Diagrammatic Monte Carlo simulation of quantum impurity models

Size: px
Start display at page:

Download "Diagrammatic Monte Carlo simulation of quantum impurity models"

Transcription

1 Diagrammatic Monte Carlo simulation of quantum impurity models Philipp Werner ETH Zurich IPAM, UCLA, Jan. 2009

2 Outline Continuous-time auxiliary field method (CT-AUX) Weak coupling expansion and auxiliary field decomposition Application: electron pockets in the 2D Hubbard model Hybridization expansion ``Strong coupling method for general classes of impurity models Application: spin freezing transition in a 3-orbital model Adaptation to non-equilibrium systems quantum dots / non-equilibrium DMFT Collaborators E. Gull, A. J. Millis, T. Oka, O. Parcollet, M. Troyer

3 Dynamical mean field theory Metzner & Vollhardt, PRL (1989) Georges & Kotliar, PRB (1992) Self-consistency loop lattice model impurity model t tk G latt dk 1 iω n +µ ɛ k Σ latt G latt G imp H imp impurity solver Σ latt Σ latt Σ imp G imp, Σ imp Computationally expensive step: solution of the impurity model

4 Diagrammatic QMC General recipe: Split Hamiltonian into two parts: H = H 1 + H 2 Use interaction representation in which O(τ) = e τh 1 Oe τh 1 Write partition function as time-ordered exponential, expand in powers of H 2 Z = T r [e βh 1 T e R ] β 0 dτh 2(τ) = k β 0 dτ 1... β 0 dτ k ( 1) k k! [ ] T r e βh 1 T H 2 (τ 1 )... H 2 (τ k ) Weak-coupling expansion: Rombouts et al., (1999), Rubtsov et al. (2005), Gull et al. (2008) expand in interactions, treat quadratic terms exactly Hybridization expansion: Werner et al., (2006), Werner & Millis (2006), Haule (2007) expand in hybridizations, treat local terms exactly

5 CT-auxiliary field QMC Rombouts et al., PRL (1999) Gull et al., EPL (2008) Impurity model given by H = H 0 + H U H 0 = K/β (µ U/2)(n + n ) + H hyb + H bath H U = U(n n (n + n )/2) K/β Expand partition function into powers of the interaction term Z = ( 1) k [ ] dτ 1... dτ k T r T e βh 0 H U (τ 1 )... H U (τ k ) k! k Decouple the interaction terms using Rombouts et al., PRL (1999) H U = K 2β s=±1 e γs(n n ), cosh(γ) = 1 + βu 2K

6 CT-auxiliary field QMC Rombouts et al., PRL (1999) Gull et al., EPL (2008) Configuration space: all possible time-ordered spin configurations Weight: w(τ 1, s 1 ;... ; τ k, s k ) = ( Kdτ 2β ) k N 1 σ = e Γ σ G 0σ (e Γ σ 1 σ det N 1 σ ({τ i, s i }) e Γ σ = diag(e γσs 1,..., e γσs k ) ) Monte Carlo updates: random insertion/removal of a spin Equivalent to Rubtsov et al., formally similar to Hirsch-Fye

7 CT-auxiliary field QMC Rombouts et al., PRL (1999) Gull et al., EPL (2008) Configuration space: all possible time-ordered spin configurations Weight: w(τ 1, s 1 ;... ; τ k, s k ) = ( Kdτ 2β ) k N 1 σ = e Γ σ G 0σ (e Γ σ 1 σ det N 1 σ ({τ i, s i }) e Γ σ = diag(e γσs 1,..., e γσs k ) ) Monte Carlo updates: random insertion/removal of a spin Equivalent to Rubtsov et al., formally similar to Hirsch-Fye

8 CT-auxiliary field QMC Rombouts et al., PRL (1999) Gull et al., EPL (2008) Configuration space: all possible time-ordered spin configurations Weight: w(τ 1, s 1 ;... ; τ k, s k ) = ( Kdτ 2β ) k N 1 σ = e Γ σ G 0σ (e Γ σ 1 σ det N 1 σ ({τ i, s i }) e Γ σ = diag(e γσs 1,..., e γσs k ) ) Monte Carlo updates: random insertion/removal of a spin Equivalent to Rubtsov et al., formally similar to Hirsch-Fye

9 CT-auxiliary field QMC Rombouts et al., PRL (1999) Gull et al., EPL (2008) Configuration space: all possible time-ordered spin configurations Weight: w(τ 1, s 1 ;... ; τ k, s k ) = ( Kdτ 2β ) k N 1 σ = e Γ σ G 0σ (e Γ σ 1 σ det N 1 σ ({τ i, s i }) e Γ σ = diag(e γσs 1,..., e γσs k ) ) Monte Carlo updates: random insertion/removal of a spin Equivalent to Rubtsov et al., formally similar to Hirsch-Fye

10 CT-auxiliary field QMC Rombouts et al., PRL (1999) Gull et al., EPL (2008) Configuration space: all possible time-ordered spin configurations Weight: w(τ 1, s 1 ;... ; τ k, s k ) = ( Kdτ 2β ) k N 1 σ = e Γ σ G 0σ (e Γ σ 1 σ det N 1 σ ({τ i, s i }) e Γ σ = diag(e γσs 1,..., e γσs k ) ) Monte Carlo updates: random insertion/removal of a spin Equivalent to Rubtsov et al., formally similar to Hirsch-Fye

11 M-I transition in the 2D Hubbard model Hubbard model with nn hopping t, nnn hopping t =0 (bandwidth 8t) H = p,α ɛ p c p,αc p,α + U i n i, n i, ɛ p = 2t(cos(p x ) + cos(p y )) DMFT: approximate momentum-dependence of the self-energy Σ(p, ω) = a φ a (p)σ a (ω) DCA: ``tiling of the Brillouin zone

12 M-I transition in the 2D Hubbard model Doping the insulator produces electron/hole pockets 8-site cluster has a ``tile at the expected position of the pockets 8-site DCA-result at U/t=7: first 8% of dopants go into the B sector !t=40, B!t=40, C!t=20, B!t=20, C n B C B C !/t

13 M-I transition in the 2D Hubbard model Doping the insulator produces electron/hole pockets Gull et al., arxiv (2008) 8-site cluster has a ``tile at the expected position of the pockets 8-site DCA-result at U/t=7: first 8% of dopants go into the B sector n !t=40, B!t=40, C!t=20, B!t=20, C 0.52 B 0.51 C !/t

14 M-I transition in the 2D Hubbard model Doping the insulator produces electron/hole pockets Gull et al., arxiv (2008) 8-site cluster has a ``tile at the expected position of the pockets 8-site DCA-result at U/t=7: first 8% of dopants go into the B sector n !t=40, B!t=40, C!t=20, B!t=20, C 0.52 B 0.51 C !/t

15 M-I transition in the 2D Hubbard model Doping the insulator produces electron/hole pockets 8-site cluster has a ``tile at the expected position of the pockets 8-site DCA-result at U/t=7: first 8% of dopants go into the B sector n !t=40, B!t=40, C!t=20, B!t=20, C 0.52 B 0.51 C !/t

16 M-I transition in the 2D Hubbard model Doping the insulator produces electron/hole pockets 8-site cluster has a ``tile at the expected position of the pockets 8-site DCA-result at U/t=7: first 8% of dopants go into the B sector Assuming an ellipsoidal shape for the pocket, we can estimate the aspect ratio b a 1 a 10 b

17 Hybridization expansion Werner et al., PRL (2006) Werner & Millis, RPB (2006) Haule, PRB (2007) Impurity model given by H = H loc + H bath + H hyb H loc = Un n µ(n + n ) H hyb = t σ p c σa p,σ + h.c. p,σ Expand partition function into powers of the hybridization term Z = 1 [ ] dτ 1... dτ 2k T r T e β(h loc+h bath ) H hyb (τ 1 )... H hyb (τ 2k ) 2k! k Trace over bath degrees of freedom yields determinant of hybridization functions F T r bath [...] = σ det Mσ 1, Mσ 1 (i, j) = F σ (τ (c) i τ (c ) j ) t σ p 2 F σ ( iω n ) = p iω n ɛ p

18 Hybridization expansion Werner et al., PRL (2006) Werner & Millis, PRB (2006) Haule, PRB (2007) Monte Carlo configurations consist of segments for spin up and down Monte Carlo updates: random insertion/removal of (anti-)segments Weight of a segment configuration: w ( τ σ(c) 1, τ σ(c ) 1 ;... ; τ σ(c) k σ, τ σ(c )) k σ = e Ul overlap +µ(l +l ) }{{} T r imp [...] Determinant of a k x k matrix resums k! diagrams ( ) F det σ (τ (c) 1 τ (c ) 1 ) F σ (τ (c) 1 τ (c ) 2 ) F σ (τ (c) 2 τ (c ) 1 ) F σ (τ (c) 2 τ (c ) 2 ) σ det Mσ 1 }{{} T r bath [...] dτ 2k σ

19 Hybridization expansion Werner et al., PRL (2006) Werner & Millis, PRB (2006) Haule, PRB (2007) Monte Carlo configurations consist of segments for spin up and down Monte Carlo updates: random insertion/removal of (anti-)segments Weight of a segment configuration: w ( τ σ(c) 1, τ σ(c ) 1 ;... ; τ σ(c) k σ, τ σ(c )) k σ = e Ul overlap +µ(l +l ) }{{} T r imp [...] Determinant of a k x k matrix resums k! diagrams ( ) F det σ (τ (c) 1 τ (c ) 1 ) F σ (τ (c) 1 τ (c ) 2 ) F σ (τ (c) 2 τ (c ) 1 ) F σ (τ (c) 2 τ (c ) 2 ) σ det Mσ 1 }{{} T r bath [...] dτ 2k σ

20 Hybridization expansion Werner et al., PRL (2006) Werner & Millis, PRB (2006) Haule, PRB (2007) Monte Carlo configurations consist of segments for spin up and down Monte Carlo updates: random insertion/removal of (anti-)segments Weight of a segment configuration: w ( τ σ(c) 1, τ σ(c ) 1 ;... ; τ σ(c) k σ, τ σ(c )) k σ = e Ul overlap +µ(l +l ) }{{} T r imp [...] Determinant of a k x k matrix resums k! diagrams ( ) F det σ (τ (c) 1 τ (c ) 1 ) F σ (τ (c) 1 τ (c ) 2 ) F σ (τ (c) 2 τ (c ) 1 ) F σ (τ (c) 2 τ (c ) 2 ) σ det Mσ 1 }{{} T r bath [...] dτ 2k σ

21 Hybridization expansion Werner et al., PRL (2006) Werner & Millis, PRB (2006) Haule, PRB (2007) Monte Carlo configurations consist of segments for spin up and down Monte Carlo updates: random insertion/removal of (anti-)segments Weight of a segment configuration: w ( τ σ(c) 1, τ σ(c ) 1 ;... ; τ σ(c) k σ, τ σ(c )) k σ = e Ul overlap +µ(l +l ) }{{} T r imp [...] Determinant of a k x k matrix resums k! diagrams ( ) F det σ (τ (c) 1 τ (c ) 1 ) F σ (τ (c) 1 τ (c ) 2 ) F σ (τ (c) 2 τ (c ) 1 ) F σ (τ (c) 2 τ (c ) 2 ) σ det Mσ 1 }{{} T r bath [...] dτ 2k σ

22 Hybridization expansion Werner et al., PRL (2006) Werner & Millis, PRB (2006) Haule, PRB (2007) Monte Carlo configurations consist of segments for spin up and down Monte Carlo updates: random insertion/removal of (anti-)segments Weight of a segment configuration: w ( τ σ(c) 1, τ σ(c ) 1 ;... ; τ σ(c) k σ, τ σ(c )) k σ = e Ul overlap +µ(l +l ) }{{} T r imp [...] Determinant of a k x k matrix resums k! diagrams ( ) F det σ (τ (c) 1 τ (c ) 1 ) F σ (τ (c) 1 τ (c ) 2 ) F σ (τ (c) 2 τ (c ) 1 ) F σ (τ (c) 2 τ (c ) 2 ) σ det Mσ 1 }{{} T r bath [...] dτ 2k σ

23 Spin freezing transition in a 3-orbital model 1 site, 3 degenerate orbitals (semi-circular DOS, bandwidth 4t) H loc = µn α,σ + Un α, n α, α,σ α + α>β,σ U n α,σ n β, σ + (U J)n α,σ n β,σ Werner et al., PRL (2008) α β J(ψ α, ψ β, ψ β, ψ α, + ψ β, ψ β, ψ α, ψ α, + h.c.) Captures essential physics of SrRuO3 Similar models for other transition metal oxides, actinide compounds, Fe / Ni based superconductors,...

24 Spin freezing transition in a 3-orbital model Phase diagram for U = U = 2J, J/U = 1/6, βt = 50 Werner et al., PRL (2008) U/t 8 U/t Mott insulator (!t=50) µ/t n Mott insulating ``lobes with 1, 2, 3, (4, 5) electrons

25 Spin freezing transition in a 3-orbital model Phase diagram for U = U = 2J, J/U = 1/6, βt = 50 Werner et al., PRL (2008) U/t 10 8 U/t 10 8 Fermi liquid frozen moment glass transition 4 2 glass transition Mott insulator (!t=50) µ/t n Mott insulating ``lobes with 1, 2, 3, (4, 5) electrons In the metallic phase: transition from Fermi liquid to ``spin glass

26 Spin freezing transition in a 3-orbital model Phase diagram for U = U = 2J, J/U = 1/6, βt = 50 Werner et al., PRL (2008) U/t 10 8 U/t 10 8 Fermi liquid frozen moment glass transition 4 2 glass transition Mott insulator (!t=50) µ/t n Critical exponents associated with the transition can be seen in a wide quantum critical regime e. g. non Fermi-liquid self-energy ImΣ/t (iω n /t) α, α 0.5

27 Spin freezing transition in a 3-orbital model Werner et al., PRL (2008) A self-energy with frequency dependence Σ(ω) ω 1/2 implies an optical conductivity σ(ω) 1/ω 1/2

28 Real-time formalism Quantum dot coupled to two infinite leads Muehlbacher & Rabani (2008) Schmidt et al. (2008) Schiro & Fabrizio (2008) Werner et al. (2008) H = H dot + H leads + H mix H dot = ɛ d (n d + n d ) + Un d n d H leads = α=l,r H mix = pσ α=l,r p,σ ( ɛ α pσ µ α ) a α pσa α pσ ( V α p a α pσd σ + h.c. ) Goldhaber-Gordon (1998) Initial preparation of the dot: ρ 0,dot Non-interacting leads: ρ 0,leads (DOS, Fermi distribution function) Level broadening: Γ α (ω) = π Vp α 2 δ(ω ɛ α p ) p

29 Real-time formalism Quantum dot coupled to two infinite leads H = H dot + H leads + H mix H dot = ɛ d (n d + n d ) + Un d n d H leads = α=l,r H mix = pσ α=l,r p,σ ( ɛ α pσ µ α ) a α pσa α pσ ( V α p a α pσd σ + h.c. ) Muehlbacher & Rabani (2008) Schmidt et al. (2008) Schiro & Fabrizio (2008) Werner et al. (2008) µ L ɛ p V p U ɛ d V p Goldhaber-Gordon (1998) µ R µ R ɛ p Initial preparation of the dot: ρ 0,dot Non-interacting leads: ρ 0,leads (DOS, Fermi distribution function) Level broadening: Γ α (ω) = π Vp α 2 δ(ω ɛ α p ) p

30 Real-time formalism Interaction picture Muehlbacher & Rabani (2008) Schmidt et al. (2008) Schiro & Fabrizio (2008) Werner et al. (2008) H = H 1 + H 2, O(s) = e ish 1 Oe ish 1 O(t) = T r [ρ 0 e iht Oe iht] ( = T r [ρ 0 T e i R ) t 0 dsh 2(s) O(t) (T e i R )] t 0 dsh 2(s ) ``Keldysh contour ρ 0 e iht O 0 t e iht Expand time evolution operators in powers of H 2

31 Real-time formalism Interaction picture Muehlbacher & Rabani (2008) Schmidt et al. (2008) Schiro & Fabrizio (2008) Werner et al. (2008) H = H 1 + H 2, O(s) = e ish 1 Oe ish 1 O(t) = T r [ρ 0 e iht Oe iht] ( = T r [ρ 0 T e i R ) t 0 dsh 2(s) O(t) (T e i R )] t 0 dsh 2(s ) ``Keldysh contour ρ 0 ih 2 ih 2 ih 2 O 0 ih 2 ih 2 t Expand time evolution operators in powers of H 2

32 Weak-coupling expansion Werner, Oka & Millis, PRB (2009) Configuration space: all possible spin configurations on the Keldysh contour Weight: analogous to imaginary-time CT-AUX with { G G 0,σ (t K, t < K) = 0,σ (t, t ) t K < t K G > 0,σ (t, t ) t K t K ( G </> dω 0 (t, t ) = ±i 2π e iω(t t ) α=l,r Γα 1 tanh ( ω µ α )) 2T (ω ɛ d U/2) 2 + Γ 2

33 Weak-coupling expansion Werner, Oka & Millis, PRB (2009) Configuration space: all possible spin configurations on the Keldysh contour current Weight: analogous to imaginary-time CT-AUX with V p a pσd σ { G G 0,σ (t K, t < K) = 0,σ (t, t ) t K < t p K G > 0,σ (t, t ) t K t K ( G </> dω 0 (t, t ) = ±i 2π e iω(t t ) α=l,r Γα 1 tanh ( ω µ α )) 2T (ω ɛ d U/2) 2 + Γ 2

34 Weak-coupling expansion Werner, Oka & Millis, PRB (2009) Monte Carlo sampling: random insertion/removal of spins Current measurement: I = 2Im σ c w I σ c = 2Im σ [ w I σ c w c w c 1 φ c wc ]

35 Weak-coupling expansion Werner, Oka & Millis, PRB (2009) Monte Carlo sampling: random insertion/removal of spins Current measurement: I = 2Im σ c w I σ c = 2Im σ [ w I σ c w c w c 1 φ c wc ]

36 Weak-coupling expansion Werner, Oka & Millis, PRB (2009) Monte Carlo sampling: random insertion/removal of spins Current measurement: I = 2Im σ c w I σ c = 2Im σ [ w I σ c w c w c 1 φ c wc ]

37 Weak-coupling expansion Werner, Oka & Millis, PRB (2009) Monte Carlo sampling: random insertion/removal of spins Current measurement: I = 2Im σ c w I σ c = 2Im σ [ w I σ c w c w c 1 φ c wc ]

38 Weak-coupling expansion Werner, Oka & Millis, PRB (2009) Monte Carlo sampling: random insertion/removal of spins Current measurement: I = 2Im σ c w I σ c = 2Im σ [ w I σ c w c w c 1 φ c wc ]

39 Weak-coupling expansion Werner, Oka & Millis, PRB (2009) Monte Carlo sampling: random insertion/removal of spins Current measurement: I = 2Im σ c w I σ c = 2Im σ [ w I σ c w c w c 1 φ c wc ]

40 Weak-coupling expansion Werner, Oka & Millis, PRB (2009) Interaction and voltage dependence of the current I/! U/!=2 U/!=3 (I(U)-I(0))/! U/!=2 U/!= t! V/! Interaction suppresses the current Correction largest for V U 4th order perturbation theory by Fujii & Ueda identical to MC for U = 2Γ

41 Weak-coupling expansion Werner, Oka & Millis, PRB (2009) Interaction and voltage dependence of the double occupancy double occupancy U = 2Γ V/!=0 V/!=1 V/!=2 V/!=3 V/!=4 steady state double occupancy U/!=2 U/!= t! V/! Convergence to steady state faster for larger voltage bias

42 Weak-coupling expansion Non-equilibrium DMFT Dynamics of the Hubbard model after a ``quantum quench Eckstein and Werner (work in progress) ReG(t, t ) "G_u5t3_1" u 2:4:6 "G_u5t3_2" u 2:4:6 "G_u5t3_9" u 2:4: ImG(t, t ) "G_u5t3_1" u 2:4:8 "G_u5t3_2" u 2:4:8 "G_u5t3_9" u 2:4:

43 Weak-coupling expansion Non-equilibrium DMFT Dynamics of the Hubbard model after a ``quantum quench Eckstein and Werner (work in progress) n k eps k =-2... eps k = t eps k n k t

44 Hybridization expansion Muehlbacher & Rabani (2008) Schmidt et al. (2008) Schiro & Fabrizio (2008) Werner et al. (2008) Configuration space: all possible segment configurations on the (doubled) Keldysh contour 0! 0! 2!+ U! 0! " 0 0 Hybridization matrix becomes Σ < (t 1 t 1) Σ < (t 2 t 1)... Σ > (t 1 t 2) Σ < (t 2 t 2) t Monte Carlo sampling: random insertions/removals of segments

45 Hybridization expansion Muehlbacher & Rabani (2008) Schmidt et al. (2008) Schiro & Fabrizio (2008) Werner et al. (2008) Configuration space: all possible segment configurations on the (doubled) Keldysh contour! 0 0 Hybridization matrix becomes Σ < (t 1 t 1) Σ < (t 2 t 1)... Σ > (t 1 t 2) Σ < (t 2 t 2) t Monte Carlo sampling: random insertions/removals of segments

46 Hybridization expansion Σ <,> depends on the DOS and voltage bias Muehlbacher & Rabani (2008) Schmidt et al. (2008) Schiro & Fabrizio (2008) Werner et al. (2008) "2# c! µ R # c µr! µ L µ L $# c soft cutoff: hard cutoff: Σ <,> soft (t) = Γ cos( V 2 ) β sinh( π β (t ± i/ω c)) Σ <,> hard (t) = Γ ( cos( V 2 t) β sinh( π β t) ) e±iωct ν sinh( π ν t)

47 Hybridization expansion Initial state: dot decoupled from the leads Muehlbacher & Rabani (2008) Schmidt et al. (2008) Schiro & Fabrizio (2008) Werner et al. (2008) Time evolution of the left, right and average current ( U/Γ = 8) current/! I L =-I R, V/!=0-1.2 I L, V/!= I R, V/!= t! current/! dn/dt=i L -I R, V/!=0 dn/dt=i L -I L, V/!= I=I L +I R, V/!= t! Initially, electrons rush to the dot from both leads; after tγ 2 a ``steady state is established with I L = I R

48 Hybridization expansion Muehlbacher & Rabani (2008) Schmidt et al. (2008) Schiro & Fabrizio (2008) Werner et al. (2008) Current-Voltage characteristic of a strongly interacting dot ( U/Γ = 8) measured at tγ = 1, 1.25 I/! V/!= t! I/! U/!= V/! Is tγ = 1, 1.25 close enough to steady state? Probably not for small voltage bias

49 Hybridization expansion Muehlbacher & Rabani (2008) Schmidt et al. (2008) Schiro & Fabrizio (2008) Werner et al. (2008) Comparison to ``fixed gap calculation and 4th order perturbation theory U/!= U/!= I/! I/! V/! V/!

50 (Dis)advantages of the two approaches Perturbation order: weak-coupling (left), hyb-expansion (right) U/!=2 U/!=3 U/!= U/!=0 U/!=5 probability probability e perturbation order 1e perturbation order Weak-coupling: restricted to small U, but can reach steady state Hybridization expansion: cannot quite reach steady state for U>0, requires finite bandwidth, but can treat strong interactions Both: sign problem which grows exponentially with time

51 Summary and Conclusions Diagrammatic QMC impurity solvers Enable efficient DMFT simulations of fermionic lattice models Weak-coupling solver scales favorably with number of sites/ orbitals: ideal for large impurity clusters Hybridization expansion allows to treat multi-orbital models with complicated interactions Keldysh implementation of diagrammatic QMC Enables the study of transport and relaxation dynamics Sign problem prevents the simulation of long time intervals Impurity solver for non-equilibrium DMFT

Diagrammatic Monte Carlo methods for Fermions

Diagrammatic Monte Carlo methods for Fermions Diagrammatic Monte Carlo methods for Fermions Philipp Werner Department of Physics, Columbia University PRL 97, 7645 (26) PRB 74, 15517 (26) PRB 75, 8518 (27) PRB 76, 235123 (27) PRL 99, 12645 (27) PRL

More information

Continuous time QMC methods

Continuous time QMC methods Continuous time QMC methods Matthias Troyer (ETH Zürich) Philipp Werner (Columbia ETHZ) Emanuel Gull (ETHZ Columbia) Andy J. Millis (Columbia) Olivier Parcollet (Paris) Sebastian Fuchs, Thomas Pruschke

More information

Dynamical mean field approach to correlated lattice systems in and out of equilibrium

Dynamical mean field approach to correlated lattice systems in and out of equilibrium Dynamical mean field approach to correlated lattice systems in and out of equilibrium Philipp Werner University of Fribourg, Switzerland Kyoto, December 2013 Overview Dynamical mean field approximation

More information

The Hubbard model out of equilibrium - Insights from DMFT -

The Hubbard model out of equilibrium - Insights from DMFT - The Hubbard model out of equilibrium - Insights from DMFT - t U Philipp Werner University of Fribourg, Switzerland KITP, October 212 The Hubbard model out of equilibrium - Insights from DMFT - In collaboration

More information

Introduction to DMFT

Introduction to DMFT Introduction to DMFT Lecture 2 : DMFT formalism 1 Toulouse, May 25th 2007 O. Parcollet 1. Derivation of the DMFT equations 2. Impurity solvers. 1 Derivation of DMFT equations 2 Cavity method. Large dimension

More information

w2dynamics : operation and applications

w2dynamics : operation and applications w2dynamics : operation and applications Giorgio Sangiovanni ERC Kick-off Meeting, 2.9.2013 Hackers Nico Parragh (Uni Wü) Markus Wallerberger (TU) Patrik Gunacker (TU) Andreas Hausoel (Uni Wü) A solver

More information

A continuous time algorithm for quantum impurity models

A continuous time algorithm for quantum impurity models ISSP, Aug. 6 p.1 A continuou time algorithm for quantum impurity model Philipp Werner Department of Phyic, Columbia Univerity cond-mat/512727 ISSP, Aug. 6 p.2 Outline Introduction Dynamical mean field

More information

Electronic correlations in models and materials. Jan Kuneš

Electronic correlations in models and materials. Jan Kuneš Electronic correlations in models and materials Jan Kuneš Outline Dynamical-mean field theory Implementation (impurity problem) Single-band Hubbard model MnO under pressure moment collapse metal-insulator

More information

Spin and orbital freezing in unconventional superconductors

Spin and orbital freezing in unconventional superconductors Spin and orbital freezing in unconventional superconductors Philipp Werner University of Fribourg Kyoto, November 2017 Spin and orbital freezing in unconventional superconductors In collaboration with:

More information

Magnetic Moment Collapse drives Mott transition in MnO

Magnetic Moment Collapse drives Mott transition in MnO Magnetic Moment Collapse drives Mott transition in MnO J. Kuneš Institute of Physics, Uni. Augsburg in collaboration with: V. I. Anisimov, A. V. Lukoyanov, W. E. Pickett, R. T. Scalettar, D. Vollhardt,

More information

IMPACT ionization and thermalization in photo-doped Mott insulators

IMPACT ionization and thermalization in photo-doped Mott insulators IMPACT ionization and thermalization in photo-doped Mott insulators Philipp Werner (Fribourg) in collaboration with Martin Eckstein (Hamburg) Karsten Held (Vienna) Cargese, September 16 Motivation Photo-doping:

More information

Role of Hund Coupling in Two-Orbital Systems

Role of Hund Coupling in Two-Orbital Systems Role of Hund Coupling in Two-Orbital Systems Gun Sang Jeon Ewha Womans University 2013-08-30 NCTS Workshop on Quantum Condensation (QC13) collaboration with A. J. Kim, M.Y. Choi (SNU) Mott-Hubbard Transition

More information

Quantum impurity models Algorithms and applications

Quantum impurity models Algorithms and applications 1 Quantum impurity models Algorithms and applications Collège de France, 5 Mai 21 O. Parcollet Institut de Physique Théorique CEA-Saclay, France Motivations : why do we need specific algorithms? A few

More information

6. Auxiliary field continuous time quantum Monte Carlo

6. Auxiliary field continuous time quantum Monte Carlo 6. Auxiliary field continuous time quantum Monte Carlo The purpose of the auxiliary field continuous time quantum Monte Carlo method 1 is to calculate the full Greens function of the Anderson impurity

More information

Dual fermion approach to unconventional superconductivity and spin/charge density wave

Dual fermion approach to unconventional superconductivity and spin/charge density wave June 24, 2014 (ISSP workshop) Dual fermion approach to unconventional superconductivity and spin/charge density wave Junya Otsuki (Tohoku U, Sendai) in collaboration with H. Hafermann (CEA Gif-sur-Yvette,

More information

An introduction to the dynamical mean-field theory. L. V. Pourovskii

An introduction to the dynamical mean-field theory. L. V. Pourovskii An introduction to the dynamical mean-field theory L. V. Pourovskii Nordita school on Photon-Matter interaction, Stockholm, 06.10.2016 OUTLINE The standard density-functional-theory (DFT) framework An

More information

O. Parcollet CEA-Saclay FRANCE

O. Parcollet CEA-Saclay FRANCE Cluster Dynamical Mean Field Analysis of the Mott transition O. Parcollet CEA-Saclay FRANCE Dynamical Breakup of the Fermi Surface in a doped Mott Insulator M. Civelli, M. Capone, S. S. Kancharla, O.P.,

More information

Continuous-time quantum Monte Carlo algorithms for impurity problems

Continuous-time quantum Monte Carlo algorithms for impurity problems Continuous-time quantum Monte Carlo algorithms for impurity problems Michel Ferrero Centre de Physique Théorique Ecole Polytechnique, France Quantum Monte Carlo methods at work for novel phases of matter

More information

Cluster Extensions to the Dynamical Mean-Field Theory

Cluster Extensions to the Dynamical Mean-Field Theory Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? Thomas Pruschke Institut für Theoretische Physik Universität

More information

An efficient impurity-solver for the dynamical mean field theory algorithm

An efficient impurity-solver for the dynamical mean field theory algorithm Papers in Physics, vol. 9, art. 95 (217) www.papersinphysics.org Received: 31 March 217, Accepted: 6 June 217 Edited by: D. Domínguez Reviewed by: A. Feiguin, Northeastern University, Boston, United States.

More information

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Frithjof B. Anders Institut für Theoretische Physik Universität Bremen Göttingen, December

More information

Continuous Time Monte Carlo methods for fermions

Continuous Time Monte Carlo methods for fermions Continuous Time Monte Carlo methods for fermions Alexander Lichtenstein University of Hamburg In collaboration with A. Rubtsov (Moscow University) P. Werner (ETH Zurich) Outline Calculation of Path Integral

More information

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Anna Kauch Institute of Theoretical Physics Warsaw University PIPT/Les Houches Summer School on Quantum Magnetism

More information

Mott transition : beyond Dynamical Mean Field Theory

Mott transition : beyond Dynamical Mean Field Theory Mott transition : beyond Dynamical Mean Field Theory O. Parcollet 1. Cluster methods. 2. CDMFT 3. Mott transition in frustrated systems : hot-cold spots. Coll: G. Biroli (SPhT), G. Kotliar (Rutgers) Ref:

More information

Realistic Materials Simulations Using Dynamical Mean Field Theory

Realistic Materials Simulations Using Dynamical Mean Field Theory Realistic Materials Simulations sing Dynamical Mean Field Theory Elias Assmann AG Held, Institut für Festkörperphysik, T Wien VSC ser Workshop, Feb 28 2012 Elias Assmann (IFP T Wien) LDA+DMFT VSC Workshop

More information

Diagrammatic Green s Functions Approach to the Bose-Hubbard Model

Diagrammatic Green s Functions Approach to the Bose-Hubbard Model Diagrammatic Green s Functions Approach to the Bose-Hubbard Model Matthias Ohliger Institut für Theoretische Physik Freie Universität Berlin 22nd of January 2008 Content OVERVIEW CONSIDERED SYSTEM BASIC

More information

DMFT for correlated bosons and boson-fermion mixtures

DMFT for correlated bosons and boson-fermion mixtures DMFT for correlated bosons and boson-fermion mixtures Workshop on Recent developments in dynamical mean-field theory ETH ürich, September 29, 2009 Dieter Vollhardt Supported by Deutsche Forschungsgemeinschaft

More information

De l atome au. supraconducteur à haute température critique. O. Parcollet Institut de Physique Théorique CEA-Saclay, France

De l atome au. supraconducteur à haute température critique. O. Parcollet Institut de Physique Théorique CEA-Saclay, France De l atome au 1 supraconducteur à haute température critique O. Parcollet Institut de Physique Théorique CEA-Saclay, France Quantum liquids Quantum many-body systems, fermions (or bosons), with interactions,

More information

Field-Driven Quantum Systems, From Transient to Steady State

Field-Driven Quantum Systems, From Transient to Steady State Field-Driven Quantum Systems, From Transient to Steady State Herbert F. Fotso The Ames Laboratory Collaborators: Lex Kemper Karlis Mikelsons Jim Freericks Device Miniaturization Ultracold Atoms Optical

More information

Quantum Cluster Methods (CPT/CDMFT)

Quantum Cluster Methods (CPT/CDMFT) Quantum Cluster Methods (CPT/CDMFT) David Sénéchal Département de physique Université de Sherbrooke Sherbrooke (Québec) Canada Autumn School on Correlated Electrons Forschungszentrum Jülich, Sept. 24,

More information

Dynamical Mean Field within Iterative Perturbation Theory

Dynamical Mean Field within Iterative Perturbation Theory Vol. 111 (2007) ACTA PHYSICA POLONICA A No. 5 Proceedings of the XII National School Correlated Electron Systems..., Ustroń 2006 Dynamical Mean Field within Iterative Perturbation Theory B. Radzimirski

More information

NiO - hole doping and bandstructure of charge transfer insulator

NiO - hole doping and bandstructure of charge transfer insulator NiO - hole doping and bandstructure of charge transfer insulator Jan Kuneš Institute for Physics, Uni. Augsburg Collaboration: V. I. Anisimov S. L. Skornyakov A. V. Lukoyanov D. Vollhardt Outline NiO -

More information

DMFT and beyond : IPAM, Los Angeles, Jan. 26th 2009 O. Parcollet Institut de Physique Théorique CEA-Saclay, France

DMFT and beyond : IPAM, Los Angeles, Jan. 26th 2009 O. Parcollet Institut de Physique Théorique CEA-Saclay, France DMFT and beyond : From quantum impurities to high temperature superconductors 1 IPAM, Los Angeles, Jan. 26th 29 O. Parcollet Institut de Physique Théorique CEA-Saclay, France Coll : M. Ferrero (IPhT),

More information

An introduction to Dynamical Mean Field Theory (DMFT) and DFT+DMFT

An introduction to Dynamical Mean Field Theory (DMFT) and DFT+DMFT An introduction to Dynamical Mean Field Theory (DMFT) and DFT+DMFT B. Amadon CEA, DAM, DIF, F-9297 Arpajon, France International summer School in electronic structure Theory: electron correlation in Physics

More information

Quantum impurities in a bosonic bath

Quantum impurities in a bosonic bath Ralf Bulla Institut für Theoretische Physik Universität zu Köln 27.11.2008 contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity

More information

Bose-Hubbard Model (BHM) at Finite Temperature

Bose-Hubbard Model (BHM) at Finite Temperature Bose-Hubbard Model (BHM) at Finite Temperature - a Layman s (Sebastian Schmidt) proposal - pick up Diploma work at FU-Berlin with PD Dr. Axel Pelster (Uni Duisburg-Essen) ~ Diagrammatic techniques, high-order,

More information

EQUATION OF STATE OF THE UNITARY GAS

EQUATION OF STATE OF THE UNITARY GAS EQUATION OF STATE OF THE UNITARY GAS DIAGRAMMATIC MONTE CARLO Kris Van Houcke (UMass Amherst & U of Ghent) Félix Werner (UMass Amherst) Evgeny Kozik Boris Svistunov & Nikolay Prokofev (UMass Amherst) (ETH

More information

Lecture 6: Fluctuation-Dissipation theorem and introduction to systems of interest

Lecture 6: Fluctuation-Dissipation theorem and introduction to systems of interest Lecture 6: Fluctuation-Dissipation theorem and introduction to systems of interest In the last lecture, we have discussed how one can describe the response of a well-equilibriated macroscopic system to

More information

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models arxiv:1609.03760 Lode Pollet Dario Hügel Hugo Strand, Philipp Werner (Uni Fribourg) Algorithmic developments diagrammatic

More information

561 F 2005 Lecture 14 1

561 F 2005 Lecture 14 1 56 F 2005 Lecture 4 56 Fall 2005 Lecture 4 Green s Functions at Finite Temperature: Matsubara Formalism Following Mahan Ch. 3. Recall from T=0 formalism In terms of the exact hamiltonian H the Green s

More information

Dynamics of Quantum Many Body Systems Far From Thermal Equilibrium

Dynamics of Quantum Many Body Systems Far From Thermal Equilibrium Dynamics of Quantum Many Body Systems Far From Thermal Equilibrium Marco Schiro CNRS-IPhT Saclay Schedule: Friday Jan 22, 29 - Feb 05,12,19. 10h-12h Contacts: marco.schiro@cea.fr Lecture Notes: ipht.cea.fr

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

Nonequilibrium Physics of Correlated Electron Materials IV: Nonequilibrium Phase Transitions

Nonequilibrium Physics of Correlated Electron Materials IV: Nonequilibrium Phase Transitions Nonequilibrium Physics of Correlated Electron Materials IV: Nonequilibrium Phase Transitions! A. J. Millis College de France Oct 12, 2015 Two classes of nonequilibrium manybody phenomena 1. Steady state

More information

Accelerated Monte Carlo simulations with restricted Boltzmann machines

Accelerated Monte Carlo simulations with restricted Boltzmann machines Accelerated simulations with restricted Boltzmann machines Li Huang 1 Lei Wang 2 1 China Academy of Engineering Physics 2 Institute of Physics, Chinese Academy of Sciences July 6, 2017 Machine Learning

More information

Magnetism and Superconductivity in Decorated Lattices

Magnetism and Superconductivity in Decorated Lattices Magnetism and Superconductivity in Decorated Lattices Mott Insulators and Antiferromagnetism- The Hubbard Hamiltonian Illustration: The Square Lattice Bipartite doesn t mean N A = N B : The Lieb Lattice

More information

Nonequilibrium current and relaxation dynamics of a charge-fluctuating quantum dot

Nonequilibrium current and relaxation dynamics of a charge-fluctuating quantum dot Nonequilibrium current and relaxation dynamics of a charge-fluctuating quantum dot Volker Meden Institut für Theorie der Statistischen Physik with Christoph Karrasch, Sabine Andergassen, Dirk Schuricht,

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Mar 2006

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Mar 2006 Non-Fermi-liquid phases in the two-band Hubbard model: Finite-temperature exact diagonalization study of Hund s rule coupling A. Liebsch and T. A. Costi Institut für Festkörperforschung, Forschungszentrum

More information

The Mott Metal-Insulator Transition

The Mott Metal-Insulator Transition Florian Gebhard The Mott Metal-Insulator Transition Models and Methods With 38 Figures Springer 1. Metal Insulator Transitions 1 1.1 Classification of Metals and Insulators 2 1.1.1 Definition of Metal

More information

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ.

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ. 2013/6/07 (EQPCM) 1 /21 Tsuneya Yoshida Kyoto Univ. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami T.Y., Satoshi Fujimoto, and Norio Kawakami Phys. Rev. B 85, 125113 (2012) Outline 2 /21

More information

arxiv:cond-mat/ v2 [cond-mat.str-el] 24 Feb 2006

arxiv:cond-mat/ v2 [cond-mat.str-el] 24 Feb 2006 Applications of Cluster Perturbation Theory Using Quantum Monte Carlo Data arxiv:cond-mat/0512406v2 [cond-mat.str-el] 24 Feb 2006 Fei Lin, Erik S. Sørensen, Catherine Kallin and A. John Berlinsky Department

More information

Diagrammatic extensions of (E)DMFT: Dual boson

Diagrammatic extensions of (E)DMFT: Dual boson Diagrammatic extensions of (E)DMFT: Dual boson IPhT, CEA Saclay, France ISSP, June 25, 2014 Collaborators Mikhail Katsnelson (University of Nijmegen, The Netherlands) Alexander Lichtenstein (University

More information

Dynamical mean-field theory and strong correlations in solids and molecules

Dynamical mean-field theory and strong correlations in solids and molecules Dynamical mean-field theory and strong correlations in solids and molecules Collaborators: Cedric Weber Peter B. Littlewood Mike C. Payne Gabriel Kotliar David D. O Regan Nicholas D. M. Hine 1 Outlines

More information

4 Development of the LDA+DMFT Approach

4 Development of the LDA+DMFT Approach 4 Development of the LDA+DMFT Approach Alexander Lichtenstein I. Institut für Theoretische Physik Universität Hamburg Contents 1 Introduction 2 2 Functional approach: from DFT to DMFT 4 3 Local correlations:

More information

Dynamical phase transition and prethermalization. Mobile magnetic impurity in Fermi superfluids

Dynamical phase transition and prethermalization. Mobile magnetic impurity in Fermi superfluids Dynamical phase transition and prethermalization Pietro Smacchia, Alessandro Silva (SISSA, Trieste) Dima Abanin (Perimeter Institute, Waterloo) Michael Knap, Eugene Demler (Harvard) Mobile magnetic impurity

More information

Many body physics issues with the core-hole propagator and resonant inelastic X-ray scattering

Many body physics issues with the core-hole propagator and resonant inelastic X-ray scattering Many body physics issues with the core-hole propagator and resonant inelastic X-ray scattering Jim Freericks (Georgetown University) Funding: Civilian Research and Development Foundation In collaboration

More information

Superfluidity near the Mott transition of cold bosonic atoms: validating a quantum simulator

Superfluidity near the Mott transition of cold bosonic atoms: validating a quantum simulator Superfluidity near the Mott transition of cold bosonic atoms: validating a quantum simulator Collaborators Simulations of bosons Lode Pollet (Harvard) Boris Svistunov (UMass) Nikolay Prokof ev (UMass)

More information

Local moment approach to multi-orbital Anderson and Hubbard models

Local moment approach to multi-orbital Anderson and Hubbard models Local moment approach to multi-orbital Anderson and Hubbard models Anna Kauch 1 and Krzysztof Byczuk,1 1 Institute of Theoretical Physics, Warsaw University, ul. Hoża 69, PL--681 Warszawa, Poland Theoretical

More information

Nano-DMFT : the electronic structure of small, strongly correlated, systems

Nano-DMFT : the electronic structure of small, strongly correlated, systems Nano-DMFT : the electronic structure of small, strongly correlated, systems Nanoscale Dynamical Mean-Field Theory for Molecules and Mesoscopic Devices in the Strong-Correlation Regime Author: S. Florens,

More information

Filippo Tramonto. Miniworkshop talk: Quantum Monte Carlo simula9ons of low temperature many- body systems

Filippo Tramonto. Miniworkshop talk: Quantum Monte Carlo simula9ons of low temperature many- body systems Miniworkshop talk: Quantum Monte Carlo simulations of low temperature many-body systems Physics, Astrophysics and Applied Physics Phd school Supervisor: Dott. Davide E. Galli Outline Interests in quantum

More information

Quantum Monte Carlo method in details.

Quantum Monte Carlo method in details. Quantum Monte Carlo method in details. I. CONTINUOUS AND DISCRETE HUBBARD-STRATONOVICH TRANSFORMATIONS The HS transformation is based on identity : exp{ 1 2 A2 } = (2π) 1/2 + dx exp{ 1 2 x2 xa} (1) This

More information

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS http://www.staff.science.uu.nl/~mitch003/nrg.html March 2015 Anrew Mitchell Utrecht University Quantum impurity problems Part 1: Quantum impurity problems

More information

Magnetism and Superconductivity on Depleted Lattices

Magnetism and Superconductivity on Depleted Lattices Magnetism and Superconductivity on Depleted Lattices 1. Square Lattice Hubbard Hamiltonian: AF and Mott Transition 2. Quantum Monte Carlo 3. The 1/4 depleted (Lieb) lattice and Flat Bands 4. The 1/5 depleted

More information

Mott physics: from basic concepts to iron superconductors

Mott physics: from basic concepts to iron superconductors Mott physics: from basic concepts to iron superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Outline Mott physics: Basic concepts (single orbital & half filling) - Mott

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

arxiv: v2 [cond-mat.str-el] 27 Feb 2013

arxiv: v2 [cond-mat.str-el] 27 Feb 2013 Spin-boson coupling in continuous-time quantum Monte Carlo Junya Otsuki 1,2 1 Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, D-86135

More information

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824

More information

The Hubbard Model In Condensed Matter and AMO systems

The Hubbard Model In Condensed Matter and AMO systems The Hubbard Model In Condensed Matter and AMO systems Transition Metal Oxides The Fermion Hubbard Model Transition Metal Oxides - The Whole Story High Temperature Superconductors Monte Carlo and Quantum

More information

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University PY502, Computational Physics, December 12, 2017 Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Advancing Research in Basic Science and Mathematics Example:

More information

Weak-Coupling CT-QMC: projective schemes and applications to retarded interactions.

Weak-Coupling CT-QMC: projective schemes and applications to retarded interactions. Weak-Couplig CT-QMC: projective schemes ad applicatios to retarded iteractios. F.F. Assaad (IPAM Jauary 26-3, 29) Outlie Weak couplig CT-QMC ( Rubtsov et al. PRB 5 ). Projective schemes. Retarded iteractios:

More information

Phase Diagram of the Multi-Orbital Hubbard Model

Phase Diagram of the Multi-Orbital Hubbard Model Phase Diagram of the Multi-Orbital Hubbard Model Submitted by Bence Temesi BACHELOR THESIS Faculty of Physics at Ludwig-Maximilians-Universität München Supervisor: Prof. Dr. Jan von Delft Munich, August

More information

Spin liquid phases in strongly correlated lattice models

Spin liquid phases in strongly correlated lattice models Spin liquid phases in strongly correlated lattice models Sandro Sorella Wenjun Hu, F. Becca SISSA, IOM DEMOCRITOS, Trieste Seiji Yunoki, Y. Otsuka Riken, Kobe, Japan (K-computer) Williamsburg, 14 June

More information

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University NATIONAL TAIWAN UNIVERSITY, COLLOQUIUM, MARCH 10, 2015 Quantum and classical annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Cheng-Wei Liu (BU) Anatoli Polkovnikov (BU)

More information

Part III: Impurities in Luttinger liquids

Part III: Impurities in Luttinger liquids Functional RG for interacting fermions... Part III: Impurities in Luttinger liquids 1. Luttinger liquids 2. Impurity effects 3. Microscopic model 4. Flow equations 5. Results S. Andergassen, T. Enss (Stuttgart)

More information

Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model

Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model Örs Legeza Reinhard M. Noack Collaborators Georg Ehlers Jeno Sólyom Gergely Barcza Steven R. White Collaborators Georg Ehlers

More information

From unitary dynamics to statistical mechanics in isolated quantum systems

From unitary dynamics to statistical mechanics in isolated quantum systems From unitary dynamics to statistical mechanics in isolated quantum systems Marcos Rigol Department of Physics The Pennsylvania State University The Tony and Pat Houghton Conference on Non-Equilibrium Statistical

More information

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Krzysztof Byczuk Institute of Physics, Augsburg University Institute of Theoretical Physics, Warsaw University October

More information

Quantum-Classical Hybrid Monte Carlo Algorithm with Applications to AQC

Quantum-Classical Hybrid Monte Carlo Algorithm with Applications to AQC Quantum-Classical Hybrid Monte Carlo Algorithm with Applications to AQC Itay Hen Information Sciences Institute, USC Workshop on Theory and Practice of AQC and Quantum Simulation Trieste, Italy August

More information

Iterative real-time path integral approach to nonequilibrium quantum transport

Iterative real-time path integral approach to nonequilibrium quantum transport Iterative real-time path integral approach to nonequilibrium quantum transport Michael Thorwart Institut für Theoretische Physik Heinrich-Heine-Universität Düsseldorf funded by the SPP 1243 Quantum Transport

More information

Bad metallic behavior, entropy & thermopower: DMFT results on ruthenates

Bad metallic behavior, entropy & thermopower: DMFT results on ruthenates Bad metallic behavior, entropy & thermopower: DMFT results on ruthenates Jernej Mravlje SPICE Workshop, Schloss Waldthausen, 28. June 2015 People A. Georges, CdF,EP,UNIGE & X. Deng, Rutgers,NJ, L. de'medici,

More information

Mott insulators. Introduction Cluster-model description Chemical trend Band description Self-energy correction

Mott insulators. Introduction Cluster-model description Chemical trend Band description Self-energy correction Mott insulators Introduction Cluster-model description Chemical trend Band description Self-energy correction Introduction Mott insulators Lattice models for transition-metal compounds Hubbard model Anderson-lattice

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

Advanced Computation for Complex Materials

Advanced Computation for Complex Materials Advanced Computation for Complex Materials Computational Progress is brainpower limited, not machine limited Algorithms Physics Major progress in algorithms Quantum Monte Carlo Density Matrix Renormalization

More information

arxiv: v1 [physics.comp-ph] 10 Aug 2017

arxiv: v1 [physics.comp-ph] 10 Aug 2017 A QUANTUM KINETIC MONTE CARLO METHOD FOR QUANTUM MANY-BODY SPIN DYNAMICS arxiv:79.386v [physics.comp-ph] Aug 27 ZHENNING CAI AND JIANFENG LU Abstract. We propose a general framework of quantum kinetic

More information

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures Kondo Effects in Metals: magnetic impurities

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

Correlated Electron Dynamics and Nonequilibrium Dynamical Mean-Field Theory

Correlated Electron Dynamics and Nonequilibrium Dynamical Mean-Field Theory Correlated Electron Dynamics and Nonequilibrium Dynamical Mean-Field Theory Marcus Kollar Theoretische Physik III Electronic Correlations and Magnetism University of Augsburg Autumn School on Correlated

More information

Transport Coefficients of the Anderson Model via the numerical renormalization group

Transport Coefficients of the Anderson Model via the numerical renormalization group Transport Coefficients of the Anderson Model via the numerical renormalization group T. A. Costi 1, A. C. Hewson 1 and V. Zlatić 2 1 Department of Mathematics, Imperial College, London SW7 2BZ, UK 2 Institute

More information

Superconducting properties of carbon nanotubes

Superconducting properties of carbon nanotubes Superconducting properties of carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf A. De Martino, F. Siano Overview Superconductivity in ropes of nanotubes

More information

7.4. Why we have two different types of materials: conductors and insulators?

7.4. Why we have two different types of materials: conductors and insulators? Phys463.nb 55 7.3.5. Folding, Reduced Brillouin zone and extended Brillouin zone for free particles without lattices In the presence of a lattice, we can also unfold the extended Brillouin zone to get

More information

Lecture 20: Effective field theory for the Bose- Hubbard model

Lecture 20: Effective field theory for the Bose- Hubbard model Lecture 20: Effective field theory for the Bose- Hubbard model In the previous lecture, we have sketched the expected phase diagram of the Bose-Hubbard model, and introduced a mean-field treatment that

More information

The nature of superfluidity in the cold atomic unitary Fermi gas

The nature of superfluidity in the cold atomic unitary Fermi gas The nature of superfluidity in the cold atomic unitary Fermi gas Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo (AFMC) method The trapped unitary Fermi gas

More information

Ground-state properties, excitations, and response of the 2D Fermi gas

Ground-state properties, excitations, and response of the 2D Fermi gas Ground-state properties, excitations, and response of the 2D Fermi gas Introduction: 2D FG and a condensed matter perspective Auxiliary-field quantum Monte Carlo calculations - exact* here Results on spin-balanced

More information

Quantum quenches in the thermodynamic limit

Quantum quenches in the thermodynamic limit Quantum quenches in the thermodynamic limit Marcos Rigol Department of Physics The Pennsylvania State University Correlations, criticality, and coherence in quantum systems Evora, Portugal October 9, 204

More information

The bosonic Kondo effect:

The bosonic Kondo effect: The bosonic Kondo effect: probing spin liquids and multicomponent cold gases Serge Florens Institut für Theorie der Kondensierten Materie (Karlsruhe) with: Lars Fritz, ITKM (Karlsruhe) Matthias Vojta,

More information

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014 Numerical Methods in Quantum Many-body Theory Gun Sang Jeon 2014-08-25 Pyeong-chang Summer Institute 2014 Contents Introduction to Computational Physics Monte Carlo Methods: Basics and Applications Numerical

More information

Simulations of Quantum Dimer Models

Simulations of Quantum Dimer Models Simulations of Quantum Dimer Models Didier Poilblanc Laboratoire de Physique Théorique CNRS & Université de Toulouse 1 A wide range of applications Disordered frustrated quantum magnets Correlated fermions

More information

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory From utzwiller Wave Functions to Dynamical Mean-Field Theory Dieter Vollhardt Autumn School on Correlated Electrons DMFT at 25: Infinite Dimensions Forschungszentrum Jülich, September 15, 2014 Supported

More information

Metal-insulator transition with Gutzwiller-Jastrow wave functions

Metal-insulator transition with Gutzwiller-Jastrow wave functions Metal-insulator transition with Gutzwiller-Jastrow wave functions Odenwald, July 20, 2010 Andrea Di Ciolo Institut für Theoretische Physik, Goethe Universität Frankfurt Metal-insulator transition withgutzwiller-jastrow

More information