Hyperbolic Geometric Flow

Size: px
Start display at page:

Download "Hyperbolic Geometric Flow"

Transcription

1 Hyperbolic Geometric Flow Kefeng Liu CMS and UCLA August 20, 2007, Dong Conference Page 1 of 51

2 Outline: Joint works with D. Kong and W. Dai Motivation Hyperbolic geometric flow Local existence and nonlinear stability Wave Nature of Curvatures Exact solutions and Birkhoff theorem Dissipative hyperbolic geometric flow Riemann surfaces Some results related to HGF - Time-periodic solutions of Einstein equations - Hyperbolic mean curvature flow Open problems Page 2 of 51

3 1. Motivation - Ricci flow: Geometric structure of manifolds - Einstein equations and Penrose conjecture: Singularities in manifold and space-time - Applications of hyperbolic PDEs to differential geometry: Wave character of metrics and curvatures D. Christodoulou, S. Klainerman, M. Dafermos, I. Rodnianski, H. Lindblad, N. Ziper J. Hong (Nonlinear Analysis, 1995) Page 3 of 51 Kong et al (Comm. Math. Phys.; J. Math. Phys. 2006)

4 2. Hyperbolic Geometric Flow Let (M, g ij ) be n-dimensional complete Riemannian manifold. The Levi-Civita connection Γ k ij = 1 { gil 2 gkl x + g il i x g ij j x l } The Riemannian curvature tensors R k ijl = Γk jl x i The Ricci tensor Γk il x j + Γk ip Γp jl Γk jp Γp il, R ijkl = g kp R p ijl R ik = g jl R ijkl Page 4 of 51 The scalar curvature R = g ij R ij

5 Hyperbolic geometric flow (HGF) 2 g ij 2 = 2R ij (1) for a family of Riemannian metrics g ij (t) on M. General version of HGF 2 g ij + 2R 2 ij + F ij ( g, g ) = 0 (2) Page 5 of 51 - Kong and Liu: Wave Character of Metrics and Hyperbolic Geometric Flow, 2006

6 Physical background Relation between Einstein equations and HGF Consider the Lorentzian metric ds 2 = dt 2 + g ij (x, t)dx i dx j Einstein equations in vacuum, i.e., G ij = 0 become 2 g ij 2 + 2R ij gpq g ij g pq gpq g ip g jq = 0 (3) This is a special example of general version (2) of HGF. Neglecting the terms of first order gives the HGF (1). (3) is named as Einstein s hyperbolic geometric flow Page 6 of 51

7 Three important types - Hyperbolic geometric flow 2 g ij 2 = 2R ij Wave type equation - Einstein s hyperbolic geometric flow 2 g ij 2 + 2R ij gpq g ij g pq gpq g ip g kq Wave type equation satisfying null condition - Dissipative hyperbolic geometric flow Wave type equation with dissipative terms = 0 Page 7 of 51

8 Laplace equation, heat equation and wave equation - Laplace equation (elliptic equations) u = 0 - Heat equation (parabolic equations) u t u = 0 - Wave equation (hyperbolic equations) u tt u = 0 Page 8 of 51

9 Einstein manifold, Ricci flow, hyperbolic geometric flow - Einstein manifold (elliptic equations) R ij = λg ij - Ricci flow (parabolic equations) g ij = 2R ij - Hyperbolic geometric flow (hyperbolic equations) 2 g ij 2 = 2R ij Page 9 of 51 Laplace equation, heat equation and wave equation on manifolds in the Ricci sense

10 Geometric flows α ij 2 g ij 2 where α ij, β ij, γ ij which may depend on t. In particular, + β g ij ij + γ ijg ij + 2R ij = 0, are certain smooth functions on M α ij = 1, β ij = γ ij = 0: hyperbolic geometric flow α ij = 0, β ij = 1, γ ij = 0: Ricci flow α ij = 0, β ij = 0, γ ij = const.: Einstein manifold Page 10 of 51

11 Birkhoff Theorem holds for geometric flows - Fu-Wen Shu and You-Gen Shen: Geometric flows and black holes, arxiv: gr-qc/ (Locally) any solutions of the Einstein equation are also the solutions of the Einstein hyperbolic geometric flow, which is relatively easier to deal with. Page 11 of 51

12 Complex geometric flows If the underlying manifold M is a complex manifold and the metric is Kähler, a ij 2 g ij 2 + b g ij ij + c ijg ij + 2R ij = 0, where a ij, b ij, c ij are certain smooth functions on M which may also depend on t. Page 12 of 51

13 3. Local Existence and Nonlinear Stability Local existence theorem (Dai, Kong and Liu, 2006) Let (M, gij 0 (x)) be a compact Riemannian manifold. Then there exists a constant h > 0 such that the initial value problem 2 g ij (x, t) = 2R ij(x, t), 2 g ij (x, 0) = g 0 ij (x), g ij (x, 0) = k0 ij (x), has a unique smooth solution g ij (x, t) on M [0, h], where kij 0 (x) is a symmetric tensor on M. Dai, Kong and Liu: Hyperbolic geometric flow (I): short-time existence and nonlinear stability Page 13 of 51

14 Method of proof: Two proofs. Strict hyperbolicity Suppose ĝ ij (x, t) is a solution of the hyperbolic geometric flow (1), and ψ t : M M is a family of diffeomorphisms of M. Let g ij (x, t) = ψ t ĝij(x, t) be the pull-back metrics. The evolution equations for the metrics g ij (x, t) are strictly hyperbolic. Page 14 of 51

15 Symmetrization of hyperbolic geometric flow Introducing the new unknowns g ij, h ij = g ij, g ij,k = g ij x k, we have Rewrite it as g ij = h ij, g kl g ij,k h ij = g kl h ij x k, = g kl g ij,k x l + H ij. A 0 (u) u = Aj (u) u x j + B(u), Page 15 of 51 where the matrices A 0, A j are symmetric.

16 Nonlinear stability Let M be a n-dimensional complete Riemannian manifold. Given symmetric tensors gij 0 and g1 ij 2 g ij (t, x) = 2R ij(t, x) 2 g ij (x, 0) = g ij (x) + εgij 0 (x), where ε > 0 is a small parameter. on M, we consider g ij (x, 0) = εg1 ij (x), Definition: The Ricci flat Riemannian metric g ij (x) possesses the (locally) nonlinear stability with respect to (gij 0, g1 ij ), if there exists a positive constant ε 0 = ε 0 (gij 0, g1 ij ) such that, for any ε (0, ε 0 ], the above initial value problem has a unique (local) smooth solution g ij (t, x); Page 16 of 51

17 g ij (x) is said to be (locally) nonlinear stable, if it possesses the (locally) nonlinear stability with respect to arbitrary symmetric tensors gij 0 (x) and g1 ij (x) with compact support. Nonlinear stability theorem (Dai, Kong and Liu, 2006) The flat metric g ij = δ ij of the Euclidean space R n with n 5 is nonlinearly stable. Remark: equations. The proof uses general theory of nonlinear wave Page 17 of 51

18 Method of proof Define a 2-tensor h g ij (x, t) = δ ij + h ij (x, t). Choose the elliptic coordinates {x i } around the origin in R n. It suffices to prove that the following Cauchy problem has a unique global smooth solution 2 h ij (x, t) = 2 k=1 h ij (x, 0) = εgij 0 (x), n 2 h ij x k x + H k ij ( h kl, h kl x p, h ij (x, 0) = εg1 ij (x). 2 ) h kl, x p x q Page 18 of 51

19 Einstein s hyperbolic geometric flow 2 g ij + 2R 2 ij + 1 g 2 gpq ij g pq g pq g ip g kq = 0 satisfy the null condition. Existence and uniqueness for small initial data hold. Einstein hyperbolic flow has nonlinear stability for all dimensions. Global existence and nonlinear stability for small initial data (Dai, Kong and Liu) Page 19 of 51

20 4. Wave Nature of Curvatures Under the hyperbolic geometric flow (1), the curvature tensors satisfy the following nonlinear wave equations 2 R ijkl 2 = R ijkl + (lower order terms), 2 R ij = R 2 ij + (lower order terms), 2 R = R + (lower order terms), 2 where is the Laplacian with respect to the evolving metric, the lower order terms only contain lower order derivatives of the curvatures. Page 20 of 51

21 Evolution equation for Riemannian curvature tensor Under the hyperbolic geometric flow (1), the Riemannian curvature tensor R ijkl satisfies the evolution equation 2 2R ijkl = R ijkl + 2 (B ijkl B ijlk B iljk + B ikjl ) g pq (R pjkl R qi + R ipkl R qj + R ijpl R qk + R ijkp R ql ) ( +2g pq Γp il Γq jk ) Γp jl Γq ik, where B ijkl = g pr g qs R piqj R rksl and is the Laplacian with respect to the evolving metric. Page 21 of 51

22 Evolution equation for Ricci curvature tensor Under the hyperbolic geometric flow (1), the Ricci curvature tensor satisfies 2 2R ik = R ik + 2g pr g qs R piqk R rs 2g pq R pi R qk ( +2g jl g pq Γp il Γq jk ) Γp jl Γq ik 2g jp g lq g pq R ijkl + 2g jp g rq g sl g pq g rs R ijkl Page 22 of 51

23 Evolution equation for scalar curvature Under the hyperbolic geometric flow (1), the scalar curvature satisfies 2 2R = R + 2 Ric 2 ( +2g ik g jl g pq Γp il Γq jk Γp jl Γq ik 2g ik g jp g lq g pq R ijkl 2g ip g kq g pq R ik + 4R ik g ip g rq g sk g pq ) g rs Page 23 of 51

24 5. Exact Solutions and Birkhoff theorem 5.1. Exact solutions with the Einstein initial metrics Definition: (Einstein metric on manifold) A Riemannian metric g ij is called Einstein if R ij = λg ij for some constant λ. A smooth manifold M with an Einstein metric is called an Einstein manifold. If the initial metric g ij (0, x) is Ricci flat, i.e., R ij (0, x) = 0, then g ij (t, x) = g ij (0, x) is obviously a solution to the evolution equation (1). Therefore, any Ricci flat metric is a steady solution of the hyperbolic geometric flow (1). Page 24 of 51

25 If the initial metric is Einstein, that is, for some constant λ it holds R ij (0, x) = λg ij (0, x), x M, then the evolving metric under the hyperbolic geometric flow (1) will be steady state, or will expand homothetically for all time, or will shrink in a finite time. Note that we can choose suitable velocity to avoid singularity. Page 25 of 51

26 Let g ij (t, x) = ρ(t)g ij (0, x) By the definition of the Ricci tensor, one obtains Equation (1) becomes R ij (t, x) = R ij (0, x) = λg ij (0, x) 2 (ρ(t)g ij (0, x)) 2 = 2λg ij (0, x) This gives an ODE of second order d 2 ρ(t) dt 2 = 2λ One of the initial conditions is ρ(0) = 1, another one is assumed as ρ (0) = v. The solution is given by ρ(t) = λt 2 + vt + 1 Page 26 of 51

27 General solution formula is g ij (t, x) = ( λt 2 + vt + c)g ij (0, x) Remark: This is different from the Ricci flow! Case I: The initial metric is Ricci flat, i.e., λ = 0. In this case, ρ(t) = vt + 1. (4) If v = 0, then g ij (t, x) = g ij (0, x). This shows that g ij (t, x) = g ij (0, x) is stationary. Page 27 of 51

28 If v > 0, then g ij (t, x) = (1 + vt)g ij (0, x). This means that the evolving metric g ij (t, x) = ρ(t)g ij (0, x) exists and expands homothetically for all time, and the curvature will fall back to zero like 1 t. Notice that the evolving metric g ij (t, x) only goes back in time to v 1, when the metric explodes out of a single point in a big bang. If v < 0, then g ij (t, x) = (1 + vt)g ij (0, x). Thus, the evolving metric g ij (t, x) shrinks homothetically to a point as t T 0 = 1 v. Note that, when t T 0, the scalar curvature is asymptotic to 1 T 0 t. This phenomenon corresponds to the black hole in physics. Page 28 of 51

29 Case II: The initial metric has positive scalar curvature, i.e., λ > 0. In this case, the evolving metric will shrink (if v < 0) or first expands then shrink (if v > 0) under the hyperbolic flow by a time-dependent factor. Page 29 of 51

30 Case III: The initial metric has a negative scalar curvature, i.e., λ < 0. In this case, we divide into three cases to discuss: Case 1: v 2 + 4λ > 0. (a) v < 0: the evolving metric will shrink in a finite time under the hyperbolic flow by a time-dependent factor; (b) v > 0: the evolving metric g ij (t, x) = ρ(t)g ij (0, x) exists and expands homothetically for all time, and the curvature will fall back to zero like 1 t 2. Page 30 of 51

31 Case 2: v 2 + 4λ < 0. In this case, the evolving metric g ij (t, x) = ρ(t)g ij (0, x) exists and expands homothetically (if v > 0) or first shrinks then expands homothetically (if v < 0) for all time. The scalar curvature will fall back to zero like 1. t 2 Case 3: v 2 + 4λ = 0. If v > 0, then evolving metric g ij (t, x) = ρ(t)g ij (0, x) exists and expands homothetically for all time. In this case the scalar curvature will fall back to zero like 1 t 2. If v < 0, then the evolving metric g ij (t, x) shrinks homothetically to a point as t T = v 2λ > 0 and the scalar curvature is asymptotic to 1 T t. Page 31 of 51

32 Remark: A typical example of the Einstein metric is ds 2 = 1 1 κr 2dr2 + r 2 dθ 2 + r 2 sin 2 θdϕ 2, where κ is a constant taking its value 1, 0 or 1. It is easy to see that { } ds 2 = R 2 1 (t) + r 2 dθ 2 + r 2 sin 2 θdϕ 2 1 κr 2dr2 is a solution of the hyperbolic geometric flow (1), where R 2 (t) = 2κt 2 + c 1 t + c 2 in which c 1 and c 2 are two constants. This metric has interesting meaning in cosmology. Page 32 of 51

33 5.2. Exact solutions with axial symmetry Consider ds 2 = f(t, z)dz 2 t g(t, z) [ (dx µ(t, z)dy) 2 + g 2 (t, z))dy 2], where f, g are smooth functions with respect to variables. Since the coordinates x and y do not appear in the preceding metric formula, the coordinate vector fields x and y are Killing vector fields. The flow x (resp. y ) consists of the coordinate translations that send x to x + x (resp. y to y + y), leaving the other coordinates fixed. Roughly speaking, these isometries express the x-invariance (resp. y-invariance) of the model. The x-invariance and y-invariance show that the model possesses the z-axial symmetry. Page 33 of 51

34 Hyperbolic geometric flow gives g t = µ t = 0 where g z and µ z satisfy f = 1 [ g 2 2g 2 z + ] 1 µ2 z + g 4µ2 z (c 1t + c 2 ), gg 2 z gg zµ zz µ 1 z + g 2 z + µ2 z = 0 Birkhoff Theorem holds for axial-symmetric solutions! Page 34 of 51 Angle speed µ is independent of t!

35 6. Dissipative hyperbolic geometric flow Let M be an n-dimensional complete Riemannian manifold with Riemannian metric g ij. Consider the hyperbolic geometric flow 2 g ij 2 = 2R ij + 2g pq g ip ( c + 1 n 1 g jq ( g pq g pq + ) ( d 2g pq g pq n 1 g pq g pq ) gij + ) for a family of Riemannian metrics g ij (t) on M, where c and d are arbitrary constants. g ij Page 35 of 51 This equation also has strong feature of Ricci flow.

36 By calculations, we obtain the following evolution equation of the scalar curvature R with respect to the metric g ij (x, t), 2 R = R + 2 Ric ( c + 1 n 1 2g ik g jl g pq Γ p ij 8g ik Γq ip Γ p kq ( d 2g pq g pq ( g pq g pq Γ q kl ) n 1 ) R g pq 2g ik g jl g pq Γ p ik 8g ik Γp ip Γ q kq g pq ) Γ q jl + 8g ik Γq pq R+ Γ p ik Page 36 of 51

37 Introduce and y = g pq g pq z = g pq g rs g pr { } gpq = T r g g qs Then we have proved the following = g pq y = 2R n 2 n 1 y2 + dy 1 n 1 z + cn Dissipative Hyperbolic Geometric Flow - Dai, Kong and Liu, Page 37 of 51

38 7. Riemann surfaces 7.1. Global existence Consider the evolution of a Riemannian metric g ij on a complete non-compact surface M under the hyperbolic geometric flow equation 2 g ij = 2R 2 ij. Let us consider the case R 2 with the following initial metric t = 0 : ds 2 = u 0 (x)(dx 2 + dy 2 ), where u 0 (x) is a smooth function with bounded C 2 norm and satisfies 0 < m u 0 (x) M <, in which m, M are two positive constants. Page 38 of 51

39 Theorem 1: (Kong and Liu, 2007) Given the above initial metric, for any smooth function u 1 (x) satisfying (1) u 1 (x) has bounded C 1 norm; (2) it holds that u 1 (x) u 0 (x), x R, u0 (x) the Cauchy problem 2 g ij 2 = 2R ij (i, j = 1, 2), t = 0 : g ij = u 0 (x)δ ij, g ij = u 1 (x)δ ij (i, j = 1, 2) has a unique smooth solution for all time, and the solution metric g ij possesses the form g ij = u(t, x)δ ij. Page 39 of 51

40 Theorem 2: (Kong and Liu, 2007) Under the assumptions mentioned in Theorem 1, suppose that there exists a small positive constant ε such that u 1 (x) u 0 (x) u0 (x) + ε, x R, then the Cauchy problem has a unique smooth solution with the above form for all time, moreover the solution metric g ij converges to flat metric at an algebraic rate, where k 2 1 (1 + t) k is a positive constant depending on ε, M, the C 2 norm of u 0 and C 1 norm of u 1. Page 40 of 51

41 Method of proof. (1) Cauchy problem for a kind of nonlinear wave equation { utt ln u = 0, t = 0 : u = u 0 (x), u t = u 1 (x) In the present situation, { utt (ln u) xx = 0, t = 0 : u = u 0 (x), u t = u 1 (x) Page 41 of 51 Let φ = ln u, then the equation is reduced to φ tt e φ φ xx = φ 2 t.

42 (2) Quasilinear hyperbolic system Let v = φ t, w = φ x. Then Introduce Lemma: φ t = v, w t v x = 0, v t e φ w x = v 2 p = v + e φ 2 w, q = v e φ 2 w. p, q satisfy p t λp x = 1 4 {p2 + 3pq}, Page 42 of 51 q t + λq x = 1 4 {q2 + 3pq}, where λ = e φ 2.

43 Lemma: It holds that { pt (λp) x = pq, q t + (λq) x = pq. Let r = p x, s = q x. Lemma: r and s satisfy { rt λr x = 1 [(2q + 3p)r + 3ps], 4 s t + λs x = 1 [(2p + 3q)s + 3qr]. 4 Page 43 of 51

44 (3) Uniform estimates on p, q and r, s Maximum principle for hyperbolic systems (4) Global existence of HGF. (5) Estimate on R R = (ln u) xx u = 1 2 { (r s)e φ 2 + ( p q 2 ) 2 } 1 R(t, x) C (1 + t) min{2,c}, (t, x) R+ R.. Page 44 of 51

45 7.2. Formation of singularities Consider the metric t = 0 : ds 2 = u 0 (x)(dx 2 + dy 2 ). Without loss of generality, we assume that there exists a point x 0 R such that u 0 (x 0) < 0. Page 45 of 51 We choose u 1 (x) u 0 (x) u0 (x), x R.

46 Theorem 3: For the initial data u 0 (x) and u 1 (x) mentioned above, the Cauchy problem has a unique smooth solution only in [0, T max ) R, where 4 T max = inf x R {p 0 (x)} where p 0 (x) = 2u 0 (x)u (x). Moreover, there exists some point ( T max, x ) such that the scalar curvature R(t, x) satisfies R(t, x) as (t, x) ( T max, x ). By choosing suitable velocity, we may avoid doing surgery! We have precise control on Blowup set. Page 46 of 51 Solution character close to blowup point.

47 8. Some results related to HGF 8.1. Time-periodic solutions of Einstein equations Einstein equation: G µν R µν 1 2 g µνr = 0 A new solution: Breather (1) time periodic space-time, (2) asymptotically flat in space. Page 47 of 51 Physical characters: Time periodic solution, asymptotical flatness of t-sections, naked singularity (r = 0).

48 8.2. Hyperbolic mean curvature flow for hypersurfaces 2 X = H n 2 where X = X(t, x 1,, x n ), H mean curvature, n out normal vector. Our recent results: (He-Kong-Liu) Extrinsic flow: short time existence, nonlinear stability, relations between the HGF and the HMCF flow equations for extremal hypersurfaces in space-time. Page 48 of 51 Intrinsic HGF flow and extrinsic HMCF flow, both have interesting physical meaning.

49 9. Open Problems Yau has several conjectures about complete noncompact manifolds with nonnegative curvature. HGF may provide a promising way to approach these conjectures. Hyperbolic PDE has advantage in dealing with noncompact manifolds. Given initial metric gij 0 and symmetric tensor k ij, study the singularity of the Einstein HGF with these initial data. Singularities of Einstein equation belong to these singularities. This should be related to the Penrose cosmic censorship conjecture. Page 49 of 51

50 HGF on general manifolds, global existence and singularity. HGF has global solution for small initial data. Choosing velocity to avoid surgery to get geometric structure. There was an approach of geometrization by using Einstein equation which is too complicated to use. May HGF shed some light on this approach, by adjusting speed to avoid surgery? Hyperbolic Yang-Mills flow? Page 50 of 51

51 Thank You All! Page 51 of 51

Hyperbolic Geometric Flow

Hyperbolic Geometric Flow Hyperbolic Geometric Flow Kefeng Liu Zhejiang University UCLA Page 1 of 41 Outline Introduction Hyperbolic geometric flow Local existence and nonlinear stability Wave character of metrics and curvatures

More information

Wave Character of Metrics and Hyperbolic Geometric Flow

Wave Character of Metrics and Hyperbolic Geometric Flow Wave Character of Metrics and Hyperbolic Geometric Flow De-Xin Kon and Kefen Liu 2 Center of Mathematical Sciences, Zhejian University, Hanzhou 327, China 2 Department of Mathematics, University of California

More information

An Overview of Mathematical General Relativity

An Overview of Mathematical General Relativity An Overview of Mathematical General Relativity José Natário (Instituto Superior Técnico) Geometria em Lisboa, 8 March 2005 Outline Lorentzian manifolds Einstein s equation The Schwarzschild solution Initial

More information

Geometric inequalities for black holes

Geometric inequalities for black holes Geometric inequalities for black holes Sergio Dain FaMAF-Universidad Nacional de Córdoba, CONICET, Argentina. 3 August, 2012 Einstein equations (vacuum) The spacetime is a four dimensional manifold M with

More information

An introduction to General Relativity and the positive mass theorem

An introduction to General Relativity and the positive mass theorem An introduction to General Relativity and the positive mass theorem National Center for Theoretical Sciences, Mathematics Division March 2 nd, 2007 Wen-ling Huang Department of Mathematics University of

More information

Singularity formation in black hole interiors

Singularity formation in black hole interiors Singularity formation in black hole interiors Grigorios Fournodavlos DPMMS, University of Cambridge Heraklion, Crete, 16 May 2018 Outline The Einstein equations Examples Initial value problem Large time

More information

Hyperbolic Gradient Flow: Evolution of Graphs in R n+1

Hyperbolic Gradient Flow: Evolution of Graphs in R n+1 Hyperbolic Gradient Flow: Evolution of Graphs in R n+1 De-Xing Kong and Kefeng Liu Dedicated to Professor Yi-Bing Shen on the occasion of his 70th birthday Abstract In this paper we introduce a new geometric

More information

A Brief Introduction to Mathematical Relativity

A Brief Introduction to Mathematical Relativity A Brief Introduction to Mathematical Relativity Arick Shao Imperial College London Arick Shao (Imperial College London) Mathematical Relativity 1 / 31 Special Relativity Postulates and Definitions Einstein

More information

ON THE FOLIATION OF SPACE-TIME BY CONSTANT MEAN CURVATURE HYPERSURFACES

ON THE FOLIATION OF SPACE-TIME BY CONSTANT MEAN CURVATURE HYPERSURFACES ON THE FOLIATION OF SPACE-TIME BY CONSTANT MEAN CURVATURE HYPERSURFACES CLAUS GERHARDT Abstract. We prove that the mean curvature τ of the slices given by a constant mean curvature foliation can be used

More information

Rigidity and Non-rigidity Results on the Sphere

Rigidity and Non-rigidity Results on the Sphere Rigidity and Non-rigidity Results on the Sphere Fengbo Hang Xiaodong Wang Department of Mathematics Michigan State University Oct., 00 1 Introduction It is a simple consequence of the maximum principle

More information

Riemannian Curvature Functionals: Lecture I

Riemannian Curvature Functionals: Lecture I Riemannian Curvature Functionals: Lecture I Jeff Viaclovsky Park City athematics Institute July 16, 2013 Overview of lectures The goal of these lectures is to gain an understanding of critical points of

More information

arxiv:math/ v1 [math.dg] 19 Nov 2004

arxiv:math/ v1 [math.dg] 19 Nov 2004 arxiv:math/04426v [math.dg] 9 Nov 2004 REMARKS ON GRADIENT RICCI SOLITONS LI MA Abstract. In this paper, we study the gradient Ricci soliton equation on a complete Riemannian manifold. We show that under

More information

Global properties of solutions to the Einstein-matter equations

Global properties of solutions to the Einstein-matter equations Global properties of solutions to the Einstein-matter equations Makoto Narita Okinawa National College of Technology 12/Nov./2012 @JGRG22, Tokyo Singularity theorems and two conjectures Theorem 1 (Penrose)

More information

Mass, quasi-local mass, and the flow of static metrics

Mass, quasi-local mass, and the flow of static metrics Mass, quasi-local mass, and the flow of static metrics Eric Woolgar Dept of Mathematical and Statistical Sciences University of Alberta ewoolgar@math.ualberta.ca http://www.math.ualberta.ca/~ewoolgar Nov

More information

The stability of Kerr-de Sitter black holes

The stability of Kerr-de Sitter black holes The stability of Kerr-de Sitter black holes András Vasy (joint work with Peter Hintz) July 2018, Montréal This talk is about the stability of Kerr-de Sitter (KdS) black holes, which are certain Lorentzian

More information

Causality, hyperbolicity, and shock formation in Lovelock theories

Causality, hyperbolicity, and shock formation in Lovelock theories Causality, hyperbolicity, and shock formation in Lovelock theories Harvey Reall DAMTP, Cambridge University HSR, N. Tanahashi and B. Way, arxiv:1406.3379, 1409.3874 G. Papallo, HSR arxiv:1508.05303 Lovelock

More information

OLIVIA MILOJ March 27, 2006 ON THE PENROSE INEQUALITY

OLIVIA MILOJ March 27, 2006 ON THE PENROSE INEQUALITY OLIVIA MILOJ March 27, 2006 ON THE PENROSE INEQUALITY Abstract Penrose presented back in 1973 an argument that any part of the spacetime which contains black holes with event horizons of area A has total

More information

Time-Periodic Solutions of the Einstein s Field Equations II: Geometric Singularities

Time-Periodic Solutions of the Einstein s Field Equations II: Geometric Singularities Science in China Series A: Mathematics 2009 Vol. 52 No. 11 1 16 www.scichina.com www.springerlink.com Time-Periodic Solutions of the Einstein s Field Equations II: Geometric Singularities KONG DeXing 1,

More information

On the cosmic no-hair conjecture in the Einstein-Vlasov setting

On the cosmic no-hair conjecture in the Einstein-Vlasov setting On the cosmic no-hair conjecture in the Einstein-Vlasov setting KTH, Royal Institute of Technology, Stockholm Recent Advances in Mathematical General Relativity Institut Henri Poincaré, Paris September

More information

Quasi-local Mass in General Relativity

Quasi-local Mass in General Relativity Quasi-local Mass in General Relativity Shing-Tung Yau Harvard University For the 60th birthday of Gary Horowtiz U. C. Santa Barbara, May. 1, 2015 This talk is based on joint work with Po-Ning Chen and

More information

On the BCOV Conjecture

On the BCOV Conjecture Department of Mathematics University of California, Irvine December 14, 2007 Mirror Symmetry The objects to study By Mirror Symmetry, for any CY threefold, there should be another CY threefold X, called

More information

Section 2. Basic formulas and identities in Riemannian geometry

Section 2. Basic formulas and identities in Riemannian geometry Section 2. Basic formulas and identities in Riemannian geometry Weimin Sheng and 1. Bianchi identities The first and second Bianchi identities are R ijkl + R iklj + R iljk = 0 R ijkl,m + R ijlm,k + R ijmk,l

More information

A COMPLETE PROOF OF THE POINCARÉ AND GEOMETRIZATION CONJECTURES APPLICATION OF THE HAMILTON-PERELMAN THEORY OF THE RICCI FLOW CONTENTS

A COMPLETE PROOF OF THE POINCARÉ AND GEOMETRIZATION CONJECTURES APPLICATION OF THE HAMILTON-PERELMAN THEORY OF THE RICCI FLOW CONTENTS ASIAN J. MATH. c 006 International Press Vol. 10, No., pp. 165 49, June 006 001 A COMPLETE PROOF OF THE POINCARÉ AND GEOMETRIZATION CONJECTURES APPLICATION OF THE HAMILTON-PERELMAN THEORY OF THE RICCI

More information

Non-linear stability of Kerr de Sitter black holes

Non-linear stability of Kerr de Sitter black holes Non-linear stability of Kerr de Sitter black holes Peter Hintz 1 (joint with András Vasy 2 ) 1 Miller Institute, University of California, Berkeley 2 Stanford University Geometric Analysis and PDE Seminar

More information

RIGIDITY OF STATIONARY BLACK HOLES WITH SMALL ANGULAR MOMENTUM ON THE HORIZON

RIGIDITY OF STATIONARY BLACK HOLES WITH SMALL ANGULAR MOMENTUM ON THE HORIZON RIGIDITY OF STATIONARY BLACK HOLES WITH SMALL ANGULAR MOMENTUM ON THE HORIZON S. ALEXAKIS, A. D. IONESCU, AND S. KLAINERMAN Abstract. We prove a black hole rigidity result for slowly rotating stationary

More information

arxiv: v1 [math.dg] 1 Jul 2014

arxiv: v1 [math.dg] 1 Jul 2014 Constrained matrix Li-Yau-Hamilton estimates on Kähler manifolds arxiv:1407.0099v1 [math.dg] 1 Jul 014 Xin-An Ren Sha Yao Li-Ju Shen Guang-Ying Zhang Department of Mathematics, China University of Mining

More information

Geometry of Ricci Solitons

Geometry of Ricci Solitons Geometry of Ricci Solitons H.-D. Cao, Lehigh University LMU, Munich November 25, 2008 1 Ricci Solitons A complete Riemannian (M n, g ij ) is a Ricci soliton if there exists a smooth function f on M such

More information

Dissipative Hyperbolic Geometric Flow on Modified Riemann Extensions

Dissipative Hyperbolic Geometric Flow on Modified Riemann Extensions Communications in Mathematics Applications Vol. 6, No. 2, pp. 55 60, 2015 ISSN 0975-8607 (online; 0976-5905 (print Published by RGN Publications http://www.rgnpublications.com Dissipative Hyperbolic Geometric

More information

Differential Harnack Inequalities and the Ricci Flow

Differential Harnack Inequalities and the Ricci Flow This is a preprint of the book published in ES Series Lect. ath. 26 DOI: 1.4171/3 Differential Harnack Inequalities and the Ricci Flow Reto üller Note: This is a preliminary version of my book. In particular,

More information

Rigidity of Black Holes

Rigidity of Black Holes Rigidity of Black Holes Sergiu Klainerman Princeton University February 24, 2011 Rigidity of Black Holes PREAMBLES I, II PREAMBLE I General setting Assume S B two different connected, open, domains and

More information

Some Variations on Ricci Flow. Some Variations on Ricci Flow CARLO MANTEGAZZA

Some Variations on Ricci Flow. Some Variations on Ricci Flow CARLO MANTEGAZZA Some Variations on Ricci Flow CARLO MANTEGAZZA Ricci Solitons and other Einstein Type Manifolds A Weak Flow Tangent to Ricci Flow The Ricci flow At the end of 70s beginning of 80s the study of Ricci and

More information

5.2 The Levi-Civita Connection on Surfaces. 1 Parallel transport of vector fields on a surface M

5.2 The Levi-Civita Connection on Surfaces. 1 Parallel transport of vector fields on a surface M 5.2 The Levi-Civita Connection on Surfaces In this section, we define the parallel transport of vector fields on a surface M, and then we introduce the concept of the Levi-Civita connection, which is also

More information

COMPLETE GRADIENT SHRINKING RICCI SOLITONS WITH PINCHED CURVATURE

COMPLETE GRADIENT SHRINKING RICCI SOLITONS WITH PINCHED CURVATURE COMPLETE GRADIENT SHRINKING RICCI SOLITONS WITH PINCHED CURVATURE GIOVANNI CATINO Abstract. We prove that any n dimensional complete gradient shrinking Ricci soliton with pinched Weyl curvature is a finite

More information

Quasi-local mass and isometric embedding

Quasi-local mass and isometric embedding Quasi-local mass and isometric embedding Mu-Tao Wang, Columbia University September 23, 2015, IHP Recent Advances in Mathematical General Relativity Joint work with Po-Ning Chen and Shing-Tung Yau. The

More information

A Remark on -harmonic Functions on Riemannian Manifolds

A Remark on -harmonic Functions on Riemannian Manifolds Electronic Journal of ifferential Equations Vol. 1995(1995), No. 07, pp. 1-10. Published June 15, 1995. ISSN 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp (login: ftp) 147.26.103.110

More information

Mathematical Relativity, Spring 2017/18 Instituto Superior Técnico

Mathematical Relativity, Spring 2017/18 Instituto Superior Técnico Mathematical Relativity, Spring 2017/18 Instituto Superior Técnico 1. Starting from R αβµν Z ν = 2 [α β] Z µ, deduce the components of the Riemann curvature tensor in terms of the Christoffel symbols.

More information

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3 Syllabus May 3, 2017 Contents 1 Special relativity 1 2 Differential geometry 3 3 General Relativity 13 3.1 Physical Principles.......................................... 13 3.2 Einstein s Equation..........................................

More information

The Geometrization Theorem

The Geometrization Theorem The Geometrization Theorem Matthew D. Brown Wednesday, December 19, 2012 In this paper, we discuss the Geometrization Theorem, formerly Thurston s Geometrization Conjecture, which is essentially the statement

More information

Stability and Instability of Black Holes

Stability and Instability of Black Holes Stability and Instability of Black Holes Stefanos Aretakis September 24, 2013 General relativity is a successful theory of gravitation. Objects of study: (4-dimensional) Lorentzian manifolds (M, g) which

More information

Newman-Penrose formalism in higher dimensions

Newman-Penrose formalism in higher dimensions Newman-Penrose formalism in higher dimensions V. Pravda various parts in collaboration with: A. Coley, R. Milson, M. Ortaggio and A. Pravdová Introduction - algebraic classification in four dimensions

More information

NOTE ON ASYMPTOTICALLY CONICAL EXPANDING RICCI SOLITONS

NOTE ON ASYMPTOTICALLY CONICAL EXPANDING RICCI SOLITONS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9939(XX)0000-0 NOTE ON ASYMPTOTICALLY CONICAL EXPANDING RICCI SOLITONS JOHN LOTT AND PATRICK WILSON (Communicated

More information

Perelman s Dilaton. Annibale Magni (TU-Dortmund) April 26, joint work with M. Caldarelli, G. Catino, Z. Djadly and C.

Perelman s Dilaton. Annibale Magni (TU-Dortmund) April 26, joint work with M. Caldarelli, G. Catino, Z. Djadly and C. Annibale Magni (TU-Dortmund) April 26, 2010 joint work with M. Caldarelli, G. Catino, Z. Djadly and C. Mantegazza Topics. Topics. Fundamentals of the Ricci flow. Topics. Fundamentals of the Ricci flow.

More information

The Ricci Flow Approach to 3-Manifold Topology. John Lott

The Ricci Flow Approach to 3-Manifold Topology. John Lott The Ricci Flow Approach to 3-Manifold Topology John Lott Two-dimensional topology All of the compact surfaces that anyone has ever seen : These are all of the compact connected oriented surfaces without

More information

An exact solution for 2+1 dimensional critical collapse

An exact solution for 2+1 dimensional critical collapse An exact solution for + dimensional critical collapse David Garfinkle Department of Physics, Oakland University, Rochester, Michigan 839 We find an exact solution in closed form for the critical collapse

More information

Global stability problems in General Relativity

Global stability problems in General Relativity Global stability problems in General Relativity Peter Hintz with András Vasy Murramarang March 21, 2018 Einstein vacuum equations Ric(g) + Λg = 0. g: Lorentzian metric (+ ) on 4-manifold M Λ R: cosmological

More information

The Stability of the Irrotational Euler-Einstein System with a Positive Cosmological Constant

The Stability of the Irrotational Euler-Einstein System with a Positive Cosmological Constant The Stability of the Irrotational Euler-Einstein System with a Positive Cosmological Constant Jared Speck & Igor Rodnianski jspeck@math.princeton.edu University of Cambridge & Princeton University October

More information

Two simple ideas from calculus applied to Riemannian geometry

Two simple ideas from calculus applied to Riemannian geometry Calibrated Geometries and Special Holonomy p. 1/29 Two simple ideas from calculus applied to Riemannian geometry Spiro Karigiannis karigiannis@math.uwaterloo.ca Department of Pure Mathematics, University

More information

Riemannian Curvature Functionals: Lecture III

Riemannian Curvature Functionals: Lecture III Riemannian Curvature Functionals: Lecture III Jeff Viaclovsky Park City Mathematics Institute July 18, 2013 Lecture Outline Today we will discuss the following: Complete the local description of the moduli

More information

Out of equilibrium dynamics and Robinson-Trautman spacetimes. Kostas Skenderis

Out of equilibrium dynamics and Robinson-Trautman spacetimes. Kostas Skenderis Out of equilibrium dynamics and STAG CH RESEARCH ER C TE CENTER NINTH CRETE REGIONAL MEETING IN STRING THEORY In memoriam: Ioannis Bakas Kolymbari, July 13, 2017 Out of equilibrium dynamics and Outline

More information

Elements of differential geometry

Elements of differential geometry Elements of differential geometry R.Beig (Univ. Vienna) ESI-EMS-IAMP School on Mathematical GR, 28.7. - 1.8. 2014 1. tensor algebra 2. manifolds, vector and covector fields 3. actions under diffeos and

More information

Energy method for wave equations

Energy method for wave equations Energy method for wave equations Willie Wong Based on commit 5dfb7e5 of 2017-11-06 13:29 Abstract We give an elementary discussion of the energy method (and particularly the vector field method) in the

More information

New first-order formulation for the Einstein equations

New first-order formulation for the Einstein equations PHYSICAL REVIEW D 68, 06403 2003 New first-order formulation for the Einstein equations Alexander M. Alekseenko* School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455, USA Douglas

More information

New representation of the field equations looking for a new vacuum solution for QMAG

New representation of the field equations looking for a new vacuum solution for QMAG New representation of the field equations looking for a new vacuum solution for QMAG Elvis Baraković University of Tuzla Department of Mathematics 19. rujna 2012. Structure of presentation Structure of

More information

Localizing solutions of the Einstein equations

Localizing solutions of the Einstein equations Localizing solutions of the Einstein equations Richard Schoen UC, Irvine and Stanford University - General Relativity: A Celebration of the 100th Anniversary, IHP - November 20, 2015 Plan of Lecture The

More information

Overview of the proof of the Bounded L 2 Curvature Conjecture. Sergiu Klainerman Igor Rodnianski Jeremie Szeftel

Overview of the proof of the Bounded L 2 Curvature Conjecture. Sergiu Klainerman Igor Rodnianski Jeremie Szeftel Overview of the proof of the Bounded L 2 Curvature Conjecture Sergiu Klainerman Igor Rodnianski Jeremie Szeftel Department of Mathematics, Princeton University, Princeton NJ 8544 E-mail address: seri@math.princeton.edu

More information

UNIVERSITY OF DUBLIN

UNIVERSITY OF DUBLIN UNIVERSITY OF DUBLIN TRINITY COLLEGE JS & SS Mathematics SS Theoretical Physics SS TSM Mathematics Faculty of Engineering, Mathematics and Science school of mathematics Trinity Term 2015 Module MA3429

More information

Quasi-local Mass and Momentum in General Relativity

Quasi-local Mass and Momentum in General Relativity Quasi-local Mass and Momentum in General Relativity Shing-Tung Yau Harvard University Stephen Hawking s 70th Birthday University of Cambridge, Jan. 7, 2012 I met Stephen Hawking first time in 1978 when

More information

Formation of Higher-dimensional Topological Black Holes

Formation of Higher-dimensional Topological Black Holes Formation of Higher-dimensional Topological Black Holes José Natário (based on arxiv:0906.3216 with Filipe Mena and Paul Tod) CAMGSD, Department of Mathematics Instituto Superior Técnico Talk at Granada,

More information

The Uses of Ricci Flow. Matthew Headrick Stanford University

The Uses of Ricci Flow. Matthew Headrick Stanford University The Uses of Ricci Flow Matthew Headrick Stanford University String theory enjoys a rich interplay between 2-dimensional quantum field theory gravity and geometry The most direct connection is through two-dimensional

More information

Exact Solutions of the Einstein Equations

Exact Solutions of the Einstein Equations Notes from phz 6607, Special and General Relativity University of Florida, Fall 2004, Detweiler Exact Solutions of the Einstein Equations These notes are not a substitute in any manner for class lectures.

More information

Exotica or the failure of the strong cosmic censorship in four dimensions

Exotica or the failure of the strong cosmic censorship in four dimensions Exotica or the failure of the strong cosmic censorship in four dimensions Budapest University of Technology and Economics Department of Geometry HUNGARY Stará Lesná, Slovakia, 20 August 2015 The meaning

More information

Higher dimensional Kerr-Schild spacetimes 1

Higher dimensional Kerr-Schild spacetimes 1 Higher dimensional Kerr-Schild spacetimes 1 Marcello Ortaggio Institute of Mathematics Academy of Sciences of the Czech Republic Bremen August 2008 1 Joint work with V. Pravda and A. Pravdová, arxiv:0808.2165

More information

Myths, Facts and Dreams in General Relativity

Myths, Facts and Dreams in General Relativity Princeton university November, 2010 MYTHS (Common Misconceptions) MYTHS (Common Misconceptions) 1 Analysts prove superfluous existence results. MYTHS (Common Misconceptions) 1 Analysts prove superfluous

More information

Faculty of Engineering, Mathematics and Science School of Mathematics

Faculty of Engineering, Mathematics and Science School of Mathematics Faculty of Engineering, Mathematics and Science School of Mathematics JS & SS Mathematics SS Theoretical Physics SS TSM Mathematics Module MA3429: Differential Geometry I Trinity Term 2018???, May??? SPORTS

More information

Einstein Finsler Metrics and Ricci flow

Einstein Finsler Metrics and Ricci flow Einstein Finsler Metrics and Ricci flow Nasrin Sadeghzadeh University of Qom, Iran Jun 2012 Outline - A Survey of Einstein metrics, - A brief explanation of Ricci flow and its extension to Finsler Geometry,

More information

CENTROAFFINE HYPEROVALOIDS WITH EINSTEIN METRIC

CENTROAFFINE HYPEROVALOIDS WITH EINSTEIN METRIC CENTROAFFINE HYPEROVALOIDS WITH EINSTEIN METRIC Udo Simon November 2015, Granada We study centroaffine hyperovaloids with centroaffine Einstein metric. We prove: the hyperovaloid must be a hyperellipsoid..

More information

Notation : M a closed (= compact boundaryless) orientable 3-dimensional manifold

Notation : M a closed (= compact boundaryless) orientable 3-dimensional manifold Overview John Lott Notation : M a closed (= compact boundaryless) orientable 3-dimensional manifold Conjecture. (Poincaré, 1904) If M is simply connected then it is diffeomorphic to the three-sphere S

More information

Rigidity of outermost MOTS: the initial data version

Rigidity of outermost MOTS: the initial data version Gen Relativ Gravit (2018) 50:32 https://doi.org/10.1007/s10714-018-2353-9 RESEARCH ARTICLE Rigidity of outermost MOTS: the initial data version Gregory J. Galloway 1 Received: 9 December 2017 / Accepted:

More information

Introduction. Hamilton s Ricci flow and its early success

Introduction. Hamilton s Ricci flow and its early success Introduction In this book we compare the linear heat equation on a static manifold with the Ricci flow which is a nonlinear heat equation for a Riemannian metric g(t) on M and with the heat equation on

More information

Non-existence of time-periodic dynamics in general relativity

Non-existence of time-periodic dynamics in general relativity Non-existence of time-periodic dynamics in general relativity Volker Schlue University of Toronto University of Miami, February 2, 2015 Outline 1 General relativity Newtonian mechanics Self-gravitating

More information

The volume growth of complete gradient shrinking Ricci solitons

The volume growth of complete gradient shrinking Ricci solitons arxiv:0904.0798v [math.dg] Apr 009 The volume growth of complete gradient shrinking Ricci solitons Ovidiu Munteanu Abstract We prove that any gradient shrinking Ricci soliton has at most Euclidean volume

More information

arxiv:gr-qc/ v2 14 Apr 2004

arxiv:gr-qc/ v2 14 Apr 2004 TRANSITION FROM BIG CRUNCH TO BIG BANG IN BRANE COSMOLOGY arxiv:gr-qc/0404061v 14 Apr 004 CLAUS GERHARDT Abstract. We consider a brane N = I S 0, where S 0 is an n- dimensional space form, not necessarily

More information

Hyperbolic Geometry on Geometric Surfaces

Hyperbolic Geometry on Geometric Surfaces Mathematics Seminar, 15 September 2010 Outline Introduction Hyperbolic geometry Abstract surfaces The hemisphere model as a geometric surface The Poincaré disk model as a geometric surface Conclusion Introduction

More information

A brief introduction to Semi-Riemannian geometry and general relativity. Hans Ringström

A brief introduction to Semi-Riemannian geometry and general relativity. Hans Ringström A brief introduction to Semi-Riemannian geometry and general relativity Hans Ringström May 5, 2015 2 Contents 1 Scalar product spaces 1 1.1 Scalar products...................................... 1 1.2 Orthonormal

More information

Uniqueness of weak solutions to the Ricci flow

Uniqueness of weak solutions to the Ricci flow Uniqueness of weak solutions to the Ricci flow Richard H Bamler (based on joint work with Bruce Kleiner, NYU) September 2017 Richard H Bamler (based on joint work with Bruce Kleiner, Uniqueness NYU) (Berkeley)

More information

Black Holes and Thermodynamics I: Classical Black Holes

Black Holes and Thermodynamics I: Classical Black Holes Black Holes and Thermodynamics I: Classical Black Holes Robert M. Wald General references: R.M. Wald General Relativity University of Chicago Press (Chicago, 1984); R.M. Wald Living Rev. Rel. 4, 6 (2001).

More information

RICCI SOLITONS ON COMPACT KAHLER SURFACES. Thomas Ivey

RICCI SOLITONS ON COMPACT KAHLER SURFACES. Thomas Ivey RICCI SOLITONS ON COMPACT KAHLER SURFACES Thomas Ivey Abstract. We classify the Kähler metrics on compact manifolds of complex dimension two that are solitons for the constant-volume Ricci flow, assuming

More information

BERGMAN KERNEL ON COMPACT KÄHLER MANIFOLDS

BERGMAN KERNEL ON COMPACT KÄHLER MANIFOLDS BERGMAN KERNEL ON COMPACT KÄHLER MANIFOLDS SHOO SETO Abstract. These are the notes to an expository talk I plan to give at MGSC on Kähler Geometry aimed for beginning graduate students in hopes to motivate

More information

General Birkhoff s Theorem

General Birkhoff s Theorem General Birkhoff s Theorem Amir H. Abbassi Department of Physics, School of Sciences, Tarbiat Modarres University, P.O.Box 14155-4838, Tehran, I.R.Iran E-mail: ahabbasi@net1cs.modares.ac.ir Abstract Space-time

More information

Holonomy groups. Thomas Leistner. School of Mathematical Sciences Colloquium University of Adelaide, May 7, /15

Holonomy groups. Thomas Leistner. School of Mathematical Sciences Colloquium University of Adelaide, May 7, /15 Holonomy groups Thomas Leistner School of Mathematical Sciences Colloquium University of Adelaide, May 7, 2010 1/15 The notion of holonomy groups is based on Parallel translation Let γ : [0, 1] R 2 be

More information

On Isotropic Coordinates and Einstein s Gravitational Field

On Isotropic Coordinates and Einstein s Gravitational Field July 006 PROGRESS IN PHYSICS Volume 3 On Isotropic Coordinates and Einstein s Gravitational Field Stephen J. Crothers Queensland Australia E-mail: thenarmis@yahoo.com It is proved herein that the metric

More information

ON THE GROUND STATE OF QUANTUM LAYERS

ON THE GROUND STATE OF QUANTUM LAYERS ON THE GROUND STATE OF QUANTUM LAYERS ZHIQIN LU 1. Introduction The problem is from mesoscopic physics: let p : R 3 be an embedded surface in R 3, we assume that (1) is orientable, complete, but non-compact;

More information

A local characterization for constant curvature metrics in 2-dimensional Lorentz manifolds

A local characterization for constant curvature metrics in 2-dimensional Lorentz manifolds A local characterization for constant curvature metrics in -dimensional Lorentz manifolds Ivo Terek Couto Alexandre Lymberopoulos August 9, 8 arxiv:65.7573v [math.dg] 4 May 6 Abstract In this paper we

More information

The linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge

The linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge The linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge Imperial College London Mathematical Relativity Seminar, Université Pierre et Marie Curie,

More information

Asymptotic Behavior of Marginally Trapped Tubes

Asymptotic Behavior of Marginally Trapped Tubes Asymptotic Behavior of Marginally Trapped Tubes Catherine Williams January 29, 2009 Preliminaries general relativity General relativity says that spacetime is described by a Lorentzian 4-manifold (M, g)

More information

DIFFERENTIAL GEOMETRY, LECTURE 16-17, JULY 14-17

DIFFERENTIAL GEOMETRY, LECTURE 16-17, JULY 14-17 DIFFERENTIAL GEOMETRY, LECTURE 16-17, JULY 14-17 6. Geodesics A parametrized line γ : [a, b] R n in R n is straight (and the parametrization is uniform) if the vector γ (t) does not depend on t. Thus,

More information

MATHEMATICAL GENERAL RELATIVITY: A SAMPLER

MATHEMATICAL GENERAL RELATIVITY: A SAMPLER MATHEMATICAL GENERAL RELATIVITY: A SAMPLER PIOTR T. CHRUŚCIEL, GREGORY J. GALLOWAY, AND DANIEL POLLACK Abstract. We provide an introduction to selected significant advances in the mathematical understanding

More information

Geometric inequalities for black holes

Geometric inequalities for black holes Geometric inequalities for black holes Sergio Dain FaMAF-Universidad Nacional de Córdoba, CONICET, Argentina. 26 July, 2013 Geometric inequalities Geometric inequalities have an ancient history in Mathematics.

More information

A non-strictly hyperbolic system for the Einstein equations with arbitrary lapse and shift

A non-strictly hyperbolic system for the Einstein equations with arbitrary lapse and shift IFP-UNC-518 TAR-UNC-054 gr-qc/9607006 A non-strictly hyperbolic system for the Einstein equations with arbitrary lapse and shift Andrew Abrahams, Arlen Anderson, Yvonne Choquet-Bruhat[*] and James W. York,

More information

Geometry of Shrinking Ricci Solitons

Geometry of Shrinking Ricci Solitons Geometry of Shrinking Ricci Solitons Huai-Dong Cao Lehigh University The Conference on Geometry in honor of Prof. S.-T. Yau s 60th birthday Warsaw, April 7, 2009 1 Ricci Solitons A complete Riemannian

More information

A NOTE ON FISCHER-MARSDEN S CONJECTURE

A NOTE ON FISCHER-MARSDEN S CONJECTURE PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 3, March 1997, Pages 901 905 S 0002-9939(97)03635-6 A NOTE ON FISCHER-MARSDEN S CONJECTURE YING SHEN (Communicated by Peter Li) Abstract.

More information

MATH Final Project Mean Curvature Flows

MATH Final Project Mean Curvature Flows MATH 581 - Final Project Mean Curvature Flows Olivier Mercier April 30, 2012 1 Introduction The mean curvature flow is part of the bigger family of geometric flows, which are flows on a manifold associated

More information

SOME ALMOST COMPLEX STRUCTURES WITH NORDEN METRIC ON THE TANGENT BUNDLE OF A SPACE FORM

SOME ALMOST COMPLEX STRUCTURES WITH NORDEN METRIC ON THE TANGENT BUNDLE OF A SPACE FORM ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII AL.I.CUZA IAŞI Tomul XLVI, s.i a, Matematică, 2000, f.1. SOME ALMOST COMPLEX STRUCTURES WITH NORDEN METRIC ON THE TANGENT BUNDLE OF A SPACE FORM BY N. PAPAGHIUC 1

More information

THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY

THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY SAM KAUFMAN Abstract. The (Cauchy) initial value formulation of General Relativity is developed, and the maximal vacuum Cauchy development theorem is

More information

On Berwald Spaces which Satisfy the Relation Γ k ij = p k g ij for Some Functions p k on TM

On Berwald Spaces which Satisfy the Relation Γ k ij = p k g ij for Some Functions p k on TM International Mathematical Forum, 2, 2007, no. 67, 3331-3338 On Berwald Spaces which Satisfy the Relation Γ k ij = p k g ij for Some Functions p k on TM Dariush Latifi and Asadollah Razavi Faculty of Mathematics

More information

The Bounded L 2 curvature conjecture in general relativity

The Bounded L 2 curvature conjecture in general relativity The Bounded L 2 curvature conjecture in general relativity Jérémie Szeftel Département de Mathématiques et Applications, Ecole Normale Supérieure (Joint work with Sergiu Klainerman and Igor Rodnianski)

More information

Spacetime Geometry. Beijing International Mathematics Research Center 2007 Summer School

Spacetime Geometry. Beijing International Mathematics Research Center 2007 Summer School Spacetime Geometry Beijing International Mathematics Research Center 2007 Summer School Gregory J. Galloway Department of Mathematics University of Miami October 29, 2007 1 Contents 1 Pseudo-Riemannian

More information

THE EVOLUTION OF THE WEYL TENSOR UNDER THE RICCI FLOW

THE EVOLUTION OF THE WEYL TENSOR UNDER THE RICCI FLOW THE EVOLUTION OF THE WEYL TENSO UNDE THE ICCI FLOW GIOVANNI CATINO AND CALO MANTEGAZZA ABSTACT. We compute the evolution equation of the Weyl tensor under the icci flow of a iemannian manifold and we discuss

More information

Non-existence of time-periodic vacuum spacetimes

Non-existence of time-periodic vacuum spacetimes Non-existence of time-periodic vacuum spacetimes Volker Schlue (joint work with Spyros Alexakis and Arick Shao) Université Pierre et Marie Curie (Paris 6) Dynamics of self-gravitating matter workshop,

More information