Generalǫ-expansionforscalar one-loopfeynmanintegrals

Size: px
Start display at page:

Download "Generalǫ-expansionforscalar one-loopfeynmanintegrals"

Transcription

1 Generalǫ-expansionforscalar one-loopfeynmanintegrals KhiemHongPHAN DeutschesElektronen-SynchrotronDESY,Platanenallee6, D 15738Zeuthen,Germany. Incollaborationwith JohannesBlümleinandTordRiemannDESY,Zeuthen 1/0

2 Outline 1 Introduction Recurrencerelationsforscalarone-loopn-point integrals 3 Analyticresultsforscalarone-looptwo-,three-, four-pointintegrals 4 ConclusionandOutlook /0

3 Introduction 1 FuturecollidersLHC,ILC 1 focus: tostudybrout-englert-higgsbosonproperties;topquark properties;vectorbosonproduction; aswellasdirectlysearchfornewphysicssignalssusy, ExtraDimension,etc. = Themeasurementsareperformedathighprecision. Suchhigherprecisionurgentlyrequiresthecalculationof one-loopmulti-legcorrections;two-loopandhigherloop correctionstoseveralprocessesofinterest. 1 PhysicsataHigh-LuminosityLHCwithATLAS:arXiv: ;CMS:arXiv: ;ILCTechnicalDesign Report:arXiv: /0

4 Introduction 1 Scalarone-loopintegralsingeneralspace-timedimension d =n+ǫatgeneralscales;massesandpropagatorindices areveryimportant: tobuildcountertermsforevaluatingtwo-loopcorrections. togaingoodnumericalstabilitycuregramdeterminant problematone-loopcorrections one-loopintegralswithd =n+ǫwithn =,4, must betakenintoaccount:davydychev,phys.lett.b ;j.fleischeretal.,phys. Rev.D ;J.M.Campbelletal.,Nucl.Phys.B ;etc. Scalarone-loopintegralshavebeenperformedbymany authors: Davydychevetal:Mellin-BarnesrepresentationJ.Math.Phys ,etc;GeometricalapproachesJ.Math.Phys ,etc. Tarasov et al:recurrencerelation for multi-loop integral in shifteddimensionnucl.phys.proc.suppl ;nucl.phys.b /0

5 Introduction AMBRE:automaticMellin-Barnesrepresentationformulti-loop integralsj.gluzaetal.,comput.phys.commun ;etc. Thesecalculationshavenotyetcompletedtotreatscalarand tensorone-loopintegralswithgeneral ǫ-expansionatgeneral scales,massesandpropagatorindices. Inthistalk:basedonthemethodTarasovetal.,Nucl.Phys.B Asystematicstudyofthescalarone-looptwo-,three-,and four-pointintegralsispresented,consideringallcasesofmass assignment;externalinvariantswithpropagatorindices ν =1. Wealsoperformextensivecomparisonwiththeliterature. Analyticresultsareexpandedinhigherpowerofǫ. ApackageinMathematicaandFortranwillbebuiltinthenear future. 5/0

6 Generalremarks Kinematicvariablesaredefinedas: Y 11 Y 1... Y 1n Y 1 Y... Y n λ ij k =.....,. Y 1n Y n... Y nn Y ij = p i p j +m i +m j, Õ Ô ½ Õ ÔÒ Õ Ô ¾ d I n d d k 1 =, iπ d/ D 1 D...D n D j = k p j m j ;d =4+ǫ. p 1 p n p 1 p n... p 1 p n p n 1 p n g ij k = n p 1 p n p p n... p p n p n 1 p n p 1 p n p n 1 p n... p n 1 p n p n 1 p n ;...k = λ ij...k g ij...k. 6/0

7 Recurrencerelationforscalarone-loopn-pointfunctions Õ Ô ½ Õ ÔÒ Õ Ô ¾ I d n = d d k iπ d/ 1 D 1 D...D n, D j = k p j m j. Recurrencerelation Tarasovetal.,Nucl.Phys.B I d n =b n d n k λ ij k d n+1 1 k=1 λ ij k r=0 k =, k I m n d =I d n 1, a n = Γa+n k Γa theboundaryterm:b n d I n d whend. r k r k I d+r n. 7/0

8 Scalarone-looptwo-pointfunctions Recurrencerelationfortwo-pointfunctions I d =b d k λ ij d 1 k=1 λ ij r=0 r 1 r k I d+r. k = λ iji d πγ d [ Γ 1 d = Γ d 1 r d ij + iλ ij m j 1 d r=0 k I d+r = 1 rγd Γ1 d Γ d +r m k d +r. d 1 r d r m j i λ ij 1 m j + r + jλ ij m i 1 d j λ ij r=0 1 m i d 1 r d r m r i. 8/0

9 Scalarone-looptwo-pointfunctions λ ij I d πγ d Γ 1 d = Γ d 1 r d i λ ij ij + iλ ij m j 1 d F 1 [ 1, d 1 ; m j d ; 1 m j + + jλ ij m i 1 d j λ ij 1 m i F 1 [ 1, d 1 ; m i d ; d 1 providedthatre >0, m j m <1and i <1. Note:forphysiccalresults,onemustbeperformedanalyticcontinuationfor F 1 nextslide!., TheGausshypergeometricseriesaregivenL.J.Slater,GeneralizedHypergeometric Functions.CambridgeUniversityPress,1966. F 1 [ a,b; c; z = a n b n z n, a n = Γa+n, c n Γa n=0 9/0

10 Scalarone-looptwo-pointfunctions 1 Theintegralrepresentationfor F 1 is F 1 [ a,b; c; z = Γc 1 duu b 1 1 u c b 1 1 zu a, ΓbΓc b 0 providedthat z <1andRec >Reb >0. Analyticcontinuation z >1 F 1 [ a,b; c; z = ΓcΓb a [ a,1+a c; Γc aγb z a F 1 1+a b; + ΓcΓa b ΓaΓc b z b F 1 [ b,1+b c; 1+b c; 1 z 1 z, 10/0

11 Scalarone-looptwo-pointfunctions Allspecialcasesaretreated: =0; =m i m j,m i =m j =0and g ij =0 comparisonwithdavydychevetal.,j.math.phys ;nucl.phys.b Take =0asanexample,wefirstapply F 1 [ a,b; c; F 1 [ a,b; c; [ ΓcΓc a b z = Γc aγc b F 1 a,b; a +b c+1; [ F 1 c a b ΓcΓa +b c +1 z ΓaΓb [ z = 1 z a a,c b; F 1 c; Wearriveatanotherrepresenation [ g ij I d Γ d = iλ ij F 1 m j 4 d = I d = Γ d d 3 1, 4 d ; z z 1 p ij +m i m j p ij. 3 ; 1 m j 1 z c a,c b; c a b+1; 1 z, +i j term. d m i +i j term. 11/0

12 Scalarone-loopthree-pointfunctions I d 3 = b 3 d 3 k λ ijk d k=1 λ ijk r=0 r 1 r k I d+r 3. k Where πγ d k I d+r 3 = +r Γ 1 d r [ Γ d 1 +r rd +r ij +Γ 1 d { +r j λ ij m i d 1 m i i λ ij 1 m j + [ d 1+r F +r, 1 ; 1 [ + iλ ij mj d 1+r F 1 1 m j j λ ij 1 m i m i d +r; d } +r, 1 ; mj. +r; d 1/0

13 Scalarone-loopthree-pointfunctions I d 3 = 8 πγ d gijk k d Θτ ijk +C 0 ijk +C0 ikj +C0 kji, Θτ ijk = θ g ijk θ p ij θ p jk θ p ki θk m i θk m j θk m k. θx = { 1 if x >0, 0 if x 0. Cijk 0 d π Γ d 1 1 r = ij k λ ijk Γ d Γ d 1 λ ij λ ijk Γ d 1 1 k λ ijk + Γ d λ ij λ ijk { i λ ij { j λ ij + iλ ij 1 m i 1 m j 1 m j + jλ ij 1 m i [ 1, }F d ; r ij 1 d 1 ; k m d 1 d i F1 ;1; 1 ;d ;m i, m i k m d 1 d j F1 ;1; 1 ;d ;m j, m } j, k providedthat m i <1, <1,andRe d >0. k 13/0

14 Scalarone-loopthree-pointfunctions 1 AseriesforAppellF 1 functionisl.j.slater,generalizedhypergeometricfunctions. CambridgeUniversityPress,1966. F 1 a;b,b ;c;x,y = m=0n=0 providedthat x <1and y <1. ThesingleintegralrepresentationforF 1 is a m+n b m b n x m y n, c m+n m!n! F 1 a;b,b ;c;x,y = Γc 1 = duu a 1 1 u c a 1 1 xu b 1 yu b, Γc aγa 0 providedthatrec >Rea >0and x <1, y <1. 3 AnalyticcontinuationforF 1 studiedindetailinp.o.m.olsson,j.math. Phys ;wecanalsoperformitsanalyticcontinuationby usingamellin-barnesrepresenation. 14/0

15 Scalarone-loopthree-pointfunctions Allspecialcasesaretreated: =0; =m ifori =1,,3;massless; k =0andg ijk =0 comparisonwithdavydychevetal.,phys.rev.d ;Nucl.Phys.BProc.Suppl Takemasslesscaseasanexample,weconfirmb 3 =0inthiscase. Takingm i 0,inpreviousresultoneconfirmsthat m i d 1 F 1 d ;1;1 ;d ;0,0 0. Wearriveat I d 3 = π Γ d 1 Γ d Γ 1 d 1 p j +p k p i [ 1, 1 F ; λp i,p j,p k 1 d 1 ; p j +p k p i { } + ijk jki. d p i 4 { } + ijk kij ItagreeswithDavydychevetal.,Phys.Rev.D /0

16 Scalarone-loopfour-pointfunctions I d 4 = 8π3 Γ d d Γ d 3 g ijkl r d 3 ijkl Θτ ijkl +D 0 ijkl +D0 lijk +D0 klij +D0 jkli, Θτ ijkl = θ g ijkl θ p ij θ p jk θ p kl θ p li θkl m i θkl m j θkl m k θkl m l D 0 ijkl = Γ d [ 8π d l λ d 3 g ijk r ijkl,1; r ijk ijk F 1 d Θτ ijk + λ ijkl 1; kl { π Γ Γ d d d 1 1 l λ ijkl k λ ijk r + ij Γ d 1 λ ijkl λ ijk λ ij iλ ij 1 m j 1 d 3 1 r F 1 ;1, 1 ij k ;d 1 ; kl, k Γ Γ d d 1 l λ ijkl k λ ijk j λ ij k Γ d λ ijkl λ ijk λ ij k m i m i m d 1 d 3 i FS,1,1;1,1, 1 ;d,d,d ; m i m i m i, kl m, i k m i } + i j term + {i,j,k k,i,j} + {i,j,k j,k,i}. 16/0

17 Scalarone-loopfour-pointfunctions 1 TheSaranfunctionS.Saran,Ganita ;ActaMath., : F S α 1,α,α,β 1,β,β 3,γ 1,γ 1,γ 1 ;x,y,z = α 1 r α m+n β 1 r β m β 3 n = x r y m z n. γ 1 r+m+n r!m!n! r,m,n=0 TheintegralrepresentationofF S is: F S α 1,α,α,β 1,β,β 3,γ 1,γ 1,γ 1 ;x,y,z = 1 Γγ 1 = dt tγ 1 α t α 1 1 Γα 1 Γγ 1 α x+tx β 1 F 1 α,β,β 3 ;γ 1 α 1 ;ty,tz, providedthat x <1, y <1, z <1andReγ α >0. 3 TheanalyticcontinuationforF S canbeperformedusinga Mellin-Barnesrepresenation. 17/0

18 Scalarone-loopfour-pointfunctions Allspecialcasesaretreated: =0; =m ifori =1,,3; massless;k =0;kl =0andg ijkl =0. Takemasslesscaseasanexample,weconfirmb 4 =0inthis case.takingm i 0,inthepreviousresultoneconfirmsthat d 3 m i d 1 F S,1,1;1,11 ;d,d,d ;0,0,0 = = m i d 1 Γ d 1 Γ d 3 Γ 3 dt t1 t d 5 = m i d Wearriveat π Γ d Γ d 1 gij l λ ijkl k λ ijk D 0 ijkl = rd 1 ij Γ d 1 1 rij k F 1 λ ijkl λ ijk d 3 ;1,1 ;d 1 ;, r ij kl k +{i,j,k j,k,i}+{i,j,k k,i,j}. λ ij 18/0

19 Conclusionandoutlook Conclusion Asystematicstudyofthescalarone-looptwo-,three-,and four-pointintegralswaspresentedwithconsideringall casesofmassassignmentsandexternalinvariants. Wehavecomparedourresultstotheliteratureindetail. Acompleteanalyticsolutionwaspresented. Thecalculationprovidesanimportantbuildingblockfor higherloopcalculation. Outlook Higherpowersofǫ-expansionsforscalarone-loop integralsarederived. ApackageinMathematicaandFortranwillbebuiltinthe nearfuture. 19/0

20 Thankyouverymuchforattention! 0/0

G P P (A G ) (A G ) P (A G )

G P P (A G ) (A G ) P (A G ) 1 1 1 G P P (A G ) A G G (A G ) P (A G ) P (A G ) (A G ) (A G ) A G P (A G ) (A G ) (A G ) A G G A G i, j A G i j C = {0, 1,..., k} i j c > 0 c v k k + 1 k = 4 k = 5 5 5 R(4, 3, 3) 30 n {1,..., n} true

More information

Formalism of the Tersoff potential

Formalism of the Tersoff potential Originally written in December 000 Translated to English in June 014 Formalism of the Tersoff potential 1 The original version (PRB 38 p.990, PRB 37 p.6991) Potential energy Φ = 1 u ij i (1) u ij = f ij

More information

Analytical Mechanics: Elastic Deformation

Analytical Mechanics: Elastic Deformation Analytical Mechanics: Elastic Deformation Shinichi Hirai Dept. Robotics, Ritsumeikan Univ. Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Elastic Deformation 1 / 60 Agenda Agenda

More information

The ABC of hyper recursions

The ABC of hyper recursions Journal of Computational and Applied Mathematics 90 2006 270 286 www.elsevier.com/locate/cam The ABC of hyper recursions Amparo Gil a, Javier Segura a,, Nico M. Temme b a Departamento de Matemáticas, Estadística

More information

Barnes integral representation

Barnes integral representation Barnes integral representation The Mellin transform of a function is given by The inversion formula is given by F (s : f(x Note that the definition of the gamma function, Γ(s x s f(x dx. x s F (s ds, c

More information

Analytical Mechanics: Elastic Deformation

Analytical Mechanics: Elastic Deformation Analytical Mechanics: Elastic Deformation Shinichi Hirai Dept. Robotics, Ritsumeikan Univ. Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Elastic Deformation / 59 Agenda Agenda

More information

1 Curvature of submanifolds of Euclidean space

1 Curvature of submanifolds of Euclidean space Curvature of submanifolds of Euclidean space by Min Ru, University of Houston 1 Curvature of submanifolds of Euclidean space Submanifold in R N : A C k submanifold M of dimension n in R N means that for

More information

VECTORS, TENSORS AND INDEX NOTATION

VECTORS, TENSORS AND INDEX NOTATION VECTORS, TENSORS AND INDEX NOTATION Enrico Nobile Dipartimento di Ingegneria e Architettura Università degli Studi di Trieste, 34127 TRIESTE March 5, 2018 Vectors & Tensors, E. Nobile March 5, 2018 1 /

More information

Faculty of Engineering, Mathematics and Science School of Mathematics

Faculty of Engineering, Mathematics and Science School of Mathematics Faculty of Engineering, Mathematics and Science School of Mathematics JS & SS Mathematics SS Theoretical Physics SS TSM Mathematics Module MA3429: Differential Geometry I Trinity Term 2018???, May??? SPORTS

More information

POLYNOMIAL SERIES EXPANSIONS FOR CONFLUENT AND GAUSSIAN HYPERGEOMETRIC FUNCTIONS

POLYNOMIAL SERIES EXPANSIONS FOR CONFLUENT AND GAUSSIAN HYPERGEOMETRIC FUNCTIONS MATHEMATICS OF COMPUTATION Volume 74, Number 252, Pages 1937 1952 S 0025-5718(0501734-5 Article electronically published on March, 2005 POLYNOMIAL SERIES EXPANSIONS FOR CONFLUENT AND GAUSSIAN HYPERGEOMETRIC

More information

Research Article Extensions of Certain Classical Summation Theorems for the Series 2 F 1, 3 F 2, and 4 F 3 with Applications in Ramanujan s Summations

Research Article Extensions of Certain Classical Summation Theorems for the Series 2 F 1, 3 F 2, and 4 F 3 with Applications in Ramanujan s Summations Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 00, Article ID 309503, 6 pages doi:0.55/00/309503 Research Article Extensions of Certain Classical Summation

More information

Index Notation for Vector Calculus

Index Notation for Vector Calculus Index Notation for Vector Calculus by Ilan Ben-Yaacov and Francesc Roig Copyright c 2006 Index notation, also commonly known as subscript notation or tensor notation, is an extremely useful tool for performing

More information

Problem Set 4. Eshelby s Inclusion

Problem Set 4. Eshelby s Inclusion ME34B Elasticity of Microscopic Structures Wei Cai Stanford University Winter 24 Problem Set 4. Eshelby s Inclusion Chris Weinberger and Wei Cai c All rights reserved Problem 4. (5 Spherical inclusion.

More information

Fractional integral and generalized Stieltjes transforms for hypergeometric functions as transmutation operators

Fractional integral and generalized Stieltjes transforms for hypergeometric functions as transmutation operators Fractional integral and generalized Stieltjes transforms for hypergeometric functions as transmutation operators Korteweg-de Vries Institute, University of Amsterdam T.H.Koornwinder@uva.nl https://staff.fnwi.uva.nl/t.h.koornwinder/

More information

16.21 Techniques of Structural Analysis and Design Spring 2003 Unit #5 - Constitutive Equations

16.21 Techniques of Structural Analysis and Design Spring 2003 Unit #5 - Constitutive Equations 6.2 Techniques of Structural Analysis and Design Spring 2003 Unit #5 - Constitutive quations Constitutive quations For elastic materials: If the relation is linear: Û σ ij = σ ij (ɛ) = ρ () ɛ ij σ ij =

More information

Some Summation Theorems for Generalized Hypergeometric Functions

Some Summation Theorems for Generalized Hypergeometric Functions Article Some Summation Theorems for Generalized Hypergeometric Functions Mohammad Masjed-Jamei,, * and Wolfram Koepf Department of Mathematics, University of Kassel, Heinrich-Plett-Str. 40, D-343 Kassel,

More information

GROUP THEORY PRIMER. New terms: tensor, rank k tensor, Young tableau, Young diagram, hook, hook length, factors over hooks rule

GROUP THEORY PRIMER. New terms: tensor, rank k tensor, Young tableau, Young diagram, hook, hook length, factors over hooks rule GROUP THEORY PRIMER New terms: tensor, rank k tensor, Young tableau, Young diagram, hook, hook length, factors over hooks rule 1. Tensor methods for su(n) To study some aspects of representations of a

More information

e Hypergeometric Fun ion and the Papperitz Equation

e Hypergeometric Fun ion and the Papperitz Equation e Hypergeometric Funion and the Papperitz Equation Richard Chapling * v March Second-Order Differential Equations with ree Regular Singular Points. Summary of previous theory We start with a general second-order

More information

arxiv:math/ v1 [math.ca] 7 May 2002

arxiv:math/ v1 [math.ca] 7 May 2002 Large Parameter Cases of the Gauss Hypergeometric Function Nico M. Temme arxiv:math/565v [math.ca] 7 May ABSTRACT CWI P.O. Box 9479 9 GB Amsterdam The Netherlands e-mail: nicot@cwi.nl We consider the asymptotic

More information

Computation of the mtx-vec product based on storage scheme on vector CPUs

Computation of the mtx-vec product based on storage scheme on vector CPUs BLAS: Basic Linear Algebra Subroutines BLAS: Basic Linear Algebra Subroutines BLAS: Basic Linear Algebra Subroutines Analysis of the Matrix Computation of the mtx-vec product based on storage scheme on

More information

BLAS: Basic Linear Algebra Subroutines Analysis of the Matrix-Vector-Product Analysis of Matrix-Matrix Product

BLAS: Basic Linear Algebra Subroutines Analysis of the Matrix-Vector-Product Analysis of Matrix-Matrix Product Level-1 BLAS: SAXPY BLAS-Notation: S single precision (D for double, C for complex) A α scalar X vector P plus operation Y vector SAXPY: y = αx + y Vectorization of SAXPY (αx + y) by pipelining: page 8

More information

NIELINIOWA OPTYKA MOLEKULARNA

NIELINIOWA OPTYKA MOLEKULARNA NIELINIOWA OPTYKA MOLEKULARNA chapter 1 by Stanisław Kielich translated by:tadeusz Bancewicz http://zon8.physd.amu.edu.pl/~tbancewi Poznan,luty 2008 ELEMENTS OF THE VECTOR AND TENSOR ANALYSIS Reference

More information

Applicable Analysis and Discrete Mathematics available online at

Applicable Analysis and Discrete Mathematics available online at Applicable Analysis and Discrete Mathematics available online at http://pefmath.etf.rs Appl. Anal. Discrete Math. x (xxxx, xxx xxx. doi:.98/aadmxxxxxxxx A STUDY OF GENERALIZED SUMMATION THEOREMS FOR THE

More information

Relativistic Kinematics

Relativistic Kinematics Chapter 3 Relativistic Kinematics Recall that we briefly discussed Galilean boosts, transformation going from one inertial frame to another one, the first moving with an infinitesimal velocity δv with

More information

Functional equations for Feynman integrals

Functional equations for Feynman integrals Functional equations for Feynman integrals O.V. Tarasov JINR, Dubna, Russia October 9, 016, Hayama, Japan O.V. Tarasov (JINR) Functional equations for Feynman integrals 1 / 34 Contents 1 Functional equations

More information

Section 2. Basic formulas and identities in Riemannian geometry

Section 2. Basic formulas and identities in Riemannian geometry Section 2. Basic formulas and identities in Riemannian geometry Weimin Sheng and 1. Bianchi identities The first and second Bianchi identities are R ijkl + R iklj + R iljk = 0 R ijkl,m + R ijlm,k + R ijmk,l

More information

EN221 - Fall HW # 1 Solutions

EN221 - Fall HW # 1 Solutions EN221 - Fall2008 - HW # 1 Solutions Prof. Vivek Shenoy 1. Let A be an arbitrary tensor. i). Show that II A = 1 2 {(tr A)2 tr A 2 } ii). Using the Cayley-Hamilton theorem, deduce that Soln. i). Method-1

More information

Additional material: Linear Differential Equations

Additional material: Linear Differential Equations Chapter 5 Additional material: Linear Differential Equations 5.1 Introduction The material in this chapter is not formally part of the LTCC course. It is included for completeness as it contains proofs

More information

Role of Magnetic Symmetry in the Description and Determination of Magnetic Structures. IUCR Congress Satellite Workshop August Hamilton, Canada

Role of Magnetic Symmetry in the Description and Determination of Magnetic Structures. IUCR Congress Satellite Workshop August Hamilton, Canada Role of Magnetic Symmetry in the Description and Determination of Magnetic Structures IUCR Congress Satellite Workshop 14-16 August Hamilton, Canada MAGNETIC POINT GROUPS Mois I. Aroyo Universidad del

More information

Yangians In Deformed Super Yang-Mills Theories

Yangians In Deformed Super Yang-Mills Theories Yangians In Deformed Super Yang-Mills Theories arxiv:0802.3644 [hep-th] JHEP 04:051, 2008 Jay N. Ihry UNC-CH April 17, 2008 Jay N. Ihry UNC-CH Yangians In Deformed Super Yang-Mills Theories arxiv:0802.3644

More information

New series expansions of the Gauss hypergeometric function

New series expansions of the Gauss hypergeometric function New series expansions of the Gauss hypergeometric function José L. López and Nico. M. Temme 2 Departamento de Matemática e Informática, Universidad Pública de Navarra, 36-Pamplona, Spain. e-mail: jl.lopez@unavarra.es.

More information

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components Cartesian Tensors Reference: Jeffreys Cartesian Tensors 1 Coordinates and Vectors z x 3 e 3 y x 2 e 2 e 1 x x 1 Coordinates x i, i 123,, Unit vectors: e i, i 123,, General vector (formal definition to

More information

1. Tensor of Rank 2 If Φ ij (x, y) satisfies: (a) having four components (9 for 3-D). (b) when the coordinate system is changed from x i to x i,

1. Tensor of Rank 2 If Φ ij (x, y) satisfies: (a) having four components (9 for 3-D). (b) when the coordinate system is changed from x i to x i, 1. Tensor of Rank 2 If Φ ij (x, y satisfies: (a having four components (9 for 3-D. Φ i j (x 1, x 2 = β i iβ j jφ ij (x 1, x 2. Example 1: ( 1 0 0 1 Φ i j = ( 1 0 0 1 To prove whether this is a tensor or

More information

Linear reducibility of Feynman integrals

Linear reducibility of Feynman integrals Linear reducibility of Feynman integrals Erik Panzer Institute des Hautes Études Scientifiques RADCOR/LoopFest 2015 June 19th, 2015 UCLA, Los Angeles Feynman integrals: special functions and numbers Some

More information

arxiv: v1 [hep-th] 15 May 2008

arxiv: v1 [hep-th] 15 May 2008 Even and odd geometries on supermanifolds M. Asorey a and P.M. Lavrov b arxiv:0805.2297v1 [hep-th] 15 May 2008 a Departamento de Física Teórica, Facultad de Ciencias Universidad de Zaragoza, 50009 Zaragoza,

More information

arxiv: v1 [hep-th] 30 Jan 2015

arxiv: v1 [hep-th] 30 Jan 2015 Heisenberg Model and Rigged Configurations Pulak Ranjan Giri and Tetsuo Deguchi Department of Physics, Graduate School of Humanities and Sciences, Ochanomizu University, Ohtsuka --, Bunkyo-ku, Tokyo, -86,

More information

Lecture 4: Products of Matrices

Lecture 4: Products of Matrices Lecture 4: Products of Matrices Winfried Just, Ohio University January 22 24, 2018 Matrix multiplication has a few surprises up its sleeve Let A = [a ij ] m n, B = [b ij ] m n be two matrices. The sum

More information

Lecture 17: The Exponential and Some Related Distributions

Lecture 17: The Exponential and Some Related Distributions Lecture 7: The Exponential and Some Related Distributions. Definition Definition: A continuous random variable X is said to have the exponential distribution with parameter if the density of X is e x if

More information

Stat 217 Final Exam. Name: May 1, 2002

Stat 217 Final Exam. Name: May 1, 2002 Stat 217 Final Exam Name: May 1, 2002 Problem 1. Three brands of batteries are under study. It is suspected that the lives (in weeks) of the three brands are different. Five batteries of each brand are

More information

On Weakly Symmetric and Weakly Conformally Symmetric Spaces admitting Veblen identities

On Weakly Symmetric and Weakly Conformally Symmetric Spaces admitting Veblen identities Int. J. Contemp. Math. Sciences, Vol. 6, 2011, no. 47, 2327-2333 On Weakly Symmetric and Weakly Conformally Symmetric Spaces admitting Veblen identities Y. B. Maralabhavi Department of Mathematics Bangalore

More information

Midterm Feb. 17, 2009 Physics 110B Secret No.=

Midterm Feb. 17, 2009 Physics 110B Secret No.= Midterm Feb. 17, 29 Physics 11B Secret No.= PROBLEM (1) (4 points) The radient operator = x i ê i transforms like a vector. Use ɛ ijk to prove that if B( r) = A( r), then B( r) =. B i = x i x i = x j =

More information

Introduction to fracture mechanics

Introduction to fracture mechanics Introduction to fracture mechanics Prof. Dr. Eleni Chatzi Dr. Giuseppe Abbiati, Dr. Konstantinos Agathos Lecture 6-9 November, 2017 Institute of Structural Engineering, ETH Zu rich November 9, 2017 Institute

More information

MATH 543: FUCHSIAN DIFFERENTIAL EQUATIONS HYPERGEOMETRIC FUNCTION

MATH 543: FUCHSIAN DIFFERENTIAL EQUATIONS HYPERGEOMETRIC FUNCTION SET 7 MATH 543: FUCHSIAN DIFFERENTIAL EQUATIONS HYERGEOMETRIC FUNCTION References: DK and Sadri Hassan. Historical Notes: lease read the book Linear Differential Equations and the Group Theory by Jeremy

More information

Joint Simulation of Correlated Variables using High-order Spatial Statistics

Joint Simulation of Correlated Variables using High-order Spatial Statistics Joint Simulation of Correlated Variables using High-order Spatial Statistics Ilnur Minniakhmetov * Roussos Dimitrakopoulos COSMO Stochastic Mine Planning Laboratory Department of Mining and Materials Engineering

More information

Useful Formulae ( )

Useful Formulae ( ) Appendix A Useful Formulae (985-989-993-) 34 Jeremić et al. A.. CHAPTER SUMMARY AND HIGHLIGHTS page: 35 of 536 A. Chapter Summary and Highlights A. Stress and Strain This section reviews small deformation

More information

ASYMPTOTIC EXPANSIONS

ASYMPTOTIC EXPANSIONS Monografías del Seminario Matemático García de Galdeano 33, 145 15 (6) ASYMPTOTIC EXPANSIONS OF THE APPELL S FUNCTION F José Luis López and María Esther García Abstract. The second Appell s hypergeometric

More information

CLASSIFICATION OF MÖBIUS ISOPARAMETRIC HYPERSURFACES IN THE UNIT SIX-SPHERE

CLASSIFICATION OF MÖBIUS ISOPARAMETRIC HYPERSURFACES IN THE UNIT SIX-SPHERE Tohoku Math. J. 60 (008), 499 56 CLASSIFICATION OF MÖBIUS ISOPARAMETRIC HYPERSURFACES IN THE UNIT SIX-SPHERE Dedicated to Professors Udo Simon and Seiki Nishikawa on the occasion of their seventieth and

More information

June 21, Peking University. Dual Connections. Zhengchao Wan. Overview. Duality of connections. Divergence: general contrast functions

June 21, Peking University. Dual Connections. Zhengchao Wan. Overview. Duality of connections. Divergence: general contrast functions Dual Peking University June 21, 2016 Divergences: Riemannian connection Let M be a manifold on which there is given a Riemannian metric g =,. A connection satisfying Z X, Y = Z X, Y + X, Z Y (1) for all

More information

Research Article A Note on Pseudo-Umbilical Submanifolds of Hessian Manifolds with Constant Hessian Sectional Curvature

Research Article A Note on Pseudo-Umbilical Submanifolds of Hessian Manifolds with Constant Hessian Sectional Curvature International Scolarly Researc Network ISRN Geometry Volume 011, Article ID 374584, 1 pages doi:10.540/011/374584 Researc Article A Note on Pseudo-Umbilical Submanifolds of Hessian Manifolds wit Constant

More information

On Entropy Flux Heat Flux Relation in Thermodynamics with Lagrange Multipliers

On Entropy Flux Heat Flux Relation in Thermodynamics with Lagrange Multipliers Continuum Mech. Thermodyn. (1996) 8: 247 256 On Entropy Flux Heat Flux Relation in Thermodynamics with Lagrange Multipliers I-Shih Liu Instituto de Matemática Universidade do rio de Janeiro, Caixa Postal

More information

LAGUERRE CHARACTERIZATIONS OF HYPERSURFACES IN R n

LAGUERRE CHARACTERIZATIONS OF HYPERSURFACES IN R n Bull Korean Math Soc 50 (013), No 6, pp 1781 1797 http://dxdoiorg/104134/bkms0135061781 LAGUERRE CHARACTERIZATIONS OF HYPERSURFACES IN R n Shichang Shu and Yanyan Li Abstract Let x : M R n be an n 1-dimensional

More information

Probability Distributions

Probability Distributions Probability Distributions Seungjin Choi Department of Computer Science Pohang University of Science and Technology, Korea seungjin@postech.ac.kr 1 / 25 Outline Summarize the main properties of some of

More information

Homework 7-8 Solutions. Problems

Homework 7-8 Solutions. Problems Homework 7-8 Solutions Problems 26 A rhombus is a parallelogram with opposite sides of equal length Let us form a rhombus using vectors v 1 and v 2 as two adjacent sides, with v 1 = v 2 The diagonals of

More information

1 Index Gymnastics and Einstein Convention

1 Index Gymnastics and Einstein Convention Index Gymnastics and Einstein Convention Part (i) Let g δ µνe µ e ν be the metric. Then: Part (ii) x x g (x, x) δ µνe µ (x σ e σ) e ν (x ρ e ρ) δ µνx σ x ρ e µ (e σ) e ν (e ρ) δ µνx σ x ρ δ µ σ δ ν ρ δ

More information

Module 4M12: Partial Differential Equations and Variational Methods IndexNotationandVariationalMethods

Module 4M12: Partial Differential Equations and Variational Methods IndexNotationandVariationalMethods Module 4M12: Partial Differential Equations and ariational Methods IndexNotationandariationalMethods IndexNotation(2h) ariational calculus vs differential calculus(5h) ExamplePaper(1h) Fullinformationat

More information

Nina Virchenko. Abstract

Nina Virchenko. Abstract ON THE GENERALIZED CONFLUENT HYPERGEOMETRIC FUNCTION AND ITS APPLICATION Nina Virchenko Dedicated to Professor Megumi Saigo, on the occasion of his 7th birthday Abstract This paper is devoted to further

More information

Algebraic models for higher-order correlations

Algebraic models for higher-order correlations Algebraic models for higher-order correlations Lek-Heng Lim and Jason Morton U.C. Berkeley and Stanford Univ. December 15, 2008 L.-H. Lim & J. Morton (MSRI Workshop) Algebraic models for higher-order correlations

More information

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor Somnath Bhowmick Materials Science and Engineering, IIT Kanpur April 6, 2018 Tensile test and Hooke s Law Upto certain strain (0.75),

More information

Lecture «Robot Dynamics»: Kinematics 2

Lecture «Robot Dynamics»: Kinematics 2 Lecture «Robot Dynamics»: Kinematics 2 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) Marco Hutter,

More information

Vector calculus. Appendix A. A.1 Definitions. We shall only consider the case of three-dimensional spaces.

Vector calculus. Appendix A. A.1 Definitions. We shall only consider the case of three-dimensional spaces. Appendix A Vector calculus We shall only consider the case of three-dimensional spaces A Definitions A physical quantity is a scalar when it is only determined by its magnitude and a vector when it is

More information

Lecture Note 1. Introduction to Elasticity Equations

Lecture Note 1. Introduction to Elasticity Equations ME34B Elasticity of Microscopic tructures tanford University Winter 24 Lecture Note. Introduction to Elasticity Equations Chris Weinberger and Wei Cai c All rights reserved January 2, 24 Contents Index

More information

Gauged Linear Sigma Model and Hemisphpere Partition Function

Gauged Linear Sigma Model and Hemisphpere Partition Function Gauged Linear Sigma Model and Hemisphpere Partition Function [M. Romo, E. Scheidegger, JK: arxiv:1602.01382 [hep-th], in progress] [K. Hori, JK: arxiv:1612.06214 [hep-th]] [R. Eager, K. Hori, M. Romo,

More information

2 Tensor Notation. 2.1 Cartesian Tensors

2 Tensor Notation. 2.1 Cartesian Tensors 2 Tensor Notation It will be convenient in this monograph to use the compact notation often referred to as indicial or index notation. It allows a strong reduction in the number of terms in an equation

More information

Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation

Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation ECE5463: Introduction to Robotics Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio,

More information

A.1 Appendix on Cartesian tensors

A.1 Appendix on Cartesian tensors 1 Lecture Notes on Fluid Dynamics (1.63J/2.21J) by Chiang C. Mei, February 6, 2007 A.1 Appendix on Cartesian tensors [Ref 1] : H Jeffreys, Cartesian Tensors; [Ref 2] : Y. C. Fung, Foundations of Solid

More information

arxiv: v1 [hep-ph] 30 Dec 2015

arxiv: v1 [hep-ph] 30 Dec 2015 June 3, 8 Derivation of functional equations for Feynman integrals from algebraic relations arxiv:5.94v [hep-ph] 3 Dec 5 O.V. Tarasov II. Institut für Theoretische Physik, Universität Hamburg, Luruper

More information

Lecture 19 (Nov. 15, 2017)

Lecture 19 (Nov. 15, 2017) Lecture 19 8.31 Quantum Theory I, Fall 017 8 Lecture 19 Nov. 15, 017) 19.1 Rotations Recall that rotations are transformations of the form x i R ij x j using Einstein summation notation), where R is an

More information

c 2002 Society for Industrial and Applied Mathematics

c 2002 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 4 No. pp. 507 5 c 00 Society for Industrial and Applied Mathematics WEAK SECOND ORDER CONDITIONS FOR STOCHASTIC RUNGE KUTTA METHODS A. TOCINO AND J. VIGO-AGUIAR Abstract. A general

More information

arxiv: v1 [math.dg] 5 Dec 2017

arxiv: v1 [math.dg] 5 Dec 2017 A NEW PINCHING THEORE FOR COPLETE SELF-SHRINKERS AND ITS GENERALIZATION arxiv:72.0899v [math.dg] 5 Dec 207 LI LEI, HONGWEI XU, AND ZHIYUAN XU Abstract. In this paper, we firstly verify that if is a complete

More information

MP2A: Vectors, Tensors and Fields

MP2A: Vectors, Tensors and Fields MP2A: Vectors, Tensors and Fields [U3869 PHY-2-MP2A] Brian Pendleton (ourse Lecturer) email: bjp@ph.ed.ac.uk room: JMB 4413 telephone: 131-65-5241 web: http://www.ph.ed.ac.uk/ bjp/ March 26, 21 Abstract

More information

Cosmology. April 13, 2015

Cosmology. April 13, 2015 Cosmology April 3, 205 The cosmological principle Cosmology is based on the principle that on large scales, space (not spacetime) is homogeneous and isotropic that there is no preferred location or direction

More information

Discrete Applied Mathematics

Discrete Applied Mathematics Discrete Applied Mathematics 194 (015) 37 59 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: wwwelseviercom/locate/dam Loopy, Hankel, and combinatorially skew-hankel

More information

Hyperdeterminants, secant varieties, and tensor approximations

Hyperdeterminants, secant varieties, and tensor approximations Hyperdeterminants, secant varieties, and tensor approximations Lek-Heng Lim University of California, Berkeley April 23, 2008 Joint work with Vin de Silva L.-H. Lim (Berkeley) Tensor approximations April

More information

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

PEAT SEISMOLOGY Lecture 2: Continuum mechanics PEAT8002 - SEISMOLOGY Lecture 2: Continuum mechanics Nick Rawlinson Research School of Earth Sciences Australian National University Strain Strain is the formal description of the change in shape of a

More information

Introduction to Numerical Relativity

Introduction to Numerical Relativity Introduction to Numerical Relativity Given a manifold M describing a spacetime with 4-metric we want to foliate it via space-like, threedimensional hypersurfaces: {Σ i }. We label such hypersurfaces with

More information

Matrix Differentiation

Matrix Differentiation Matrix Differentiation CS5240 Theoretical Foundations in Multimedia Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (NUS) Matrix Differentiation

More information

Bulletin of the. Iranian Mathematical Society

Bulletin of the. Iranian Mathematical Society ISSN: 1017-060X (Print) ISSN: 1735-8515 (Online) Bulletin of the Iranian Mathematical Society Vol. 43 (2017), No. 3, pp. 951 974. Title: Normal edge-transitive Cayley graphs on the nonabelian groups of

More information

Hyperbolic Geometric Flow

Hyperbolic Geometric Flow Hyperbolic Geometric Flow Kefeng Liu CMS and UCLA August 20, 2007, Dong Conference Page 1 of 51 Outline: Joint works with D. Kong and W. Dai Motivation Hyperbolic geometric flow Local existence and nonlinear

More information

IEOR 6711: Stochastic Models I. Solutions to Homework Assignment 9

IEOR 6711: Stochastic Models I. Solutions to Homework Assignment 9 IEOR 67: Stochastic Models I Solutions to Homework Assignment 9 Problem 4. Let D n be the random demand of time period n. Clearly D n is i.i.d. and independent of all X k for k < n. Then we can represent

More information

Tailoring BKL to Loop Quantum Cosmology

Tailoring BKL to Loop Quantum Cosmology Tailoring BKL to Loop Quantum Cosmology Adam D. Henderson Institute for Gravitation and the Cosmos Pennsylvania State University LQC Workshop October 23-25 2008 Introduction Loop Quantum Cosmology: Big

More information

Applications of AdS/CFT correspondence to cold atom physics

Applications of AdS/CFT correspondence to cold atom physics Applications of AdS/CFT correspondence to cold atom physics Sergej Moroz in collaboration with Carlos Fuertes ITP, Heidelberg Outline Basics of AdS/CFT correspondence Schrödinger group and correlation

More information

Lecture 9: Submatrices and Some Special Matrices

Lecture 9: Submatrices and Some Special Matrices Lecture 9: Submatrices and Some Special Matrices Winfried Just Department of Mathematics, Ohio University February 2, 2018 Submatrices A submatrix B of a given matrix A is any matrix that can be obtained

More information

Transformation formulas for the generalized hypergeometric function with integral parameter differences

Transformation formulas for the generalized hypergeometric function with integral parameter differences Transformation formulas for the generalized hypergeometric function with integral parameter differences A. R. Miller Formerly Professor of Mathematics at George Washington University, 66 8th Street NW,

More information

Lagrangian fluid mechanics

Lagrangian fluid mechanics Lagrangian fluid mechanics S. Manoff Bulgarian Academy of Sciences Institute for Nuclear Research and Nuclear Energy Department of Theoretical Physics Blvd. Tzarigradsko Chaussee 72 1784 - Sofia, Bulgaria

More information

) k ( 1 λ ) n k. ) n n e. k!(n k)! n

) k ( 1 λ ) n k. ) n n e. k!(n k)! n k ) λ ) k λ ) λk k! e λ ) π/!. e α + α) /α e k ) λ ) k λ )! λ k! k)! ) λ k λ k! λk e λ k! λk e λ. k! ) k λ ) k k + k k k ) k ) k e k λ e k ) k EX EX V arx) X Nα, σ ) Bp) Eα) Πλ) U, θ) X Nα, σ ) E ) X α

More information

FoMP: Vectors, Tensors and Fields

FoMP: Vectors, Tensors and Fields FoMP: Vectors, Tensors and Fields 1 Contents 1 Vectors 6 1.1 Review of Vectors................................. 6 1.1.1 Physics Terminology (L1)........................ 6 1.1.2 Geometrical Approach..........................

More information

Matrix Arithmetic. j=1

Matrix Arithmetic. j=1 An m n matrix is an array A = Matrix Arithmetic a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn of real numbers a ij An m n matrix has m rows and n columns a ij is the entry in the i-th row and j-th column

More information

1. Divergence of a product: Given that φ is a scalar field and v a vector field, show that

1. Divergence of a product: Given that φ is a scalar field and v a vector field, show that 1. Divergence of a product: Given that φ is a scalar field and v a vector field, show that div(φv) = (gradφ) v + φ div v grad(φv) = (φv i ), j g i g j = φ, j v i g i g j + φv i, j g i g j = v (grad φ)

More information

Lec 5: Factorial Experiment

Lec 5: Factorial Experiment November 21, 2011 Example Study of the battery life vs the factors temperatures and types of material. A: Types of material, 3 levels. B: Temperatures, 3 levels. Example Study of the battery life vs the

More information

arxiv:hep-th/ v1 11 Mar 2005

arxiv:hep-th/ v1 11 Mar 2005 Scattering of a Klein-Gordon particle by a Woods-Saxon potential Clara Rojas and Víctor M. Villalba Centro de Física IVIC Apdo 21827, Caracas 12A, Venezuela (Dated: February 1, 28) Abstract arxiv:hep-th/5318v1

More information

Negative anomalous dimensions in N=4 SYM

Negative anomalous dimensions in N=4 SYM 13 Nov., 2015, YITP Workshop - Developments in String Theory and Quantum Field Theory Negative anomalous dimensions in N=4 SYM Yusuke Kimura (OIQP) 1503.0621 [hep-th] with Ryo Suzuki 1 1. Introduction

More information

Lecture 9: Molecular integral. Integrals of the Hamiltonian matrix over Gaussian-type orbitals

Lecture 9: Molecular integral. Integrals of the Hamiltonian matrix over Gaussian-type orbitals Lecture 9: Molecular integral evaluation Integrals of the Hamiltonian matrix over Gaussian-type orbitals Gaussian-type orbitals The de-facto standard for electronic-structure calculations is to use Gaussian-type

More information

Invariant multipole theory of induced macroscopic fields in homogeneous dielectrics

Invariant multipole theory of induced macroscopic fields in homogeneous dielectrics Invariant multipole theory of induced macroscopic fields in homogeneous dielectrics by Allard Welter Submitted in fulfilment of the academic requirements for the degree of PhD in Physics in the School

More information

The Partition Function Statistical Thermodynamics. NC State University

The Partition Function Statistical Thermodynamics. NC State University Chemistry 431 Lecture 4 The Partition Function Statistical Thermodynamics NC State University Molecular Partition Functions In general, g j is the degeneracy, ε j is the energy: = j q g e βε j We assume

More information

Hyperbolic Geometric Flow

Hyperbolic Geometric Flow Hyperbolic Geometric Flow Kefeng Liu Zhejiang University UCLA Page 1 of 41 Outline Introduction Hyperbolic geometric flow Local existence and nonlinear stability Wave character of metrics and curvatures

More information

PHYS 4390: GENERAL RELATIVITY NON-COORDINATE BASIS APPROACH

PHYS 4390: GENERAL RELATIVITY NON-COORDINATE BASIS APPROACH PHYS 4390: GENERAL RELATIVITY NON-COORDINATE BASIS APPROACH 1. Differential Forms To start our discussion, we will define a special class of type (0,r) tensors: Definition 1.1. A differential form of order

More information

Equiangular lines in Euclidean spaces

Equiangular lines in Euclidean spaces Equiangular lines in Euclidean spaces Gary Greaves 東北大学 Tohoku University 14th August 215 joint work with J. Koolen, A. Munemasa, and F. Szöllősi. Gary Greaves Equiangular lines in Euclidean spaces 1/23

More information

Gyroviscosity in the NIMROD code. A.Y. Pankin D. D. Schnack C. Sovinec S. E. Kruger

Gyroviscosity in the NIMROD code. A.Y. Pankin D. D. Schnack C. Sovinec S. E. Kruger Gyroviscosity in the NIMROD code A.Y. Pankin D. D. Schnack C. Sovinec S. E. Kruger Outline Introduction Two possible implementations Testing GV in the NIMROD code Convergence Summary ε = ω / Ω i ξ = V

More information

quantised N = 8 supergravity

quantised N = 8 supergravity symmetry in perturbatively quantised N = 8 supergravity Guillaume Bossard AEI, Max-Planck-Institut für Gravitationsphysik Penn State September 2010 Outline Duality invariant action Quantum equivalence

More information

Vector analysis. 1 Scalars and vectors. Fields. Coordinate systems 1. 2 The operator The gradient, divergence, curl, and Laplacian...

Vector analysis. 1 Scalars and vectors. Fields. Coordinate systems 1. 2 The operator The gradient, divergence, curl, and Laplacian... Vector analysis Abstract These notes present some background material on vector analysis. Except for the material related to proving vector identities (including Einstein s summation convention and the

More information