights between Pigs? Variation in growth patterns? 48 Pigs Week 49 Pigs Conditional Model Ran Slopes.. xtmixed weight time id: time, mle cov(unstruct) Log likelihood = time _cons Random-effects Parameters Estimate Std. Err. [95% Conf. Interval] Id: Unstructured sd(time) sd(_cons) corr(time,_cons) sd(residual) LR test vs. linear regression: chi2(3) = Prob > chi2 = Note: LR test is conservative and provided only for reference

26 Random Slopes E[ Y i U i ] = β 0 + β 1 time + U 0i + U 1i time = (β 0 + U 0i ) + (β 1 +U 1i )time = β 0i + β 1i time E[ Y i ] = time weight Linear predictor, fixed portion Fitted values: xb + Zu 51 Written Results : RE Linear Regression - Pigs Use a Conditional Model to estimate effects 1. Y ij u i = week + u 0i + u 1i week + ij 2. ij ~ N(0, 2 ) 3. u i =) ij & u i independent 1. Y ij u i = (week) + u 0i + u 1i week + ij 2. ij ~ N(0, ) 3. u 0i ~ N(0, ), u 1i ~ N(0, ), corr(u 0i,u 1i )= ij & u i independent 52 26

27 Extensions : Linear Regression - Pigs Usual Linear Regression (OLS) 1. Y ij = week + 2 week 2 + ij 2. ij ~ N(0, 2 ) Use a Marginal Model to estimate effects 1. Y ij = week + 2 week 2 + ij 2. i ~ N(0, ) 3. = R 2 ; R is a working corr structure (ind,exch,ar,...) Use a Conditional Model to estimate effects 1. Y ij u i = week + 2 week 2 + u i + ij 2. ij ~ N(0, 2 ) 3. u i ~ N(0, 2 ) ij & u i independent 53 Extensions: Linear Regression - general Usual Linear Regression (OLS) 1. Y i = X + i 2. i ~ N(0,I 2 ) Use a Marginal Model to estimate effects 1. Y i = X + i 2. i ~ N(0, ) 3. = R 2 ; R is a working corr structure (ind,exch,ar,...) Use a Conditional Model to estimate effects 1. Y i u i = X + Zu i + i 2. i ~ N(0, ) 3. u i ~ N(0,G) i & u i independent 54 27

Lecture 3 Linear random intercept models

Lecture 3 Linear random intercept models Lecture 3 Linear random intercept models Example: Weight of Guinea Pigs Body weights of 48 pigs in 9 successive weeks of follow-up (Table 3.1 DLZ) The response is measures at n different times, or under

More information

Monday 7 th Febraury 2005

Monday 7 th Febraury 2005 Monday 7 th Febraury 2 Analysis of Pigs data Data: Body weights of 48 pigs at 9 successive follow-up visits. This is an equally spaced data. It is always a good habit to reshape the data, so we can easily

More information

Lecture 3.1 Basic Logistic LDA

Lecture 3.1 Basic Logistic LDA y Lecture.1 Basic Logistic LDA 0.2.4.6.8 1 Outline Quick Refresher on Ordinary Logistic Regression and Stata Women s employment example Cross-Over Trial LDA Example -100-50 0 50 100 -- Longitudinal Data

More information

****Lab 4, Feb 4: EDA and OLS and WLS

****Lab 4, Feb 4: EDA and OLS and WLS ****Lab 4, Feb 4: EDA and OLS and WLS ------- log: C:\Documents and Settings\Default\Desktop\LDA\Data\cows_Lab4.log log type: text opened on: 4 Feb 2004, 09:26:19. use use "Z:\LDA\DataLDA\cowsP.dta", clear.

More information

Model and Working Correlation Structure Selection in GEE Analyses of Longitudinal Data

Model and Working Correlation Structure Selection in GEE Analyses of Longitudinal Data The 3rd Australian and New Zealand Stata Users Group Meeting, Sydney, 5 November 2009 1 Model and Working Correlation Structure Selection in GEE Analyses of Longitudinal Data Dr Jisheng Cui Public Health

More information

Lab 3: Two levels Poisson models (taken from Multilevel and Longitudinal Modeling Using Stata, p )

Lab 3: Two levels Poisson models (taken from Multilevel and Longitudinal Modeling Using Stata, p ) Lab 3: Two levels Poisson models (taken from Multilevel and Longitudinal Modeling Using Stata, p. 376-390) BIO656 2009 Goal: To see if a major health-care reform which took place in 1997 in Germany was

More information

Longitudinal Data Analysis Using Stata Paul D. Allison, Ph.D. Upcoming Seminar: May 18-19, 2017, Chicago, Illinois

Longitudinal Data Analysis Using Stata Paul D. Allison, Ph.D. Upcoming Seminar: May 18-19, 2017, Chicago, Illinois Longitudinal Data Analysis Using Stata Paul D. Allison, Ph.D. Upcoming Seminar: May 18-19, 217, Chicago, Illinois Outline 1. Opportunities and challenges of panel data. a. Data requirements b. Control

More information

Please discuss each of the 3 problems on a separate sheet of paper, not just on a separate page!

Please discuss each of the 3 problems on a separate sheet of paper, not just on a separate page! Econometrics - Exam May 11, 2011 1 Exam Please discuss each of the 3 problems on a separate sheet of paper, not just on a separate page! Problem 1: (15 points) A researcher has data for the year 2000 from

More information

Problem Set 10: Panel Data

Problem Set 10: Panel Data Problem Set 10: Panel Data 1. Read in the data set, e11panel1.dta from the course website. This contains data on a sample or 1252 men and women who were asked about their hourly wage in two years, 2005

More information

Exercices for Applied Econometrics A

Exercices for Applied Econometrics A QEM F. Gardes-C. Starzec-M.A. Diaye Exercices for Applied Econometrics A I. Exercice: The panel of households expenditures in Poland, for years 1997 to 2000, gives the following statistics for the whole

More information

multilevel modeling: concepts, applications and interpretations

multilevel modeling: concepts, applications and interpretations multilevel modeling: concepts, applications and interpretations lynne c. messer 27 october 2010 warning social and reproductive / perinatal epidemiologist concepts why context matters multilevel models

More information

General Linear Model (Chapter 4)

General Linear Model (Chapter 4) General Linear Model (Chapter 4) Outcome variable is considered continuous Simple linear regression Scatterplots OLS is BLUE under basic assumptions MSE estimates residual variance testing regression coefficients

More information

Multilevel Modeling (MLM) part 1. Robert Yu

Multilevel Modeling (MLM) part 1. Robert Yu Multilevel Modeling (MLM) part 1 Robert Yu a few words before the talk This is a report from attending a 2 day training course of Multilevel Modeling by Dr. Raykov Tenko, held on March 22 23, 2012, in

More information

CRE METHODS FOR UNBALANCED PANELS Correlated Random Effects Panel Data Models IZA Summer School in Labor Economics May 13-19, 2013 Jeffrey M.

CRE METHODS FOR UNBALANCED PANELS Correlated Random Effects Panel Data Models IZA Summer School in Labor Economics May 13-19, 2013 Jeffrey M. CRE METHODS FOR UNBALANCED PANELS Correlated Random Effects Panel Data Models IZA Summer School in Labor Economics May 13-19, 2013 Jeffrey M. Wooldridge Michigan State University 1. Introduction 2. Linear

More information

QIC program and model selection in GEE analyses

QIC program and model selection in GEE analyses The Stata Journal (2007) 7, Number 2, pp. 209 220 QIC program and model selection in GEE analyses James Cui Department of Epidemiology and Preventive Medicine Monash University Melbourne, Australia james.cui@med.monash.edu.au

More information

Soc 63993, Homework #7 Answer Key: Nonlinear effects/ Intro to path analysis

Soc 63993, Homework #7 Answer Key: Nonlinear effects/ Intro to path analysis Soc 63993, Homework #7 Answer Key: Nonlinear effects/ Intro to path analysis Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised February 20, 2015 Problem 1. The files

More information

Jeffrey M. Wooldridge Michigan State University

Jeffrey M. Wooldridge Michigan State University Fractional Response Models with Endogenous Explanatory Variables and Heterogeneity Jeffrey M. Wooldridge Michigan State University 1. Introduction 2. Fractional Probit with Heteroskedasticity 3. Fractional

More information

Fixed and Random Effects Models: Vartanian, SW 683

Fixed and Random Effects Models: Vartanian, SW 683 : Vartanian, SW 683 Fixed and random effects models See: http://teaching.sociology.ul.ie/dcw/confront/node45.html When you have repeated observations per individual this is a problem and an advantage:

More information

Quantitative Methods Final Exam (2017/1)

Quantitative Methods Final Exam (2017/1) Quantitative Methods Final Exam (2017/1) 1. Please write down your name and student ID number. 2. Calculator is allowed during the exam, but DO NOT use a smartphone. 3. List your answers (together with

More information

Simultaneous Equations with Error Components. Mike Bronner Marko Ledic Anja Breitwieser

Simultaneous Equations with Error Components. Mike Bronner Marko Ledic Anja Breitwieser Simultaneous Equations with Error Components Mike Bronner Marko Ledic Anja Breitwieser PRESENTATION OUTLINE Part I: - Simultaneous equation models: overview - Empirical example Part II: - Hausman and Taylor

More information

University of California at Berkeley Fall Introductory Applied Econometrics Final examination. Scores add up to 125 points

University of California at Berkeley Fall Introductory Applied Econometrics Final examination. Scores add up to 125 points EEP 118 / IAS 118 Elisabeth Sadoulet and Kelly Jones University of California at Berkeley Fall 2008 Introductory Applied Econometrics Final examination Scores add up to 125 points Your name: SID: 1 1.

More information

LDA Midterm Due: 02/21/2005

LDA Midterm Due: 02/21/2005 LDA.665 Midterm Due: //5 Question : The randomized intervention trial is designed to answer the scientific questions: whether social network method is effective in retaining drug users in treatment programs,

More information

Multilevel Modeling Day 2 Intermediate and Advanced Issues: Multilevel Models as Mixed Models. Jian Wang September 18, 2012

Multilevel Modeling Day 2 Intermediate and Advanced Issues: Multilevel Models as Mixed Models. Jian Wang September 18, 2012 Multilevel Modeling Day 2 Intermediate and Advanced Issues: Multilevel Models as Mixed Models Jian Wang September 18, 2012 What are mixed models The simplest multilevel models are in fact mixed models:

More information

Microeconometrics (PhD) Problem set 2: Dynamic Panel Data Solutions

Microeconometrics (PhD) Problem set 2: Dynamic Panel Data Solutions Microeconometrics (PhD) Problem set 2: Dynamic Panel Data Solutions QUESTION 1 Data for this exercise can be prepared by running the do-file called preparedo posted on my webpage This do-file collects

More information

Lecture 4: Generalized Linear Mixed Models

Lecture 4: Generalized Linear Mixed Models Dankmar Böhning Southampton Statistical Sciences Research Institute University of Southampton, UK S 3 RI, 11-12 December 2014 An example with one random effect An example with two nested random effects

More information

Mixed Models for Longitudinal Binary Outcomes. Don Hedeker Department of Public Health Sciences University of Chicago.

Mixed Models for Longitudinal Binary Outcomes. Don Hedeker Department of Public Health Sciences University of Chicago. Mixed Models for Longitudinal Binary Outcomes Don Hedeker Department of Public Health Sciences University of Chicago hedeker@uchicago.edu https://hedeker-sites.uchicago.edu/ Hedeker, D. (2005). Generalized

More information

Contrasting Marginal and Mixed Effects Models Recall: two approaches to handling dependence in Generalized Linear Models:

Contrasting Marginal and Mixed Effects Models Recall: two approaches to handling dependence in Generalized Linear Models: Contrasting Marginal and Mixed Effects Models Recall: two approaches to handling dependence in Generalized Linear Models: Marginal models: based on the consequences of dependence on estimating model parameters.

More information

Empirical Application of Panel Data Regression

Empirical Application of Panel Data Regression Empirical Application of Panel Data Regression 1. We use Fatality data, and we are interested in whether rising beer tax rate can help lower traffic death. So the dependent variable is traffic death, while

More information

Appendix A. Numeric example of Dimick Staiger Estimator and comparison between Dimick-Staiger Estimator and Hierarchical Poisson Estimator

Appendix A. Numeric example of Dimick Staiger Estimator and comparison between Dimick-Staiger Estimator and Hierarchical Poisson Estimator Appendix A. Numeric example of Dimick Staiger Estimator and comparison between Dimick-Staiger Estimator and Hierarchical Poisson Estimator As described in the manuscript, the Dimick-Staiger (DS) estimator

More information

Lecture#12. Instrumental variables regression Causal parameters III

Lecture#12. Instrumental variables regression Causal parameters III Lecture#12 Instrumental variables regression Causal parameters III 1 Demand experiment, market data analysis & simultaneous causality 2 Simultaneous causality Your task is to estimate the demand function

More information

Binary Dependent Variables

Binary Dependent Variables Binary Dependent Variables In some cases the outcome of interest rather than one of the right hand side variables - is discrete rather than continuous Binary Dependent Variables In some cases the outcome

More information

Module 6 Case Studies in Longitudinal Data Analysis

Module 6 Case Studies in Longitudinal Data Analysis Module 6 Case Studies in Longitudinal Data Analysis Benjamin French, PhD Radiation Effects Research Foundation SISCR 2018 July 24, 2018 Learning objectives This module will focus on the design of longitudinal

More information

Introductory Econometrics. Lecture 13: Hypothesis testing in the multiple regression model, Part 1

Introductory Econometrics. Lecture 13: Hypothesis testing in the multiple regression model, Part 1 Introductory Econometrics Lecture 13: Hypothesis testing in the multiple regression model, Part 1 Jun Ma School of Economics Renmin University of China October 19, 2016 The model I We consider the classical

More information

Recent Developments in Multilevel Modeling

Recent Developments in Multilevel Modeling Recent Developments in Multilevel Modeling Roberto G. Gutierrez Director of Statistics StataCorp LP 2007 North American Stata Users Group Meeting, Boston R. Gutierrez (StataCorp) Multilevel Modeling August

More information

Multilevel/Mixed Models and Longitudinal Analysis Using Stata

Multilevel/Mixed Models and Longitudinal Analysis Using Stata Multilevel/Mixed Models and Longitudinal Analysis Using Stata Isaac J. Washburn PhD Research Associate Oregon Social Learning Center Summer Workshop Series July 2010 Longitudinal Analysis 1 Longitudinal

More information

LONGITUDINAL DATA ANALYSIS Homework I, 2005 SOLUTION. A = ( 2) = 36; B = ( 4) = 94. Therefore A B = 36 ( 94) = 3384.

LONGITUDINAL DATA ANALYSIS Homework I, 2005 SOLUTION. A = ( 2) = 36; B = ( 4) = 94. Therefore A B = 36 ( 94) = 3384. LONGITUDINAL DATA ANALYSIS Homework I, 2005 SOLUTION 1. Suppose A and B are both 2 2 matrices with A = ( 6 3 2 5 ) ( 4 10, B = 7 6 (a) Verify that A B = AB. ) A = 6 5 3 ( 2) = 36; B = ( 4) 6 10 7 = 94.

More information

8. Nonstandard standard error issues 8.1. The bias of robust standard errors

8. Nonstandard standard error issues 8.1. The bias of robust standard errors 8.1. The bias of robust standard errors Bias Robust standard errors are now easily obtained using e.g. Stata option robust Robust standard errors are preferable to normal standard errors when residuals

More information

Lab 10 - Binary Variables

Lab 10 - Binary Variables Lab 10 - Binary Variables Spring 2017 Contents 1 Introduction 1 2 SLR on a Dummy 2 3 MLR with binary independent variables 3 3.1 MLR with a Dummy: different intercepts, same slope................. 4 3.2

More information

ECON Introductory Econometrics. Lecture 5: OLS with One Regressor: Hypothesis Tests

ECON Introductory Econometrics. Lecture 5: OLS with One Regressor: Hypothesis Tests ECON4150 - Introductory Econometrics Lecture 5: OLS with One Regressor: Hypothesis Tests Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 5 Lecture outline 2 Testing Hypotheses about one

More information

Exam ECON3150/4150: Introductory Econometrics. 18 May 2016; 09:00h-12.00h.

Exam ECON3150/4150: Introductory Econometrics. 18 May 2016; 09:00h-12.00h. Exam ECON3150/4150: Introductory Econometrics. 18 May 2016; 09:00h-12.00h. This is an open book examination where all printed and written resources, in addition to a calculator, are allowed. If you are

More information

Problem Set 5 ANSWERS

Problem Set 5 ANSWERS Economics 20 Problem Set 5 ANSWERS Prof. Patricia M. Anderson 1, 2 and 3 Suppose that Vermont has passed a law requiring employers to provide 6 months of paid maternity leave. You are concerned that women

More information

1 The basics of panel data

1 The basics of panel data Introductory Applied Econometrics EEP/IAS 118 Spring 2015 Related materials: Steven Buck Notes to accompany fixed effects material 4-16-14 ˆ Wooldridge 5e, Ch. 1.3: The Structure of Economic Data ˆ Wooldridge

More information

Generalized linear models

Generalized linear models Generalized linear models Christopher F Baum ECON 8823: Applied Econometrics Boston College, Spring 2016 Christopher F Baum (BC / DIW) Generalized linear models Boston College, Spring 2016 1 / 1 Introduction

More information

Essential of Simple regression

Essential of Simple regression Essential of Simple regression We use simple regression when we are interested in the relationship between two variables (e.g., x is class size, and y is student s GPA). For simplicity we assume the relationship

More information

Statistical Methods III Statistics 212. Problem Set 2 - Answer Key

Statistical Methods III Statistics 212. Problem Set 2 - Answer Key Statistical Methods III Statistics 212 Problem Set 2 - Answer Key 1. (Analysis to be turned in and discussed on Tuesday, April 24th) The data for this problem are taken from long-term followup of 1423

More information

STATISTICS 110/201 PRACTICE FINAL EXAM

STATISTICS 110/201 PRACTICE FINAL EXAM STATISTICS 110/201 PRACTICE FINAL EXAM Questions 1 to 5: There is a downloadable Stata package that produces sequential sums of squares for regression. In other words, the SS is built up as each variable

More information

Econometrics Homework 4 Solutions

Econometrics Homework 4 Solutions Econometrics Homework 4 Solutions Computer Question (Optional, no need to hand in) (a) c i may capture some state-specific factor that contributes to higher or low rate of accident or fatality. For example,

More information

point estimates, standard errors, testing, and inference for nonlinear combinations

point estimates, standard errors, testing, and inference for nonlinear combinations Title xtreg postestimation Postestimation tools for xtreg Description The following postestimation commands are of special interest after xtreg: command description xttest0 Breusch and Pagan LM test for

More information

Empirical Application of Simple Regression (Chapter 2)

Empirical Application of Simple Regression (Chapter 2) Empirical Application of Simple Regression (Chapter 2) 1. The data file is House Data, which can be downloaded from my webpage. 2. Use stata menu File Import Excel Spreadsheet to read the data. Don t forget

More information

Longitudinal Data Analysis

Longitudinal Data Analysis Longitudinal Data Analysis Mike Allerhand This document has been produced for the CCACE short course: Longitudinal Data Analysis. No part of this document may be reproduced, in any form or by any means,

More information

Empirical Asset Pricing

Empirical Asset Pricing Department of Mathematics and Statistics, University of Vaasa, Finland Texas A&M University, May June, 2013 As of May 24, 2013 Part III Stata Regression 1 Stata regression Regression Factor variables Postestimation:

More information

Overdispersion Workshop in generalized linear models Uppsala, June 11-12, Outline. Overdispersion

Overdispersion Workshop in generalized linear models Uppsala, June 11-12, Outline. Overdispersion Biostokastikum Overdispersion is not uncommon in practice. In fact, some would maintain that overdispersion is the norm in practice and nominal dispersion the exception McCullagh and Nelder (1989) Overdispersion

More information

ECON Introductory Econometrics. Lecture 4: Linear Regression with One Regressor

ECON Introductory Econometrics. Lecture 4: Linear Regression with One Regressor ECON4150 - Introductory Econometrics Lecture 4: Linear Regression with One Regressor Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 4 Lecture outline 2 The OLS estimators The effect of

More information

1 A Review of Correlation and Regression

1 A Review of Correlation and Regression 1 A Review of Correlation and Regression SW, Chapter 12 Suppose we select n = 10 persons from the population of college seniors who plan to take the MCAT exam. Each takes the test, is coached, and then

More information

Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study

Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study 1.4 0.0-6 7 8 9 10 11 12 13 14 15 16 17 18 19 age Model 1: A simple broken stick model with knot at 14 fit with

More information

Class Notes: Week 8. Probit versus Logit Link Functions and Count Data

Class Notes: Week 8. Probit versus Logit Link Functions and Count Data Ronald Heck Class Notes: Week 8 1 Class Notes: Week 8 Probit versus Logit Link Functions and Count Data This week we ll take up a couple of issues. The first is working with a probit link function. While

More information

Section Least Squares Regression

Section Least Squares Regression Section 2.3 - Least Squares Regression Statistics 104 Autumn 2004 Copyright c 2004 by Mark E. Irwin Regression Correlation gives us a strength of a linear relationship is, but it doesn t tell us what it

More information

ECON 497 Final Exam Page 1 of 12

ECON 497 Final Exam Page 1 of 12 ECON 497 Final Exam Page of 2 ECON 497: Economic Research and Forecasting Name: Spring 2008 Bellas Final Exam Return this exam to me by 4:00 on Wednesday, April 23. It may be e-mailed to me. It may be

More information

i (x i x) 2 1 N i x i(y i y) Var(x) = P (x 1 x) Var(x)

i (x i x) 2 1 N i x i(y i y) Var(x) = P (x 1 x) Var(x) ECO 6375 Prof Millimet Problem Set #2: Answer Key Stata problem 2 Q 3 Q (a) The sample average of the individual-specific marginal effects is 0039 for educw and -0054 for white Thus, on average, an extra

More information

Case of single exogenous (iv) variable (with single or multiple mediators) iv à med à dv. = β 0. iv i. med i + α 1

Case of single exogenous (iv) variable (with single or multiple mediators) iv à med à dv. = β 0. iv i. med i + α 1 Mediation Analysis: OLS vs. SUR vs. ISUR vs. 3SLS vs. SEM Note by Hubert Gatignon July 7, 2013, updated November 15, 2013, April 11, 2014, May 21, 2016 and August 10, 2016 In Chap. 11 of Statistical Analysis

More information

Nonlinear relationships Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised February 20, 2015

Nonlinear relationships Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised February 20, 2015 Nonlinear relationships Richard Williams, University of Notre Dame, https://www.nd.edu/~rwilliam/ Last revised February, 5 Sources: Berry & Feldman s Multiple Regression in Practice 985; Pindyck and Rubinfeld

More information

4/9/2014. Outline for Stochastic Frontier Analysis. Stochastic Frontier Production Function. Stochastic Frontier Production Function

4/9/2014. Outline for Stochastic Frontier Analysis. Stochastic Frontier Production Function. Stochastic Frontier Production Function Productivity Measurement Mini Course Stochastic Frontier Analysis Prof. Nicole Adler, Hebrew University Outline for Stochastic Frontier Analysis Stochastic Frontier Production Function Production function

More information

BIOSTATS 640 Spring 2018 Unit 2. Regression and Correlation (Part 1 of 2) STATA Users

BIOSTATS 640 Spring 2018 Unit 2. Regression and Correlation (Part 1 of 2) STATA Users Unit Regression and Correlation 1 of - Practice Problems Solutions Stata Users 1. In this exercise, you will gain some practice doing a simple linear regression using a Stata data set called week0.dta.

More information

sociology sociology Scatterplots Quantitative Research Methods: Introduction to correlation and regression Age vs Income

sociology sociology Scatterplots Quantitative Research Methods: Introduction to correlation and regression Age vs Income Scatterplots Quantitative Research Methods: Introduction to correlation and regression Scatterplots can be considered as interval/ratio analogue of cross-tabs: arbitrarily many values mapped out in -dimensions

More information

Control Function and Related Methods: Nonlinear Models

Control Function and Related Methods: Nonlinear Models Control Function and Related Methods: Nonlinear Models Jeff Wooldridge Michigan State University Programme Evaluation for Policy Analysis Institute for Fiscal Studies June 2012 1. General Approach 2. Nonlinear

More information

5. Let W follow a normal distribution with mean of μ and the variance of 1. Then, the pdf of W is

5. Let W follow a normal distribution with mean of μ and the variance of 1. Then, the pdf of W is Practice Final Exam Last Name:, First Name:. Please write LEGIBLY. Answer all questions on this exam in the space provided (you may use the back of any page if you need more space). Show all work but do

More information

especially with continuous

especially with continuous Handling interactions in Stata, especially with continuous predictors Patrick Royston & Willi Sauerbrei UK Stata Users meeting, London, 13-14 September 2012 Interactions general concepts General idea of

More information

Step 2: Select Analyze, Mixed Models, and Linear.

Step 2: Select Analyze, Mixed Models, and Linear. Example 1a. 20 employees were given a mood questionnaire on Monday, Wednesday and again on Friday. The data will be first be analyzed using a Covariance Pattern model. Step 1: Copy Example1.sav data file

More information

STAT 526 Advanced Statistical Methodology

STAT 526 Advanced Statistical Methodology STAT 526 Advanced Statistical Methodology Fall 2017 Lecture Note 10 Analyzing Clustered/Repeated Categorical Data 0-0 Outline Clustered/Repeated Categorical Data Generalized Linear Mixed Models Generalized

More information

Confidence intervals for the variance component of random-effects linear models

Confidence intervals for the variance component of random-effects linear models The Stata Journal (2004) 4, Number 4, pp. 429 435 Confidence intervals for the variance component of random-effects linear models Matteo Bottai Arnold School of Public Health University of South Carolina

More information

Nonrecursive Models Highlights Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised April 6, 2015

Nonrecursive Models Highlights Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised April 6, 2015 Nonrecursive Models Highlights Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised April 6, 2015 This lecture borrows heavily from Duncan s Introduction to Structural

More information

Lecture 4: Multivariate Regression, Part 2

Lecture 4: Multivariate Regression, Part 2 Lecture 4: Multivariate Regression, Part 2 Gauss-Markov Assumptions 1) Linear in Parameters: Y X X X i 0 1 1 2 2 k k 2) Random Sampling: we have a random sample from the population that follows the above

More information

7/28/15. Review Homework. Overview. Lecture 6: Logistic Regression Analysis

7/28/15. Review Homework. Overview. Lecture 6: Logistic Regression Analysis Lecture 6: Logistic Regression Analysis Christopher S. Hollenbeak, PhD Jane R. Schubart, PhD The Outcomes Research Toolbox Review Homework 2 Overview Logistic regression model conceptually Logistic regression

More information

ECON Introductory Econometrics. Lecture 6: OLS with Multiple Regressors

ECON Introductory Econometrics. Lecture 6: OLS with Multiple Regressors ECON4150 - Introductory Econometrics Lecture 6: OLS with Multiple Regressors Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 6 Lecture outline 2 Violation of first Least Squares assumption

More information

Impact of serial correlation structures on random effect misspecification with the linear mixed model.

Impact of serial correlation structures on random effect misspecification with the linear mixed model. Impact of serial correlation structures on random effect misspecification with the linear mixed model. Brandon LeBeau University of Iowa file:///c:/users/bleb/onedrive%20 %20University%20of%20Iowa%201/JournalArticlesInProgress/Diss/Study2/Pres/pres.html#(2)

More information

4. MA(2) +drift: y t = µ + ɛ t + θ 1 ɛ t 1 + θ 2 ɛ t 2. Mean: where θ(l) = 1 + θ 1 L + θ 2 L 2. Therefore,

4. MA(2) +drift: y t = µ + ɛ t + θ 1 ɛ t 1 + θ 2 ɛ t 2. Mean: where θ(l) = 1 + θ 1 L + θ 2 L 2. Therefore, 61 4. MA(2) +drift: y t = µ + ɛ t + θ 1 ɛ t 1 + θ 2 ɛ t 2 Mean: y t = µ + θ(l)ɛ t, where θ(l) = 1 + θ 1 L + θ 2 L 2. Therefore, E(y t ) = µ + θ(l)e(ɛ t ) = µ 62 Example: MA(q) Model: y t = ɛ t + θ 1 ɛ

More information

Lab 6 - Simple Regression

Lab 6 - Simple Regression Lab 6 - Simple Regression Spring 2017 Contents 1 Thinking About Regression 2 2 Regression Output 3 3 Fitted Values 5 4 Residuals 6 5 Functional Forms 8 Updated from Stata tutorials provided by Prof. Cichello

More information

Lecture (chapter 13): Association between variables measured at the interval-ratio level

Lecture (chapter 13): Association between variables measured at the interval-ratio level Lecture (chapter 13): Association between variables measured at the interval-ratio level Ernesto F. L. Amaral April 9 11, 2018 Advanced Methods of Social Research (SOCI 420) Source: Healey, Joseph F. 2015.

More information

options description set confidence level; default is level(95) maximum number of iterations post estimation results

options description set confidence level; default is level(95) maximum number of iterations post estimation results Title nlcom Nonlinear combinations of estimators Syntax Nonlinear combination of estimators one expression nlcom [ name: ] exp [, options ] Nonlinear combinations of estimators more than one expression

More information

UNIVERSITY OF TORONTO. Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS. Duration - 3 hours. Aids Allowed: Calculator

UNIVERSITY OF TORONTO. Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS. Duration - 3 hours. Aids Allowed: Calculator UNIVERSITY OF TORONTO Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS Duration - 3 hours Aids Allowed: Calculator LAST NAME: FIRST NAME: STUDENT NUMBER: There are 27 pages

More information

ESTIMATING AVERAGE TREATMENT EFFECTS: REGRESSION DISCONTINUITY DESIGNS Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics

ESTIMATING AVERAGE TREATMENT EFFECTS: REGRESSION DISCONTINUITY DESIGNS Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics ESTIMATING AVERAGE TREATMENT EFFECTS: REGRESSION DISCONTINUITY DESIGNS Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics July 2009 1. Introduction 2. The Sharp RD Design 3.

More information

Lecture 5. In the last lecture, we covered. This lecture introduces you to

Lecture 5. In the last lecture, we covered. This lecture introduces you to Lecture 5 In the last lecture, we covered. homework 2. The linear regression model (4.) 3. Estimating the coefficients (4.2) This lecture introduces you to. Measures of Fit (4.3) 2. The Least Square Assumptions

More information

Description Quick start Menu Syntax Options Remarks and examples Stored results Methods and formulas Acknowledgments References Also see

Description Quick start Menu Syntax Options Remarks and examples Stored results Methods and formulas Acknowledgments References Also see Title stata.com mixed Multilevel mixed-effects linear regression Description Quick start Menu Syntax Options Remarks and examples Stored results Methods and formulas Acknowledgments References Also see

More information

4 Instrumental Variables Single endogenous variable One continuous instrument. 2

4 Instrumental Variables Single endogenous variable One continuous instrument. 2 Econ 495 - Econometric Review 1 Contents 4 Instrumental Variables 2 4.1 Single endogenous variable One continuous instrument. 2 4.2 Single endogenous variable more than one continuous instrument..........................

More information

Title. Description. Special-interest postestimation commands. xtmelogit postestimation Postestimation tools for xtmelogit

Title. Description. Special-interest postestimation commands. xtmelogit postestimation Postestimation tools for xtmelogit Title xtmelogit postestimation Postestimation tools for xtmelogit Description The following postestimation commands are of special interest after xtmelogit: Command Description estat group summarize the

More information

Practice 2SLS with Artificial Data Part 1

Practice 2SLS with Artificial Data Part 1 Practice 2SLS with Artificial Data Part 1 Yona Rubinstein July 2016 Yona Rubinstein (LSE) Practice 2SLS with Artificial Data Part 1 07/16 1 / 16 Practice with Artificial Data In this note we use artificial

More information

Econometrics. 9) Heteroscedasticity and autocorrelation

Econometrics. 9) Heteroscedasticity and autocorrelation 30C00200 Econometrics 9) Heteroscedasticity and autocorrelation Timo Kuosmanen Professor, Ph.D. http://nomepre.net/index.php/timokuosmanen Today s topics Heteroscedasticity Possible causes Testing for

More information

7 Introduction to Time Series

7 Introduction to Time Series Econ 495 - Econometric Review 1 7 Introduction to Time Series 7.1 Time Series vs. Cross-Sectional Data Time series data has a temporal ordering, unlike cross-section data, we will need to changes some

More information

Warwick Economics Summer School Topics in Microeconometrics Instrumental Variables Estimation

Warwick Economics Summer School Topics in Microeconometrics Instrumental Variables Estimation Warwick Economics Summer School Topics in Microeconometrics Instrumental Variables Estimation Michele Aquaro University of Warwick This version: July 21, 2016 1 / 31 Reading material Textbook: Introductory

More information

Lecture 3: Multiple Regression. Prof. Sharyn O Halloran Sustainable Development U9611 Econometrics II

Lecture 3: Multiple Regression. Prof. Sharyn O Halloran Sustainable Development U9611 Econometrics II Lecture 3: Multiple Regression Prof. Sharyn O Halloran Sustainable Development Econometrics II Outline Basics of Multiple Regression Dummy Variables Interactive terms Curvilinear models Review Strategies

More information

Week 3: Simple Linear Regression

Week 3: Simple Linear Regression Week 3: Simple Linear Regression Marcelo Coca Perraillon University of Colorado Anschutz Medical Campus Health Services Research Methods I HSMP 7607 2017 c 2017 PERRAILLON ALL RIGHTS RESERVED 1 Outline

More information

Statistics: A review. Why statistics?

Statistics: A review. Why statistics? Statistics: A review Why statistics? What statistical concepts should we know? Why statistics? To summarize, to explore, to look for relations, to predict What kinds of data exist? Nominal, Ordinal, Interval

More information

sociology 362 regression

sociology 362 regression sociology 36 regression Regression is a means of studying how the conditional distribution of a response variable (say, Y) varies for different values of one or more independent explanatory variables (say,

More information

Applied Econometrics. Lecture 3: Introduction to Linear Panel Data Models

Applied Econometrics. Lecture 3: Introduction to Linear Panel Data Models Applied Econometrics Lecture 3: Introduction to Linear Panel Data Models Måns Söderbom 4 September 2009 Department of Economics, Universy of Gothenburg. Email: mans.soderbom@economics.gu.se. Web: www.economics.gu.se/soderbom,

More information

10) Time series econometrics

10) Time series econometrics 30C00200 Econometrics 10) Time series econometrics Timo Kuosmanen Professor, Ph.D. 1 Topics today Static vs. dynamic time series model Suprious regression Stationary and nonstationary time series Unit

More information

Introduction to Econometrics

Introduction to Econometrics Introduction to Econometrics STAT-S-301 Introduction to Time Series Regression and Forecasting (2016/2017) Lecturer: Yves Dominicy Teaching Assistant: Elise Petit 1 Introduction to Time Series Regression

More information

Lecture 4: Multivariate Regression, Part 2

Lecture 4: Multivariate Regression, Part 2 Lecture 4: Multivariate Regression, Part 2 Gauss-Markov Assumptions 1) Linear in Parameters: Y X X X i 0 1 1 2 2 k k 2) Random Sampling: we have a random sample from the population that follows the above

More information

Self-Assessment Weeks 8: Multiple Regression with Qualitative Predictors; Multiple Comparisons

Self-Assessment Weeks 8: Multiple Regression with Qualitative Predictors; Multiple Comparisons Self-Assessment Weeks 8: Multiple Regression with Qualitative Predictors; Multiple Comparisons 1. Suppose we wish to assess the impact of five treatments while blocking for study participant race (Black,

More information

Correlation and Simple Linear Regression

Correlation and Simple Linear Regression Correlation and Simple Linear Regression Sasivimol Rattanasiri, Ph.D Section for Clinical Epidemiology and Biostatistics Ramathibodi Hospital, Mahidol University E-mail: sasivimol.rat@mahidol.ac.th 1 Outline

More information

1

1 i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Foreign Liabilities/ Dependen Variabel Rasio Foreign Liabilities Total Debt (1) (2) Konstanta 0.216*** 0.219*** Ekspor/Total Sales -0.064-0.055

More information