Non-existence of time-periodic dynamics in general relativity

Size: px
Start display at page:

Download "Non-existence of time-periodic dynamics in general relativity"

Transcription

1 Non-existence of time-periodic dynamics in general relativity Volker Schlue University of Toronto University of Miami, February 2, 2015

2 Outline 1 General relativity Newtonian mechanics Self-gravitating systems Gravitational Radiation 2 Final State Conjecture Stationarity of non-radiating systems Uniqueness of stationary spacetimes 3 Time-periodic vacuum spacetimes Statement of main result Idea of the proof 4 Uniqueness results for ill-posed hyperbolic p.d.e. s Unique continuation from infinity for linear waves Positive mass and the behavior of light rays

3 General Relativity General Relativity is a unified theory of space, time & gravitation. physics geometry GR analysis Some of the most fascinating developments: black holes (astronomy), expansion of the universe (cosmology); geometric analysis of hyperbolic equations (mathematics)

4 1 Gravity in Newton s and Einstein s theory

5 Newtonian Gravity Two-body problem in classical celestial mechanics: Kepler orbits. Space: R 3, Time: R, Newtonian potential: ψ(t, x). Sun Test body: Earth Newton s equation: ψ harmonic function. Note: In Newtonian theory the gravitational field can be periodic in time. (Action at a distance)

6 Figure: Albert Einstein

7 Einstein s Gravity Spacetime: (M, g) dimensional manifold endowed with Lorentzian metric (quadratic form of index 1). Sun Test body: Earth Σ R 3 Einstein s vacuum equations: Spacetime manifold is Ricci-flat.

8 Self-gravitating systems Slow motion / post-newtonian / weak field approximations: Einstein-Infeld-Hoffmann,..., Blanchet-Damour,..., Poisson & Will. Sun Earth Correction to Newtonian potential: (c speed of light) ψ post-newtonian = ψ + 1 c 2 ω

9 Gravitational Radiation The Einstein equations are of hyperbolic nature, and describe the non-linear dynamics of spacetime itself. Harmonic gauge: Choquet-Bruhat 52 C Σ t Σ 0 Global non-linear stability of flat space: Christodoulou-Klainerman 93, Lindblad-Rodnianski 10

10 Time-periodicity in general relativity Periodic motion should not exist in general relativity due to the emission of gravitational waves! Our main result is that any time-periodic vacuum spacetime is in fact time-independent.

11 Null infinity Future null infinity is the conformal boundary attached to an asymptotically flat spacetime, that can be thought of as the space of far away observers. (Penrose) I + R S 2 C t C 0

12 Monotone mass C u Σ I + I ι 0 Notions of mass: M[Σ] (Arnowitt-Deser-Misner) M[C u ] (Bondi): amount of energy in the system at time u. Positive mass theorem: M[Σ] 0, M[C u ] 0: Schoen-Yau, Witten The Bondi mass M(u) := M[C u ] is monotone, M(u) u 0 and for perturbations of flat space (Christodoulou-Klainerman) lim M(u) = M[Σ] lim u M(u) = 0. u

13 2 Final State Conjectures

14 Non-radiating spacetimes We say a spacetime is not radiating, if the Bondi mass M(u) = M 0 is constant. Conjecture. An asymptotically flat vacuum spacetime that is not radiating is necessarily stationary. Here stationary refers to the existence of a continuous isometry ψ t : M M of the spacetime manifold (M, g) generated by a vectorfield T which is time-like near infinity, L T g = lim t 0 t 1 (ψ t g g) = 0.

15 Aside: Gravitational wave experiments Figure: LIGO, Washington v v v u M

16 Stationary spacetimes It is expected that all stationary solutions to the Einstein vacuum equations can be completely classified, even if black holes have formed: M f = lim u M(u) > 0. Conjecture. Any smooth asymptotically flat black hole exterior solution to the Einstein vacuum equations that is stationary is isometric to the exterior of a Kerr solution (M, g M,a ). H + D I + I + : future null infinity H + : future event horizon D: black hole exterior Σ

17 Stationary black hole spacetimes The conjecture has been partially resolved in the perturbative regime. Black hole uniqueness theorems: Carter-Robinson (axi-symmetric case), Hawking (additional Killing vectorfield on horizon, and analytic case),..., Mars-Simon (local characterisation),..., Alexakis-Ionescu-Klainerman (rigidity results in the smooth case, for stationary vacuum spacetimes close to the Kerr solutions). H + I + H I

18 Final State Conjecture The final state conjecture gives a characterisation of all possible end states of the dynamical evolution in general relativity, as a result of the following scenario: (Penrose) Radiation: It is expected that due to the emission of gravitational waves any self-gravitating system settles down to a non-radiating state. Stationarity: It is conjectured that all self-gravitating systems that do not radiate to infinty are in fact stationary, i.e. time-independent. Uniqueness: It is believed that in vacuum the only stationary black hole exteriors are the Kerr solutions.

19 Figure: Artist s impression of binary star system J0806 rapidly approaching coalescence. (NASA)

20 3 Time-periodic vacuum spacetimes

21 Notion of time-periodicity Definition An asymptotically flat spacetime is called time-periodic if there exists a discrete isometry ϕ a with time-like orbits, that extends to a translation ϕ + a on future null infinity. ϕ a (p) I + R S 2 ϕ + a (u, ξ) = (u + a, ξ) ϕ a ι 0 p I

22 Stationarity of time-periodic spacetimes Theorem ( Alexakis-S.) Any asymptotically flat solution (M, g) to Einstein s vacuum equations Ric(g) = 0 which is smooth and time-periodic near infinity is stationary near infinity. I + ι 0 D T ι 0 I The theorem asserts that there exists a time-like vectorfield T on an arbitrarily small neighborhood D of infinity such that L T g = 0 on D.

23 Previous results Early work: Papapetrou (weak field approximation, non-singular solutions, strong time-periodicity assumption) Recent work: Gibbons-Stewart 84, Bicak-Scholz-Tod 10 (contains ideas how to exploit time-periodicity, stationarity inferred under much more restrictive analyticity assumption) Cosmological setting: Tipler 79, Galloway 84 (spatially closed case)

24 Strategy of Proof 1 Construction of time-like candidate vectorfield T, such that by time-periodicity lim r k L T R = 0 r k N 2 Use that by virtue of the vacuum Einstein equations, thus g R = R R g L T R = R L T R. Then apply our result that solutions to wave equations on asymptotically flat spacetimes are uniquely determined if all higher order radiation fields are known, to show that L T R = 0.

25 Unique continuation from infinity Theorem ( Alexakis-S.-Shao 14) Let (M, g) be an asymptotically flat spacetime with positive mass, and L g a linear wave operator L g = g + a + V with suitably decaying coefficients a, and V. If φ is a solution to L g φ = 0 which in addition satisfies r k φ 2 + r k φ 2 < D where D is an arbitrarily small neighborhood of infinity ι 0, then φ 0 : on D D.

26 Application of the theorem The application of the theorem is not immediate because g R = R R is not a scalar equation, but a covariant equation for the Riemann curvature tensor. Moreover, [ g, L T ] 0 and differentiating the equation produces additional terms which are not in the scope of the theorem: g L T R [ g, L T ]R = R L T R + L T g R 2 These obstacles can be overcome in the general framework of Ionescu-Klainerman 13 for the extension of Killing vectorfields in Ricci-flat manifolds.

27 Construction of candidate vectorfield T S u,s C + u L T L C C + 0 S 0 B d S 0 Σ 0 Define T = u : binormal to spheres S u. Then extend inwards by Lie transport along geodesics: [L, T ] = 0, L L = 0, g(l, L) = 0.

28 4 Uniqueness results for ill-posed hyperbolic p.d.e. s

29 Linear theory The conjecture that non-radiating spacetimes are stationary has a simple analogy in linear theory. Consider the linear wave equation on R 3+1 : φ := 2 φ t 2 + The radiation field is defined by 3 i=1 2 φ x i 2 = 0 Ψ(u, ξ) = lim r (rφ)(u + r, rξ). The assumption that a spacetime is not radiating corresponds in linear theory to the vanishing of the radiation field. One may thus ask: Ψ = 0 = (?) φ 0

30 Counterexamples in linear theory Question: Does the radiation field uniquely determine the solution, i.e. Ψ = 0 = φ 0? Answer: No, because 1 r is a solution, and thus also φ = 1 x i r 1, which is r 2 a non-trivial solution with Ψ = 0. Theorem ( Friedlander 61) For finite energy solutions to the classical wave equation φ = 0 the radiation field vanishes identically if and only if the initial data is trivial. Without a global finite energy condition, or a smoothness assumption at infinity, we are led to assume lim (r k φ)(u + r, rξ) = 0 k N. r

31 Obstructions to unique continuation from infinity There is an obstruction to localisation (near spacelike infinity ι 0 ) related to the behavior of light rays. Alinhac-Baouendi 83: Unique continuation fails across surfaces which are not pseudo-convex, in general.

32 Unique continuation from infinity for linear waves Theorem ( Alexakis-S.-Shao 13) Let (M, g) be a perturbation of Minkowski space, and L g a linear wave operator with decaying coefficients. If φ is a solution to L g φ = 0 which in addition satisfies an infinite order vanishing condition on at least half of future and past null infinity, then φ 0 in a neighborhood of infinity. D I + ɛ I ɛ

33 Pseudoconvexity The proof crucially relies on the construction of a family of pseudo-convex time-like hypersurfaces. Definition ( Calderon, Hörmander) A time-like hypersurface is pseudo-convex if it is convex with respect to tangential null geodesics. p We find a family of pseudo-convex hypersurfaces that foliate a neighborhood of infinity and derive a Carleman inequality to prove the uniqueness result.

34 Positive mass and the behaviour of light rays While the result cannot be localised on Minkowski space, we have seen that in the presence of a positive mass unique continuation does hold in an arbitrarily small neighborhood of spacelike infinity. M > 0 light ray ι 0 This is related to ideas of Penrose 90 to characterise the positivity of mass by the behavior of null geodesics near spacelike infinity. (Mason)

35 Thank you for your attention! Figure: Roger Penrose

Non-existence of time-periodic vacuum spacetimes

Non-existence of time-periodic vacuum spacetimes Non-existence of time-periodic vacuum spacetimes Volker Schlue (joint work with Spyros Alexakis and Arick Shao) Université Pierre et Marie Curie (Paris 6) Dynamics of self-gravitating matter workshop,

More information

Myths, Facts and Dreams in General Relativity

Myths, Facts and Dreams in General Relativity Princeton university November, 2010 MYTHS (Common Misconceptions) MYTHS (Common Misconceptions) 1 Analysts prove superfluous existence results. MYTHS (Common Misconceptions) 1 Analysts prove superfluous

More information

Rigidity of Black Holes

Rigidity of Black Holes Rigidity of Black Holes Sergiu Klainerman Princeton University February 24, 2011 Rigidity of Black Holes PREAMBLES I, II PREAMBLE I General setting Assume S B two different connected, open, domains and

More information

Singularity formation in black hole interiors

Singularity formation in black hole interiors Singularity formation in black hole interiors Grigorios Fournodavlos DPMMS, University of Cambridge Heraklion, Crete, 16 May 2018 Outline The Einstein equations Examples Initial value problem Large time

More information

Stationarity of non-radiating spacetimes

Stationarity of non-radiating spacetimes University of Warwick April 4th, 2016 Motivation Theorem Motivation Newtonian gravity: Periodic solutions for two-body system. Einstein gravity: Periodic solutions? At first Post-Newtonian order, Yes!

More information

Stability and Instability of Black Holes

Stability and Instability of Black Holes Stability and Instability of Black Holes Stefanos Aretakis September 24, 2013 General relativity is a successful theory of gravitation. Objects of study: (4-dimensional) Lorentzian manifolds (M, g) which

More information

RIGIDITY OF STATIONARY BLACK HOLES WITH SMALL ANGULAR MOMENTUM ON THE HORIZON

RIGIDITY OF STATIONARY BLACK HOLES WITH SMALL ANGULAR MOMENTUM ON THE HORIZON RIGIDITY OF STATIONARY BLACK HOLES WITH SMALL ANGULAR MOMENTUM ON THE HORIZON S. ALEXAKIS, A. D. IONESCU, AND S. KLAINERMAN Abstract. We prove a black hole rigidity result for slowly rotating stationary

More information

Geometric inequalities for black holes

Geometric inequalities for black holes Geometric inequalities for black holes Sergio Dain FaMAF-Universidad Nacional de Córdoba, CONICET, Argentina. 3 August, 2012 Einstein equations (vacuum) The spacetime is a four dimensional manifold M with

More information

An Overview of Mathematical General Relativity

An Overview of Mathematical General Relativity An Overview of Mathematical General Relativity José Natário (Instituto Superior Técnico) Geometria em Lisboa, 8 March 2005 Outline Lorentzian manifolds Einstein s equation The Schwarzschild solution Initial

More information

Null Cones to Infinity, Curvature Flux, and Bondi Mass

Null Cones to Infinity, Curvature Flux, and Bondi Mass Null Cones to Infinity, Curvature Flux, and Bondi Mass Arick Shao (joint work with Spyros Alexakis) University of Toronto May 22, 2013 Arick Shao (University of Toronto) Null Cones to Infinity May 22,

More information

Localizing solutions of the Einstein equations

Localizing solutions of the Einstein equations Localizing solutions of the Einstein equations Richard Schoen UC, Irvine and Stanford University - General Relativity: A Celebration of the 100th Anniversary, IHP - November 20, 2015 Plan of Lecture The

More information

The cosmic censorship conjectures in classical general relativity

The cosmic censorship conjectures in classical general relativity The cosmic censorship conjectures in classical general relativity Mihalis Dafermos University of Cambridge and Princeton University Gravity and black holes Stephen Hawking 75th Birthday conference DAMTP,

More information

NON-EXISTENCE OF TIME-PERIODIC VACUUM SPACETIMES

NON-EXISTENCE OF TIME-PERIODIC VACUUM SPACETIMES NON-EXISTENCE OF TIME-PERIODIC VACUUM SPACETIMES SPYROS ALEXAKIS AND VOLKER SCHLUE Abstract. We prove that smooth asymptotically flat solutions to the Einstein vacuum equations which are assumed to be

More information

An introduction to General Relativity and the positive mass theorem

An introduction to General Relativity and the positive mass theorem An introduction to General Relativity and the positive mass theorem National Center for Theoretical Sciences, Mathematics Division March 2 nd, 2007 Wen-ling Huang Department of Mathematics University of

More information

The linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge

The linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge The linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge Imperial College London Mathematical Relativity Seminar, Université Pierre et Marie Curie,

More information

The stability of Kerr-de Sitter black holes

The stability of Kerr-de Sitter black holes The stability of Kerr-de Sitter black holes András Vasy (joint work with Peter Hintz) July 2018, Montréal This talk is about the stability of Kerr-de Sitter (KdS) black holes, which are certain Lorentzian

More information

A Brief Introduction to Mathematical Relativity

A Brief Introduction to Mathematical Relativity A Brief Introduction to Mathematical Relativity Arick Shao Imperial College London Arick Shao (Imperial College London) Mathematical Relativity 1 / 31 Special Relativity Postulates and Definitions Einstein

More information

Quasi-local Mass and Momentum in General Relativity

Quasi-local Mass and Momentum in General Relativity Quasi-local Mass and Momentum in General Relativity Shing-Tung Yau Harvard University Stephen Hawking s 70th Birthday University of Cambridge, Jan. 7, 2012 I met Stephen Hawking first time in 1978 when

More information

Black Holes and Thermodynamics I: Classical Black Holes

Black Holes and Thermodynamics I: Classical Black Holes Black Holes and Thermodynamics I: Classical Black Holes Robert M. Wald General references: R.M. Wald General Relativity University of Chicago Press (Chicago, 1984); R.M. Wald Living Rev. Rel. 4, 6 (2001).

More information

Geometric inequalities for black holes

Geometric inequalities for black holes Geometric inequalities for black holes Sergio Dain FaMAF-Universidad Nacional de Córdoba, CONICET, Argentina. 26 July, 2013 Geometric inequalities Geometric inequalities have an ancient history in Mathematics.

More information

Quasi-local mass and isometric embedding

Quasi-local mass and isometric embedding Quasi-local mass and isometric embedding Mu-Tao Wang, Columbia University September 23, 2015, IHP Recent Advances in Mathematical General Relativity Joint work with Po-Ning Chen and Shing-Tung Yau. The

More information

Quasi-local Mass in General Relativity

Quasi-local Mass in General Relativity Quasi-local Mass in General Relativity Shing-Tung Yau Harvard University For the 60th birthday of Gary Horowtiz U. C. Santa Barbara, May. 1, 2015 This talk is based on joint work with Po-Ning Chen and

More information

Rigidity of outermost MOTS: the initial data version

Rigidity of outermost MOTS: the initial data version Gen Relativ Gravit (2018) 50:32 https://doi.org/10.1007/s10714-018-2353-9 RESEARCH ARTICLE Rigidity of outermost MOTS: the initial data version Gregory J. Galloway 1 Received: 9 December 2017 / Accepted:

More information

Level sets of the lapse function in static GR

Level sets of the lapse function in static GR Level sets of the lapse function in static GR Carla Cederbaum Mathematisches Institut Universität Tübingen Auf der Morgenstelle 10 72076 Tübingen, Germany September 4, 2014 Abstract We present a novel

More information

General Relativity and Important Physical Quantities

General Relativity and Important Physical Quantities General Relativity and Important Physical Quantities Shing-Tung Yau Harvard University 2nd LeCosPA Symposium December 14, 2015 This talk is based on joint work with Po-Ning Chen and Mu-Tao Wang. Exactly

More information

A characterization of Kerr-Newman space-times and some applications

A characterization of Kerr-Newman space-times and some applications A characterization of Kerr-Newman space-times and some applications Willie Wai-Yeung Wong W.Wong@dpmms.cam.ac.uk http://www.dpmms.cam.ac.uk/ ww278/ DPMMS University of Cambridge 12 May, 2010 - Relativity

More information

OLIVIA MILOJ March 27, 2006 ON THE PENROSE INEQUALITY

OLIVIA MILOJ March 27, 2006 ON THE PENROSE INEQUALITY OLIVIA MILOJ March 27, 2006 ON THE PENROSE INEQUALITY Abstract Penrose presented back in 1973 an argument that any part of the spacetime which contains black holes with event horizons of area A has total

More information

Covariant Equations of Motion of Extended Bodies with Mass and Spin Multipoles

Covariant Equations of Motion of Extended Bodies with Mass and Spin Multipoles Covariant Equations of Motion of Extended Bodies with Mass and Spin Multipoles Sergei Kopeikin University of Missouri-Columbia 1 Content of lecture: Motivations Statement of the problem Notable issues

More information

HAWKING S LOCAL RIGIDITY THEOREM WITHOUT ANALYTICITY

HAWKING S LOCAL RIGIDITY THEOREM WITHOUT ANALYTICITY HAWKING S LOCAL RIGIDITY THEOREM WITHOUT ANALYTICITY S. ALEXAKIS, A. D. IONESCU, AND S. KLAINERMAN Abstract. We prove the existence of a Hawking Killing vector-field in a full neighborhood of a local,

More information

My Personal Journey on the Geometric Aspect of General Relativity

My Personal Journey on the Geometric Aspect of General Relativity My Personal Journey on the Geometric Aspect of General Relativity Shing-Tung Yau Harvard University The first annual meeting of ICCM 2017 Sun Yat-sen University, Guangzhou December 28, 2017 This talk is

More information

arxiv:gr-qc/ v1 24 Jun 2004

arxiv:gr-qc/ v1 24 Jun 2004 A new geometric invariant on initial data for Einstein equations ergio Dain 1, 1 Albert-Einstein-Institut, am Mühlenberg 1, D-14476, Golm, Germany. (Dated: July 11, 2004) For a given asymptotically flat

More information

UNIQUENESS OF STATIC BLACK-HOLES WITHOUT ANALYTICITY. Piotr T. Chruściel & Gregory J. Galloway

UNIQUENESS OF STATIC BLACK-HOLES WITHOUT ANALYTICITY. Piotr T. Chruściel & Gregory J. Galloway UNIQUENESS OF STATIC BLACK-HOLES WITHOUT ANALYTICITY by Piotr T. Chruściel & Gregory J. Galloway Abstract. We show that the hypothesis of analyticity in the uniqueness theory of vacuum, or electrovacuum,

More information

Causality, hyperbolicity, and shock formation in Lovelock theories

Causality, hyperbolicity, and shock formation in Lovelock theories Causality, hyperbolicity, and shock formation in Lovelock theories Harvey Reall DAMTP, Cambridge University HSR, N. Tanahashi and B. Way, arxiv:1406.3379, 1409.3874 G. Papallo, HSR arxiv:1508.05303 Lovelock

More information

Bondi mass of Einstein-Maxwell-Klein-Gordon spacetimes

Bondi mass of Einstein-Maxwell-Klein-Gordon spacetimes of of Institute of Theoretical Physics, Charles University in Prague April 28th, 2014 scholtz@troja.mff.cuni.cz 1 / 45 Outline of 1 2 3 4 5 2 / 45 Energy-momentum in special Lie algebra of the Killing

More information

Stationarity of asymptotically flat non-radiating electrovacuum spacetimes

Stationarity of asymptotically flat non-radiating electrovacuum spacetimes Stationarity of asymptotically flat non-radiating electrovacuum spacetimes by Rosemberg Toalá Enríquez Thesis Submitted to the University of Warwick for the degree of Doctor of Philosophy Mathematics Institute

More information

Umbilic cylinders in General Relativity or the very weird path of trapped photons

Umbilic cylinders in General Relativity or the very weird path of trapped photons Umbilic cylinders in General Relativity or the very weird path of trapped photons Carla Cederbaum Universität Tübingen European Women in Mathematics @ Schloss Rauischholzhausen 2015 Carla Cederbaum (Tübingen)

More information

arxiv:gr-qc/ v1 24 Feb 2004

arxiv:gr-qc/ v1 24 Feb 2004 A poor man s positive energy theorem arxiv:gr-qc/0402106v1 24 Feb 2004 Piotr T. Chruściel Département de Mathématiques Faculté des Sciences Parc de Grandmont F37200 Tours, France Gregory J. Galloway Department

More information

Late-time asymptotics for the wave equation on spherically symmetric, stationary spacetimes

Late-time asymptotics for the wave equation on spherically symmetric, stationary spacetimes Late-time asymptotics for the wave equation on spherically symmetric, stationary spacetimes Y. Angelopoulos, S. Aretakis, and D. Gajic February 15, 2018 arxiv:1612.01566v3 [math.ap] 15 Feb 2018 Abstract

More information

arxiv:gr-qc/ v1 6 Dec 2000

arxiv:gr-qc/ v1 6 Dec 2000 Initial data for two Kerr-lie blac holes Sergio Dain Albert-Einstein-Institut, Max-Planc-Institut für Gravitationsphysi, Am Mühlenberg 1, D-14476 Golm, Germany (April 5, 2004) We prove the existence of

More information

arxiv:gr-qc/ v1 12 Sep 2002

arxiv:gr-qc/ v1 12 Sep 2002 Topological Structure of The Upper End of Future Null Infinity Shinya Tomizawa Department of Physics, Tokyo Institute of Technology, Oh-Okayama, Tokyo 152-8550, Japan Masaru Siino Department of Physics,

More information

Global stability problems in General Relativity

Global stability problems in General Relativity Global stability problems in General Relativity Peter Hintz with András Vasy Murramarang March 21, 2018 Einstein vacuum equations Ric(g) + Λg = 0. g: Lorentzian metric (+ ) on 4-manifold M Λ R: cosmological

More information

On the topology of black holes and beyond

On the topology of black holes and beyond On the topology of black holes and beyond Greg Galloway University of Miami MSRI-Evans Lecture UC Berkeley, September, 2013 What is the topology of a black hole? What is the topology of a black hole? Hawking

More information

General Relativity in AdS

General Relativity in AdS General Relativity in AdS Akihiro Ishibashi 3 July 2013 KIAS-YITP joint workshop 1-5 July 2013, Kyoto Based on work 2012 w/ Kengo Maeda w/ Norihiro Iizuka, Kengo Maeda - work in progress Plan 1. Classical

More information

Geometric Methods in Hyperbolic PDEs

Geometric Methods in Hyperbolic PDEs Geometric Methods in Hyperbolic PDEs Jared Speck jspeck@math.princeton.edu Department of Mathematics Princeton University January 24, 2011 Unifying mathematical themes Many physical phenomena are modeled

More information

Lecture Notes on General Relativity

Lecture Notes on General Relativity Lecture Notes on General Relativity Matthias Blau Albert Einstein Center for Fundamental Physics Institut für Theoretische Physik Universität Bern CH-3012 Bern, Switzerland The latest version of these

More information

The Penrose Inequality

The Penrose Inequality The Penrose Inequality Hubert L. Bray Piotr T. Chruściel June 8, 2004 Abstract In 1973, R. Penrose presented an argument that the total mass of a space-time which contains black holes with event horizons

More information

EXCISION TECHNIQUE IN CONSTRAINED FORMULATIONS OF EINSTEIN EQUATIONS

EXCISION TECHNIQUE IN CONSTRAINED FORMULATIONS OF EINSTEIN EQUATIONS EXCISION TECHNIQUE IN CONSTRAINED FORMULATIONS OF EINSTEIN EQUATIONS Journée Gravitation et Physique Fondamentale Meudon, 27 May 2014 Isabel Cordero-Carrión Laboratoire Univers et Théories (LUTh), Observatory

More information

Asymptotic Behavior of Marginally Trapped Tubes

Asymptotic Behavior of Marginally Trapped Tubes Asymptotic Behavior of Marginally Trapped Tubes Catherine Williams January 29, 2009 Preliminaries general relativity General relativity says that spacetime is described by a Lorentzian 4-manifold (M, g)

More information

The Stability of the Irrotational Euler-Einstein System with a Positive Cosmological Constant

The Stability of the Irrotational Euler-Einstein System with a Positive Cosmological Constant The Stability of the Irrotational Euler-Einstein System with a Positive Cosmological Constant Jared Speck & Igor Rodnianski jspeck@math.princeton.edu University of Cambridge & Princeton University October

More information

MATHEMATICAL GENERAL RELATIVITY: A SAMPLER

MATHEMATICAL GENERAL RELATIVITY: A SAMPLER MATHEMATICAL GENERAL RELATIVITY: A SAMPLER PIOTR T. CHRUŚCIEL, GREGORY J. GALLOWAY, AND DANIEL POLLACK Abstract. We provide an introduction to selected significant advances in the mathematical understanding

More information

Black-hole binaries in Einstein-dilaton Gauss Bonnet gravity

Black-hole binaries in Einstein-dilaton Gauss Bonnet gravity Black-hole binaries in Einstein-dilaton Gauss Bonnet gravity Helvi Witek Theoretical Particle Physics and Cosmology Department of Physics, King s College London work in progress with L. Gualtieri, P. Pani,

More information

Gravitational Memory and BMS Symmetry in Four and Higher Dimensions

Gravitational Memory and BMS Symmetry in Four and Higher Dimensions Gravitational Memory and BMS Symmetry in Four and Higher Dimensions S. Hollands based on joint work with A. Ishibashi and R.M. Wald King s College, London 12 January 2017 arxiv:1612.03290 [gr-qc] History

More information

The initial value problem in general relativity

The initial value problem in general relativity LC Physics Colloquium, Spring 2015 Abstract In 1915, Einstein introduced equations describing a theory of gravitation known as general relativity. The Einstein equations, as they are now called, are at

More information

On the uniqueness of Kerr-Newman. black holes

On the uniqueness of Kerr-Newman. black holes On the uniqueness of Kerr-Newman black holes Willie Wai-Yeung Wong A Dissertation Presented to the Faculty of Princeton University in Candidacy for the Degree of Doctor of Philosophy Recommended for Acceptance

More information

What happens at the horizon of an extreme black hole?

What happens at the horizon of an extreme black hole? What happens at the horizon of an extreme black hole? Harvey Reall DAMTP, Cambridge University Lucietti and HSR arxiv:1208.1437 Lucietti, Murata, HSR and Tanahashi arxiv:1212.2557 Murata, HSR and Tanahashi,

More information

arxiv: v1 [gr-qc] 4 Oct 2017

arxiv: v1 [gr-qc] 4 Oct 2017 The interior of dynamical vacuum black holes I: The C 0 -stability of the err Cauchy horizon Mihalis Dafermos 1 and Jonathan Luk 1 Department of Mathematics, Princeton University, Washington Road, Princeton

More information

Electromagnetic spikes

Electromagnetic spikes Electromagnetic spikes Ernesto Nungesser (joint work with Woei Chet Lim) Trinity College Dublin ANZAMP, 29th of November, 2013 Overview Heuristic picture of initial singularity What is a Bianchi spacetime?

More information

In 1973 R. Penrose [13] made a physical argument

In 1973 R. Penrose [13] made a physical argument Black Holes, Geometric Flows, and the Penrose Inequality in General Relativity Hubert L. Bray In 1973 R. Penrose [13] made a physical argument that the total mass of a spacetime containing black holes

More information

Introduction to Numerical Relativity I. Erik Schnetter, Pohang, July 2007

Introduction to Numerical Relativity I. Erik Schnetter, Pohang, July 2007 Introduction to Numerical Relativity I Erik Schnetter, Pohang, July 2007 Lectures Overview I. The Einstein Equations (Formulations and Gauge Conditions) II. Analysis Methods (Horizons and Gravitational

More information

Effect of Monopole Field on the Non-Spherical Gravitational Collapse of Radiating Dyon Solution.

Effect of Monopole Field on the Non-Spherical Gravitational Collapse of Radiating Dyon Solution. IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn:2319-765x. Volume 10, Issue 1 Ver. III. (Feb. 2014), PP 46-52 Effect of Monopole Field on the Non-Spherical Gravitational Collapse of Radiating

More information

Bondi-Sachs Formulation of General Relativity (GR) and the Vertices of the Null Cones

Bondi-Sachs Formulation of General Relativity (GR) and the Vertices of the Null Cones Bondi-Sachs Formulation of General Relativity (GR) and the Vertices of the Null Cones Thomas Mädler Observatoire de Paris/Meudon, Max Planck Institut for Astrophysics Sept 10, 2012 - IAP seminar Astrophysical

More information

Non-linear stability of Kerr de Sitter black holes

Non-linear stability of Kerr de Sitter black holes Non-linear stability of Kerr de Sitter black holes Peter Hintz 1 (joint with András Vasy 2 ) 1 Miller Institute, University of California, Berkeley 2 Stanford University Geometric Analysis and PDE Seminar

More information

Thermodynamics of a Black Hole with Moon

Thermodynamics of a Black Hole with Moon Thermodynamics of a Black Hole with Moon Laboratoire Univers et Théories Observatoire de Paris / CNRS In collaboration with Sam Gralla Phys. Rev. D 88 (2013) 044021 Outline ➀ Mechanics and thermodynamics

More information

Space-Times Admitting Isolated Horizons

Space-Times Admitting Isolated Horizons Space-Times Admitting Isolated Horizons Jerzy Lewandowski Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, ul. Hoża 69, 00-681 Warszawa, Poland, lewand@fuw.edu.pl Abstract We characterize a general

More information

PROOF OF THE RIEMANNIAN PENROSE INEQUALITY USING THE POSITIVE MASS THEOREM

PROOF OF THE RIEMANNIAN PENROSE INEQUALITY USING THE POSITIVE MASS THEOREM j. differential geometry 59 (2001) 177-267 PROOF OF THE RIEMANNIAN PENROSE INEQUALITY USING THE POSITIVE MASS THEOREM HUBERT L. BRAY Abstract We prove the Riemannian Penrose Conjecture, an important case

More information

Regularity of linear waves at the Cauchy horizon of black hole spacetimes

Regularity of linear waves at the Cauchy horizon of black hole spacetimes Regularity of linear waves at the Cauchy horizon of black hole spacetimes Peter Hintz joint with András Vasy Luminy April 29, 2016 Cauchy horizon of charged black holes (subextremal) Reissner-Nordström-de

More information

Gravitational Wave Memory in Cosmological Spacetimes

Gravitational Wave Memory in Cosmological Spacetimes Gravitational Wave Memory in Cosmological Spacetimes Lydia Bieri University of Michigan Department of Mathematics Ann Arbor Black Hole Initiative Conference Harvard University, May 8-9, 2017 Overview Spacetimes

More information

Contents Part I The General Theory of Relativity Introduction Physics in External Gravitational Fields

Contents Part I The General Theory of Relativity Introduction Physics in External Gravitational Fields Contents Part I The General Theory of Relativity 1 Introduction... 3 2 Physics in External Gravitational Fields... 7 2.1 Characteristic Properties of Gravitation... 7 2.1.1 Strength of the Gravitational

More information

Cosmic Censorship Conjecture and Topological Censorship

Cosmic Censorship Conjecture and Topological Censorship Cosmic Censorship Conjecture and Topological Censorship 21 settembre 2009 Cosmic Censorship Conjecture 40 years ago in the Rivista Nuovo Cimento Sir Roger Penrose posed one of most important unsolved problems

More information

Hubert L. Bray and Henri P. Roesch

Hubert L. Bray and Henri P. Roesch Σ Hubert. Bray and Henri P. Roesch Beginning in 1973, Roger Penrose wondered about the relation between the mass of the universe and the contributions of black holes ([1], [2]). All we can see are their

More information

Instability of extreme black holes

Instability of extreme black holes Instability of extreme black holes James Lucietti University of Edinburgh EMPG seminar, 31 Oct 2012 Based on: J.L., H. Reall arxiv:1208.1437 Extreme black holes Extreme black holes do not emit Hawking

More information

LIST OF PUBLICATIONS. Mu-Tao Wang. March 2017

LIST OF PUBLICATIONS. Mu-Tao Wang. March 2017 LIST OF PUBLICATIONS Mu-Tao Wang Publications March 2017 1. (with P.-K. Hung, J. Keller) Linear stability of Schwarzschild spacetime: the Cauchy problem of metric coefficients. arxiv: 1702.02843v2 2. (with

More information

THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY

THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY SAM KAUFMAN Abstract. The (Cauchy) initial value formulation of General Relativity is developed, and the maximal vacuum Cauchy development theorem is

More information

A5682: Introduction to Cosmology Course Notes. 2. General Relativity

A5682: Introduction to Cosmology Course Notes. 2. General Relativity 2. General Relativity Reading: Chapter 3 (sections 3.1 and 3.2) Special Relativity Postulates of theory: 1. There is no state of absolute rest. 2. The speed of light in vacuum is constant, independent

More information

The Cosmic Censorship Conjectures in General Relativity or Cosmic Censorship for the Massless Scalar Field with Spherical Symmetry

The Cosmic Censorship Conjectures in General Relativity or Cosmic Censorship for the Massless Scalar Field with Spherical Symmetry The Cosmic Censorship Conjectures in General Relativity or Cosmic Censorship for the Massless Scalar Field with Spherical Symmetry 1 This page intentionally left blank. 2 Abstract This essay describes

More information

FINITE-TIME DEGENERATION OF HYPERBOLICITY WITHOUT BLOWUP FOR QUASILINEAR WAVE EQUATIONS

FINITE-TIME DEGENERATION OF HYPERBOLICITY WITHOUT BLOWUP FOR QUASILINEAR WAVE EQUATIONS FINITE-TIME DEGENERATION OF HYPERBOLICITY WITHOUT BLOWUP FOR QUASILINEAR WAVE EQUATIONS JARED SPECK Abstract. In 3D, we study the Cauchy problem for the wave equation 2 t Ψ + (1 + Ψ) P Ψ = 0 for P {1,

More information

Jose Luis Blázquez Salcedo

Jose Luis Blázquez Salcedo Jose Luis Blázquez Salcedo In collaboration with Jutta Kunz, Francisco Navarro Lérida, and Eugen Radu GR Spring School, March 2015, Brandenburg an der Havel 1. Introduction 2. General properties of EMCS-AdS

More information

arxiv: v2 [math.ap] 18 Oct 2018

arxiv: v2 [math.ap] 18 Oct 2018 1 ON THE MASS OF STATIC METRICS WITH POSITIVE COSMOLOGICAL CONSTANT II STEFANO BORGHINI AND LORENZO MAZZIERI arxiv:1711.07024v2 math.ap] 18 Oct 2018 Abstract. This is the second of two works, in which

More information

GLOBAL UNIQUENESS THEOREMS FOR LINEAR AND NONLINEAR WAVES

GLOBAL UNIQUENESS THEOREMS FOR LINEAR AND NONLINEAR WAVES GLOBAL UNIQUENESS THEOREMS FOR LINEAR AND NONLINEAR WAVES SPYROS ALEXAKIS AND ARICK SHAO Abstract. We prove a unique continuation from infinity theorem for regular waves of the form [+V(t, x)]φ = 0. Under

More information

Charge, geometry, and effective mass

Charge, geometry, and effective mass Gerald E. Marsh Argonne National Laboratory (Ret) 5433 East View Park Chicago, IL 60615 E-mail: geraldemarsh63@yahoo.com Abstract. Charge, like mass in Newtonian mechanics, is an irreducible element of

More information

Curved Spacetime III Einstein's field equations

Curved Spacetime III Einstein's field equations Curved Spacetime III Einstein's field equations Dr. Naylor Note that in this lecture we will work in SI units: namely c 1 Last Week s class: Curved spacetime II Riemann curvature tensor: This is a tensor

More information

Asymptotic Symmetries and Holography

Asymptotic Symmetries and Holography Asymptotic Symmetries and Holography Rashmish K. Mishra Based on: Asymptotic Symmetries, Holography and Topological Hair (RKM and R. Sundrum, 1706.09080) Unification of diverse topics IR structure of QFTs,

More information

Stability and Instability of Extremal Black Holes

Stability and Instability of Extremal Black Holes Stability and Instability of Extremal Black Holes Stefanos Aretakis Department of Pure Mathematics and Mathematical Statistics, University of Cambridge s.aretakis@dpmms.cam.ac.uk December 13, 2011 MIT

More information

Inverse Mean Curvature Vector Flows in Spacetimes

Inverse Mean Curvature Vector Flows in Spacetimes Inverse Mean Curvature Vector Flows in Spacetimes Hangjun Xu April 1, 2014 Contents 1 Introduction: 3 minutes 1 2 Motivation: 18 minutes 2 2.1 Riemannian Penrose Inequality..................... 2 2.2 Inverse

More information

Hyperbolic Geometric Flow

Hyperbolic Geometric Flow Hyperbolic Geometric Flow Kefeng Liu Zhejiang University UCLA Page 1 of 41 Outline Introduction Hyperbolic geometric flow Local existence and nonlinear stability Wave character of metrics and curvatures

More information

The Bounded L 2 curvature conjecture in general relativity

The Bounded L 2 curvature conjecture in general relativity The Bounded L 2 curvature conjecture in general relativity Jérémie Szeftel Département de Mathématiques et Applications, Ecole Normale Supérieure (Joint work with Sergiu Klainerman and Igor Rodnianski)

More information

The BKL proposal and cosmic censorship

The BKL proposal and cosmic censorship - 1 - The BKL proposal and cosmic censorship Lars Andersson University of Miami and Albert Einstein Institute (joint work with Henk van Elst, Claes Uggla and Woei-Chet Lim) References: Gowdy phenomenology

More information

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY)

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY) Imperial College London MSc EXAMINATION May 2015 BLACK HOLES (ADVANCED GENERAL RELATIV- ITY) For MSc students, including QFFF students Wednesday, 13th May 2015: 14:00 17:00 Answer Question 1 (40%) and

More information

Isolated Horizon, Killing Horizon and Event Horizon. Abstract

Isolated Horizon, Killing Horizon and Event Horizon. Abstract IMSc/2001/06/30 Isolated Horizon, Killing Horizon and Event Horizon G. Date The Institute of Mathematical Sciences, CIT Campus, Chennai-600 113, INDIA. Abstract We consider space-times which in addition

More information

Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere

Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere Boian Lazov and Stoytcho Yazadjiev Varna, 2017 Outline 1 Motivation 2 Preliminaries

More information

arxiv: v1 [gr-qc] 2 Feb 2015

arxiv: v1 [gr-qc] 2 Feb 2015 arxiv:1502.00424v1 [gr-qc] 2 Feb 2015 Valiente Kroon s obstructions to smoothness at infinity James Grant Department of Mathematics, University of Surrey, Paul Tod Mathematical Institute University of

More information

Title. On the stability of the wave-map equation in Kerr spaces. Alexandru D. Ionescu

Title. On the stability of the wave-map equation in Kerr spaces. Alexandru D. Ionescu Title On the stability of the wave-map equation in Kerr spaces Alexandru D. Ionescu We are interested in the question of the global stability of a stationary axially-symmetric solution of the wave map

More information

arxiv: v1 [gr-qc] 15 Feb 2018

arxiv: v1 [gr-qc] 15 Feb 2018 Asymptotics for scalar perturbations from a neighborhood of the bifurcation sphere Y. Angelopoulos, S. Aretakis, and D. Gajic February 16, 2018 arxiv:1802.05692v1 [gr-qc] 15 Feb 2018 Abstract In our previous

More information

INVESTIGATING THE KERR BLACK HOLE USING MAPLE IDAN REGEV. Department of Mathematics, University of Toronto. March 22, 2002.

INVESTIGATING THE KERR BLACK HOLE USING MAPLE IDAN REGEV. Department of Mathematics, University of Toronto. March 22, 2002. INVESTIGATING THE KERR BLACK HOLE USING MAPLE 1 Introduction IDAN REGEV Department of Mathematics, University of Toronto March 22, 2002. 1.1 Why Study the Kerr Black Hole 1.1.1 Overview of Black Holes

More information

A simple proof of the recent generalisations of Hawking s black hole topology theorem

A simple proof of the recent generalisations of Hawking s black hole topology theorem A simple proof of the recent generalisations of Hawking s black hole topology theorem arxiv:0806.4373v3 [gr-qc] 25 Jun 2010 István Rácz RMKI, H-1121 Budapest, Konkoly Thege Miklós út 29-33. Hungary June

More information

Global properties of solutions to the Einstein-matter equations

Global properties of solutions to the Einstein-matter equations Global properties of solutions to the Einstein-matter equations Makoto Narita Okinawa National College of Technology 12/Nov./2012 @JGRG22, Tokyo Singularity theorems and two conjectures Theorem 1 (Penrose)

More information

Causal Sets Approach to Quantum Gravity

Causal Sets Approach to Quantum Gravity Causal Sets Approach to Quantum Gravity Mir Emad Aghili 1 1 Department of Physics and Astronomy, University of Mississippi, 38677 Introduction The fact that singularities happen in general relativity is

More information

The Horizon Energy of a Black Hole

The Horizon Energy of a Black Hole arxiv:1712.08462v1 [gr-qc] 19 Dec 2017 The Horizon Energy of a Black Hole Yuan K. Ha Department of Physics, Temple University Philadelphia, Pennsylvania 19122 U.S.A. yuanha@temple.edu December 1, 2017

More information

Black hole instabilities and violation of the weak cosmic censorship in higher dimensions

Black hole instabilities and violation of the weak cosmic censorship in higher dimensions Black hole instabilities and violation of the weak cosmic censorship in higher dimensions Pau Figueras School of Mathematical Sciences, Queen Mary University of London w/ Markus Kunesch, Luis Lehner and

More information

Black Hole Physics. Basic Concepts and New Developments KLUWER ACADEMIC PUBLISHERS. Valeri P. Frolov. Igor D. Nbvikov. and

Black Hole Physics. Basic Concepts and New Developments KLUWER ACADEMIC PUBLISHERS. Valeri P. Frolov. Igor D. Nbvikov. and Black Hole Physics Basic Concepts and New Developments by Valeri P. Frolov Department of Physics, University of Alberta, Edmonton, Alberta, Canada and Igor D. Nbvikov Theoretical Astrophysics Center, University

More information