Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges

Size: px
Start display at page:

Download "Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges"

Transcription

1 Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Frithjof B. Anders Institut für Theoretische Physik Universität Bremen Göttingen, December Collaborators: C. Grenzebach, G. Czycholl, Bremen Th. Pruschke, R. Peters, Göttingen

2 Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Frithjof B. Anders Institut für Theoretische Physik Universität Bremen Göttingen, December Collaborators: C. Grenzebach, G. Czycholl, Bremen Th. Pruschke, R. Peters, Göttingen

3 Outline 1 Introduction to the Dynamical Mean Field Theory (DMFT) 2 NRG as DMFT impurity solver Numercial renormalization group (NRG) Spectral functions at finite temperatures 3 Results for model Hamiltonians Falicov-Kimball Model: f-green s Function Hubbard model: metall-insulator transition The Periodic SU(N) Anderson model 4 Conclusion

4 Contents 1 Introduction to the Dynamical Mean Field Theory (DMFT) 2 NRG as DMFT impurity solver Numercial renormalization group (NRG) Spectral functions at finite temperatures 3 Results for model Hamiltonians Falicov-Kimball Model: f-green s Function Hubbard model: metall-insulator transition The Periodic SU(N) Anderson model 4 Conclusion

5 Metal-Isolator Transition in V 2 O 3 Transition metal oxids: insulator = metal correlation driven pressure reduces U/W on-site U W How do describe this phase transition quantitatively? D. B. McWhan et al, PRB 7, 1920 (1973)

6 Metal-Isolator Transition in V 2 O 3 Transition metal oxids: insulator = metal correlation driven pressure reduces U/W on-site U W How do describe this phase transition quantitatively? D. B. McWhan et al, PRB 7, 1920 (1973)

7 Specific heat of the heavy fermion alloy Ce x La 1 x Cu 6 γ 1J/K 2 mol specific heat C m : local dynamics incomplete filled f -shell: heavy-fermion properties U/W large Onuki et al 1987

8 Paradigm model: the Hubbard model n i ˆn i n i ˆn i U/W > 1: mean-field theory insufficient H = t <i,j>σ c iσ c jσ + U i ˆn i ˆn i

9 Correlated Electron Systems Combination of The challenge independent quasi-particle propagation: large local Coulomb repulsion quantitative description of metal/insulator magnetic (FM/AFM) orbital superconducting structural phase transitions

10 = lattice problem Mapping the lattice problem onto an effective site problem (SIAM) plus dynamical bath (DMFT) Kuramoto 85, Grewe 87, Brand,Mielsch 89, Jarrell 92, Kotliar, Georges 92,...

11 ~ G(z) dynamical bath = lattice problem Mapping the lattice problem onto an effective site problem (SIAM) plus dynamical bath (DMFT) Kuramoto 85, Grewe 87, Brand,Mielsch 89, Jarrell 92, Kotliar, Georges 92,...

12 Σ σ (ω, k) Σ σ (ω) The local approximation: DMFT exact for d (Metzner, Vollhardt, Müller-Hartmann 89) SCC: G latt (z) = G SIAM loc plus bath G(z): (simple) G 1 latt (z) + Σ(z) = G 1 (z) solution of the effective site: (difficult)

13 Σ σ (ω, k) Σ σ (ω) The local approximation: DMFT exact for d (Metzner, Vollhardt, Müller-Hartmann 89) SCC: G latt (z) = G SIAM loc plus bath G(z): (simple) G 1 latt (z) + Σ(z) = G 1 (z) solution of the effective site: (difficult)

14 Σ σ (ω, k) Σ σ (ω) The local approximation: DMFT exact for d (Metzner, Vollhardt, Müller-Hartmann 89) SCC: G latt (z) = G SIAM loc plus bath G(z): (simple) G 1 latt (z) + Σ(z) = G 1 (z) solution of the effective site: (difficult)

15 The challenge: the impurity solver non-crossing approximation plus extensions (NCA,PNCA,ENCA,CTMA,...) quantum Monte Carlo (QMC) exact diagonalization (ED) iterative perturbation theory (ITP) modified perturbation theory (MPT) local moment approximation (LMA) density matrix renormalization group (DMRG) numerical renormalization group (NRG)

16 The challenge: the impurity solver non-crossing approximation plus extensions (NCA,PNCA,ENCA,CTMA,...) quantum Monte Carlo (QMC) exact diagonalization (ED) iterative perturbation theory (ITP) modified perturbation theory (MPT) local moment approximation (LMA) density matrix renormalization group (DMRG) numerical renormalization group (NRG)

17 Contents 1 Introduction to the Dynamical Mean Field Theory (DMFT) 2 NRG as DMFT impurity solver Numercial renormalization group (NRG) Spectral functions at finite temperatures 3 Results for model Hamiltonians Falicov-Kimball Model: f-green s Function Hubbard model: metall-insulator transition The Periodic SU(N) Anderson model 4 Conclusion

18 Numercial renormalization group (NRG) Impurity Wilson s NRG (1975) Bath continuum ξ 1 impurity: arbitrary complex local atom discretization of the bath continuum ρ σ (ω) = Im G σ (ω) Householder transformation: w mσ [ ρ σ (ω)], ξ mσ [ ρ(ω)] H bath = m=0,σ σ f 0σ = dε ρ σ (ω) c εσ ( )] [w mσ f mσf mσ + ξ mσ f mσf m+1σ + f m+1σ f mσ ξ m, w m Λ m/2 : multi-precision package (GMP) needed

19 Numercial renormalization group (NRG) Wilson s NRG (1975) 0 z (z+1) Λ Λ Λ 0 Λ (z+1) Λ z Λ 0 impurity: arbitrary complex local atom discretization of the bath continuum ρ σ (ω) = Im G σ (ω) Householder transformation: w mσ [ ρ σ (ω)], ξ mσ [ ρ(ω)] H bath = m=0,σ σ f 0σ = dε ρ σ (ω) c εσ ( )] [w mσ f mσf mσ + ξ mσ f mσf m+1σ + f m+1σ f mσ ξ m, w m Λ m/2 : multi-precision package (GMP) needed

20 Numercial renormalization group (NRG) Wilson s NRG (1975) 0 z (z+1) Λ Λ Λ 0 Λ (z+1) Λ z Λ 0 impurity: arbitrary complex local atom discretization of the bath continuum ρ σ (ω) = Im G σ (ω) Householder transformation: w mσ [ ρ σ (ω)], ξ mσ [ ρ(ω)] H bath = m=0,σ σ f 0σ = dε ρ σ (ω) c εσ ( )] [w mσ f mσf mσ + ξ mσ f mσf m+1σ + f m+1σ f mσ ξ m, w m Λ m/2 : multi-precision package (GMP) needed

21 Numercial renormalization group (NRG) Wilson s NRG (1975) 0 z (z+1) Λ Λ Λ 0 Λ (z+1) Λ z Λ 0 impurity: arbitrary complex local atom discretization of the bath continuum ρ σ (ω) = Im G σ (ω) Householder transformation: w mσ [ ρ σ (ω)], ξ mσ [ ρ(ω)] H bath = m=0,σ σ f 0σ = dε ρ σ (ω) c εσ ( )] [w mσ f mσf mσ + ξ mσ f mσf m+1σ + f m+1σ f mσ ξ m, w m Λ m/2 : multi-precision package (GMP) needed

22 Numercial renormalization group (NRG) Wilson s NRG (1975) Impurity N ξ 1 ξ 2 ξ 3 ξ Ν Λ Ν/2 discretization of the bath continuum switching on iteratively the couplings ξ m Λ m/2 recursion relation (RG transformation) H N+1 = ΛH N + ) ξ N (f Nσ f N+1σ + f N+1σ f Nσ σ RG: elimination of the high energy states temperature: T m Λ m/2 stop at chain length N, when desired T N reached

23 Numercial renormalization group (NRG) Wilson s NRG (1975) Impurity N ξ 1 ξ 2 ξ 3 ξ Ν Λ Ν/2 discretization of the bath continuum switching on iteratively the couplings ξ m Λ m/2 recursion relation (RG transformation) H N+1 = ΛH N + ) ξ N (f Nσ f N+1σ + f N+1σ f Nσ σ RG: elimination of the high energy states temperature: T m Λ m/2 stop at chain length N, when desired T N reached

24 Numercial renormalization group (NRG) Wilson s NRG (1975) Impurity N ξ 1 ξ 2 ξ 3 ξ Ν Λ Ν/2 discretization of the bath continuum switching on iteratively the couplings ξ m Λ m/2 recursion relation (RG transformation) H N+1 = ΛH N + ) ξ N (f Nσ f N+1σ + f N+1σ f Nσ σ RG: elimination of the high energy states temperature: T m Λ m/2 stop at chain length N, when desired T N reached

25 Numercial renormalization group (NRG) Wilson s NRG (1975) Impurity N ξ 1 ξ 2 ξ 3 ξ Ν Λ Ν/2 discretization of the bath continuum switching on iteratively the couplings ξ m Λ m/2 recursion relation (RG transformation) H N+1 = ΛH N + ) ξ N (f Nσ f N+1σ + f N+1σ f Nσ σ RG: elimination of the high energy states temperature: T m Λ m/2 stop at chain length N, when desired T N reached

26 Numercial renormalization group (NRG) Wilson s NRG (1975) Impurity N ξ 1 ξ 2 ξ 3 ξ Ν Λ Ν/2 discretization of the bath continuum switching on iteratively the couplings ξ m Λ m/2 recursion relation (RG transformation) H N+1 = ΛH N + ) ξ N (f Nσ f N+1σ + f N+1σ f Nσ σ RG: elimination of the high energy states temperature: T m Λ m/2 stop at chain length N, when desired T N reached

27 Spectral functions at finite temperatures Spectral functions at finite temperatures Assumption: solve the Wilson chain exactly, i.e H N n = E n n Then: Lehmann representation of ρ(ω) (text book) ρ A,B (ω) = ( e βe n + e βem) A nm B mn δ(ω + E n E m ) Z n,m The challenge 1 discrete spectrum = continous ρ(ω) 2 how do we gather the information from different iterations? 3 how do we guarantee the sum-rules? n σ (T ) = dω ρ σ (ω) f (ω)

28 Spectral functions at finite temperatures Spectral functions at finite temperatures Assumption: solve the Wilson chain exactly, i.e H N n = E n n Then: Lehmann representation of ρ(ω) (text book) ρ A,B (ω) = ( e βe n + e βem) A nm B mn δ(ω + E n E m ) Z n,m The challenge 1 discrete spectrum = continous ρ(ω) 2 how do we gather the information from different iterations? 3 how do we guarantee the sum-rules? n σ (T ) = dω ρ σ (ω) f (ω)

29 Spectral functions at finite temperatures Spectral functions at finite temperatures Assumption: solve the Wilson chain exactly, i.e H N n = E n n Then: Lehmann representation of ρ(ω) (text book) ρ A,B (ω) = ( e βe n + e βem) A nm B mn δ(ω + E n E m ) Z n,m The challenge 1 discrete spectrum = continous ρ(ω) 2 how do we gather the information from different iterations? 3 how do we guarantee the sum-rules? n σ (T ) = dω ρ σ (ω) f (ω)

30 Spectral functions at finite temperatures Spectral functions at finite temperatures Assumption: solve the Wilson chain exactly, i.e H N n = E n n Then: Lehmann representation of ρ(ω) (text book) ρ A,B (ω) = ( e βe n + e βem) A nm B mn δ(ω + E n E m ) Z n,m The challenge 1 discrete spectrum = continous ρ(ω) 2 how do we gather the information from different iterations? 3 how do we guarantee the sum-rules? n σ (T ) = dω ρ σ (ω) f (ω)

31 Spectral functions at finite temperatures Spectral functions at finite temperatures Assumption: solve the Wilson chain exactly, i.e H N n = E n n Then: Lehmann representation of ρ(ω) (text book) ρ A,B (ω) = ( e βe n + e βem) A nm B mn δ(ω + E n E m ) Z n,m The challenge 1 discrete spectrum = continous ρ(ω) 2 how do we gather the information from different iterations? 3 how do we guarantee the sum-rules? n σ (T ) = dω ρ σ (ω) f (ω)

32 Spectral functions at finite temperatures The answer 1 continous ρ(ω) = broadening of δ(ω ω n ): δ(ω ω n ) = B(ω, ω n ) = e b2 /4 bω n π e [ ln( ω ωnm )]2 b 2 Using the equation of motion (Bulla, Hewson, Pruschke 1998) yields with H = H 0 + V z G A,B (z) = {A, B} + G [A,H],B (z) Σ A,B (z) = G [A,V ],B(z) G A,B (z) [A,V ],B (z) GA,B NRG (z) G NRG

33 Spectral functions at finite temperatures The answer 1 continous ρ(ω) = broadening of δ(ω ω n ): δ(ω ω n ) = B(ω, ω n ) = e b2 /4 bω n π e [ ln( ω ωnm )]2 b 2 Using the equation of motion (Bulla, Hewson, Pruschke 1998) yields with H = H 0 + V z G A,B (z) = {A, B} + G [A,H],B (z) Σ A,B (z) = G [A,V ],B(z) G A,B (z) [A,V ],B (z) GA,B NRG (z) G NRG

34 Spectral functions at finite temperatures The answer 1 continous ρ(ω) = broadening of δ(ω ω n ): δ(ω ω n ) = B(ω, ω n ) = e b2 /4 bω n π e [ ln( ω ωnm )]2 b 2 Using the equation of motion (Bulla, Hewson, Pruschke 1998) yields with H = H 0 + V z G A,B (z) = {A, B} + G [A,H],B (z) Σ A,B (z) = G [A,V ],B(z) G A,B (z) [A,V ],B (z) GA,B NRG (z) G NRG

35 Spectral functions at finite temperatures The answer 1 continous ρ(ω) = broadening of δ(ω ω n ): δ(ω ω n ) = B(ω, ω n ) = e b2 /4 bω n π e [ ln( ω ωnm )]2 b 2 Using the equation of motion (Bulla, Hewson, Pruschke 1998) yields with H = H 0 + V z G A,B (z) = {A, B} + G [A,H],B (z) Σ A,B (z) = G [A,V ],B(z) G A,B (z) [A,V ],B (z) GA,B NRG (z) G NRG 2 patching excitations from diff. iterations (Costi et al 94,...)

36 Spectral functions at finite temperatures The answer 1 continous ρ(ω) = broadening of δ(ω ω n ): δ(ω ω n ) = B(ω, ω n ) = e b2 /4 bω n π e [ ln( ω ωnm )]2 b 2 Using the equation of motion (Bulla, Hewson, Pruschke 1998) yields with H = H 0 + V z G A,B (z) = {A, B} + G [A,H],B (z) Σ A,B (z) = G [A,V ],B(z) G A,B (z) [A,V ],B (z) GA,B NRG (z) G NRG 2 using a complete basis set of the NRG chain

37 Spectral functions at finite temperatures The complete basis set of the NRG Impurity N Environment e e> l,e,1> l,e,2> l,e,3> complete basis: { e } = { α imp, α 1, α 2, α 3, α 4,, α N }

38 Spectral functions at finite temperatures The complete basis set of the NRG Impurity N ξ Environmente 1 e> k,e,1> k,e,1> complete basis: { e } = { k, e; 1 } l,e,1> l,e,2> l,e,3>

39 Spectral functions at finite temperatures The complete basis set of the NRG Impurity N ξ Environment e 1 ξ 2 e> l,e,2> k,e,2> l,e,2> l,e,3> complete basis: { e } = { k, e; 2 } + { l, e; 2 }

40 Spectral functions at finite temperatures The complete basis set of the NRG Impurity N ξ 1 ξ 2 ξ 3 e e> l,e,2> l,e,3> k,e,3> complete basis: { e } = { k, e; 3 } + 3 m=2 { l, e; m }

41 Spectral functions at finite temperatures The complete basis set of the NRG Impurity N ξ ξ ξ ξ Ν e> l,e,2> complete basis: { e } = N m=2 { l, e; m } l,e,3> l,e,n>

42 Spectral functions at finite temperatures Sum rule conserving NRG Green functions G A,B (z) = N m=m min + N m=m min A l,k (m)ρ red k,k (m)b k,l(m) z + E l E k l l k,k B l,k (m)ρ red k,k (m)a k,l(m) z + E k E l k,k reduced density matrix (Feynman 72, White 92, Hofstetter 2000) ρ red k,k (m) = e k, e; m ˆρ k, e; m, Weichelbaum, von Delft: cond-mat/ Peters, Pruschke, FBA, cond-mat/ , PRB in press

43 Spectral functions at finite temperatures advantages of the NRG solver non-perturbative arbitrary local interaction strength arbitrary low temperatures inside into the nature of possible phase transitions challenges of the NRG solver CPU time scales exponential with the number of baths frequency resolution limited to ω > T weak Λ and broadening dependency of the results: violation of causality in Σ(ω) due to numerical errors possible

44 Spectral functions at finite temperatures advantages of the NRG solver non-perturbative arbitrary local interaction strength arbitrary low temperatures inside into the nature of possible phase transitions challenges of the NRG solver CPU time scales exponential with the number of baths frequency resolution limited to ω > T weak Λ and broadening dependency of the results: violation of causality in Σ(ω) due to numerical errors possible

45 Contents 1 Introduction to the Dynamical Mean Field Theory (DMFT) 2 NRG as DMFT impurity solver Numercial renormalization group (NRG) Spectral functions at finite temperatures 3 Results for model Hamiltonians Falicov-Kimball Model: f-green s Function Hubbard model: metall-insulator transition The Periodic SU(N) Anderson model 4 Conclusion

46 Falicov-Kimball Model: f-green s Function Falicov-Kimball model H = t <i,j> c i c j + i ε f f i f i + U i n f i n c i exact solution for the c-electrons in d ([H, n f i ] = 0) simple: (Brand, Mielsch, 1989) no closed expression for the f -Green function, difficult reason: [H, n f i ] = 0 X-ray threshhold problem (Georges, 1992) missing in the evaluation of real time Keldysh-equations by Freericks and Zlatic

47 Falicov-Kimball Model: f-green s Function Falicov-Kimball model H = t <i,j> c i c j + i ε f f i f i + U i n f i n c i exact solution for the c-electrons in d ([H, n f i ] = 0) simple: (Brand, Mielsch, 1989) no closed expression for the f -Green function, difficult reason: [H, n f i ] = 0 X-ray threshhold problem (Georges, 1992) missing in the evaluation of real time Keldysh-equations by Freericks and Zlatic

48 Falicov-Kimball Model: f-green s Function Falicov-Kimball model H = t <i,j> c i c j + i ε f f i f i + U i n f i n c i exact solution for the c-electrons in d ([H, n f i ] = 0) simple: (Brand, Mielsch, 1989) no closed expression for the f -Green function, difficult reason: [H, n f i ] = 0 X-ray threshhold problem (Georges, 1992) missing in the evaluation of real time Keldysh-equations by Freericks and Zlatic

49 Falicov-Kimball Model: f-green s Function Falicov-Kimball model: NRG solution for the f -spectrum ρ f (ω) α U (FBA and G. Czycholl, PRB 2005) ρ(ω) ω α α < ω

50 Falicov-Kimball Model: f-green s Function Falicov-Kimball model: NRG solution for the f -spectrum ρ f (ω) α (FBA and G. Czycholl, PRB 2005) Vρ eff (0) ρ(ω) ω α α < ω

51 Hubbard model: metall-insulator transition Hubbard model: Mott-Hubbard insolator transition H = t <i,j>σ c iσ c jσ + U i ˆn i ˆn i Hubbard 1963, Gutzwiller 1963 scaling of t for d : Metzner, Vollhardt (1989) effective site, DMFT approaches Pruschke 1988 (PhD) (LNCA) Jarrell 1992 metall-insulator transition: Georges and Kotliar 1992 (ITP), Bulla 1999 (NRG) ferromagnetism: Ulmke et al 1994, Pruschke, Zitzler 2002 multiband: Held, Vollhardt,...

52 Hubbard model: metall-insulator transition One-band Hubbard model: Mott-Hubbard insolator transition ρ(ω) T = 0 U = 2 U = 3.5 U = 4 U = 6 ρ ω T/W IPT U c1, NRG U c2, NRG U c1, QMC U c2, QMC U/W Bulla, Costi, Vollhardt, PRB 64, (2001)

53 Hubbard model: metall-insulator transition One-band Hubbard model: Mott-Hubbard insolator transition ρ(ω) T = 0.12 U = 1 U = 2 U = 3 U = 3.5 U = 4 U = ω T/W IPT U c1, NRG U c2, NRG U c1, QMC U c2, QMC U/W Bulla, Costi, Vollhardt, PRB 64, (2001)

54 Hubbard model: metall-insulator transition One-band Hubbard model: Mott-Hubbard insolator transition ρ(ω) U = 3.5 T = 10 T = 0.5 T = T = T = ω T/W IPT U c1, NRG U c2, NRG U c1, QMC U c2, QMC U/W Bulla, Costi, Vollhardt, PRB 64, (2001)

55 Hubbard model: metall-insulator transition One-band Hubbard model: Mott-Hubbard insolator transition ρ(ω) U = 3.5 T = T = ω T/W IPT U c1, NRG U c2, NRG U c1, QMC U c2, QMC U/W Bulla, Costi, Vollhardt, PRB 64, (2001)

56 Hubbard model: metall-insulator transition One-band Hubbard model: Mott-Hubbard insolator transition R(T) [µωcm] U = 4 U = 3.5 U = T T/W IPT U c1, NRG U c2, NRG U c1, QMC U c2, QMC U/W Bulla, Costi, Vollhardt, PRB 64, (2001)

57 The Periodic SU(N) Anderson model The Periodic SU(N) Anderson model H = i + im N ε f mf i,m f i,m + U N i n m ( ) V m f i,m c i,m + c i,m f i,m m=1 ˆn f i,mˆn f i,n t <i,j>m c im c jm CEF Levels two f -shell doublets broken SU(4) symmetry ε f 1,2 = ε f ε f 3,4 = ε f + cef

58 The Periodic SU(N) Anderson model The Periodic SU(N) Anderson model H = i + im N ε f mf i,m f i,m + U N i n m ( ) V m f i,m c i,m + c i,m f i,m m=1 ˆn f i,mˆn f i,n t <i,j>m c im c jm CEF Levels two f -shell doublets broken SU(4) symmetry ε f 1,2 = ε f ε f 3,4 = ε f + cef

59 The Periodic SU(N) Anderson model renormalized band structure ω ε Grenzebach, FBA, Czycholl, Pruschke, PRB 74, (2006)

60 The Periodic SU(N) Anderson model Transport properties of the periodic SU(2) Anderson model ρ(t) [µωcm] U = 12 U = 11 U = 10 U = 9 U = 8 U = 7 U = T Grenzebach, FBA, Czycholl, Pruschke, PRB 74, (2006)

61 The Periodic SU(N) Anderson model Transport properties of the periodic SU(2) Anderson model ρ(t) ρ(t 0 /100) + 5 [µωcm] U = 12 U = 11 U = 10 U = 9 U = 8 U = 7 U = T/T 0 Grenzebach, FBA, Czycholl, Pruschke, PRB 74, (2006)

62 The Periodic SU(N) Anderson model Novel results: the PAM with two CEF doublets

63 The Periodic SU(N) Anderson model Novel results: the PAM with two CEF doublets 5 medium at T=1*10-5 Γ m (ω) ω Γ 1,2 Γ 3, ω

64 Contents 1 Introduction to the Dynamical Mean Field Theory (DMFT) 2 NRG as DMFT impurity solver Numercial renormalization group (NRG) Spectral functions at finite temperatures 3 Results for model Hamiltonians Falicov-Kimball Model: f-green s Function Hubbard model: metall-insulator transition The Periodic SU(N) Anderson model 4 Conclusion

65 Conclusion The NRG accurate impurity solver for DMFT useful of phase transitions (FM/AFM, orbital ordering) applied to three different model finite temperature and T 0 accessible more realistic models possible with new GF algorithm Drawback spectral resolution limited to ω > T good enough for transport? scaling exponentially with # of bands

66 Conclusion The NRG accurate impurity solver for DMFT useful of phase transitions (FM/AFM, orbital ordering) applied to three different model finite temperature and T 0 accessible more realistic models possible with new GF algorithm Drawback spectral resolution limited to ω > T good enough for transport? scaling exponentially with # of bands

67 Conclusion The NRG accurate impurity solver for DMFT useful of phase transitions (FM/AFM, orbital ordering) applied to three different model finite temperature and T 0 accessible more realistic models possible with new GF algorithm Drawback spectral resolution limited to ω > T good enough for transport? scaling exponentially with # of bands

68 Conclusion The NRG accurate impurity solver for DMFT useful of phase transitions (FM/AFM, orbital ordering) applied to three different model finite temperature and T 0 accessible more realistic models possible with new GF algorithm Drawback spectral resolution limited to ω > T good enough for transport? scaling exponentially with # of bands

69 Conclusion The NRG accurate impurity solver for DMFT useful of phase transitions (FM/AFM, orbital ordering) applied to three different model finite temperature and T 0 accessible more realistic models possible with new GF algorithm Drawback spectral resolution limited to ω > T good enough for transport? scaling exponentially with # of bands

70 Conclusion The NRG accurate impurity solver for DMFT useful of phase transitions (FM/AFM, orbital ordering) applied to three different model finite temperature and T 0 accessible more realistic models possible with new GF algorithm Drawback spectral resolution limited to ω > T good enough for transport? scaling exponentially with # of bands

(r) 2.0 E N 1.0

(r) 2.0 E N 1.0 The Numerical Renormalization Group Ralf Bulla Institut für Theoretische Physik Universität zu Köln 4.0 3.0 Q=0, S=1/2 Q=1, S=0 Q=1, S=1 E N 2.0 1.0 Contents 1. introduction to basic rg concepts 2. introduction

More information

Diagrammatic Monte Carlo methods for Fermions

Diagrammatic Monte Carlo methods for Fermions Diagrammatic Monte Carlo methods for Fermions Philipp Werner Department of Physics, Columbia University PRL 97, 7645 (26) PRB 74, 15517 (26) PRB 75, 8518 (27) PRB 76, 235123 (27) PRL 99, 12645 (27) PRL

More information

Cluster Extensions to the Dynamical Mean-Field Theory

Cluster Extensions to the Dynamical Mean-Field Theory Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? Thomas Pruschke Institut für Theoretische Physik Universität

More information

Quantum impurities in a bosonic bath

Quantum impurities in a bosonic bath Ralf Bulla Institut für Theoretische Physik Universität zu Köln 27.11.2008 contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity

More information

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Frithjof B Anders Institut für theoretische Physik, Universität Bremen Concepts in Electron Correlation,

More information

Entanglement spectra in the NRG

Entanglement spectra in the NRG PRB 84, 125130 (2011) Entanglement spectra in the NRG Andreas Weichselbaum Ludwig Maximilians Universität, München Arnold Sommerfeld Center (ASC) Acknowledgement Jan von Delft (LMU) Theo Costi (Jülich)

More information

Introduction to DMFT

Introduction to DMFT Introduction to DMFT Lecture 2 : DMFT formalism 1 Toulouse, May 25th 2007 O. Parcollet 1. Derivation of the DMFT equations 2. Impurity solvers. 1 Derivation of DMFT equations 2 Cavity method. Large dimension

More information

Electronic correlations in models and materials. Jan Kuneš

Electronic correlations in models and materials. Jan Kuneš Electronic correlations in models and materials Jan Kuneš Outline Dynamical-mean field theory Implementation (impurity problem) Single-band Hubbard model MnO under pressure moment collapse metal-insulator

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 11 Aug 2003

arxiv:cond-mat/ v1 [cond-mat.str-el] 11 Aug 2003 Phase diagram of the frustrated Hubbard model R. Zitzler, N. ong, h. Pruschke, and R. Bulla Center for electronic correlations and magnetism, heoretical Physics III, Institute of Physics, University of

More information

An efficient impurity-solver for the dynamical mean field theory algorithm

An efficient impurity-solver for the dynamical mean field theory algorithm Papers in Physics, vol. 9, art. 95 (217) www.papersinphysics.org Received: 31 March 217, Accepted: 6 June 217 Edited by: D. Domínguez Reviewed by: A. Feiguin, Northeastern University, Boston, United States.

More information

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Prof. Luis Gregório Dias DFMT PG5295 Muitos Corpos 1 Electronic Transport in Quantum

More information

Dynamical mean field approach to correlated lattice systems in and out of equilibrium

Dynamical mean field approach to correlated lattice systems in and out of equilibrium Dynamical mean field approach to correlated lattice systems in and out of equilibrium Philipp Werner University of Fribourg, Switzerland Kyoto, December 2013 Overview Dynamical mean field approximation

More information

Numerical renormalization group method for quantum impurity systems

Numerical renormalization group method for quantum impurity systems Numerical renormalization group method for quantum impurity systems Ralf Bulla Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Institut für Physik, Universität Augsburg, 86135 Augsburg,

More information

Surprising Effects of Electronic Correlations in Solids

Surprising Effects of Electronic Correlations in Solids Center for Electronic Correlations and Magnetism University of Augsburg Surprising Effects of Electronic Correlations in Solids Dieter Vollhardt Supported by TRR 80 FOR 1346 University of Florida, Gainesville;

More information

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Anna Kauch Institute of Theoretical Physics Warsaw University PIPT/Les Houches Summer School on Quantum Magnetism

More information

Phase Diagram of the Multi-Orbital Hubbard Model

Phase Diagram of the Multi-Orbital Hubbard Model Phase Diagram of the Multi-Orbital Hubbard Model Submitted by Bence Temesi BACHELOR THESIS Faculty of Physics at Ludwig-Maximilians-Universität München Supervisor: Prof. Dr. Jan von Delft Munich, August

More information

Magnetic Moment Collapse drives Mott transition in MnO

Magnetic Moment Collapse drives Mott transition in MnO Magnetic Moment Collapse drives Mott transition in MnO J. Kuneš Institute of Physics, Uni. Augsburg in collaboration with: V. I. Anisimov, A. V. Lukoyanov, W. E. Pickett, R. T. Scalettar, D. Vollhardt,

More information

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014 Numerical Methods in Quantum Many-body Theory Gun Sang Jeon 2014-08-25 Pyeong-chang Summer Institute 2014 Contents Introduction to Computational Physics Monte Carlo Methods: Basics and Applications Numerical

More information

The Hubbard model out of equilibrium - Insights from DMFT -

The Hubbard model out of equilibrium - Insights from DMFT - The Hubbard model out of equilibrium - Insights from DMFT - t U Philipp Werner University of Fribourg, Switzerland KITP, October 212 The Hubbard model out of equilibrium - Insights from DMFT - In collaboration

More information

Mott transition : beyond Dynamical Mean Field Theory

Mott transition : beyond Dynamical Mean Field Theory Mott transition : beyond Dynamical Mean Field Theory O. Parcollet 1. Cluster methods. 2. CDMFT 3. Mott transition in frustrated systems : hot-cold spots. Coll: G. Biroli (SPhT), G. Kotliar (Rutgers) Ref:

More information

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory From utzwiller Wave Functions to Dynamical Mean-Field Theory Dieter Vollhardt Autumn School on Correlated Electrons DMFT at 25: Infinite Dimensions Forschungszentrum Jülich, September 15, 2014 Supported

More information

Dynamical mean-field theory

Dynamical mean-field theory Dynamical mean-field theory Marcus Kollar Theoretical Physics III, University of Augsburg, Germany Autumn School: Hands-On DMFT DFG-Forschergruppe 1346 Forschungszentrum Jülich August 4-7, 2011 Outline

More information

Local moment approach to multi-orbital Anderson and Hubbard models

Local moment approach to multi-orbital Anderson and Hubbard models Local moment approach to multi-orbital Anderson and Hubbard models Anna Kauch 1 and Krzysztof Byczuk,1 1 Institute of Theoretical Physics, Warsaw University, ul. Hoża 69, PL--681 Warszawa, Poland Theoretical

More information

An introduction to the dynamical mean-field theory. L. V. Pourovskii

An introduction to the dynamical mean-field theory. L. V. Pourovskii An introduction to the dynamical mean-field theory L. V. Pourovskii Nordita school on Photon-Matter interaction, Stockholm, 06.10.2016 OUTLINE The standard density-functional-theory (DFT) framework An

More information

16 Dynamical Mean-Field Approximation and Cluster Methods for Correlated Electron Systems

16 Dynamical Mean-Field Approximation and Cluster Methods for Correlated Electron Systems 16 Dynamical Mean-Field Approximation and Cluster Methods for Correlated Electron Systems Thomas Pruschke Institute for Theoretical Physics, University of Göttingen, 37077 Göttingen, Germany pruschke@theorie.physik.uni-goettingen.de

More information

From Materials to Models and Back. Dieter Vollhardt

From Materials to Models and Back. Dieter Vollhardt From Materials to Models and Back Dieter Vollhardt 28 th Edgar Lüscher Seminar, Klosters; February 8, 2017 From Materials to Models and Back - The Need for Models in Condensed Matter Physics - Outline:

More information

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Krzysztof Byczuk Institute of Physics, Augsburg University Institute of Theoretical Physics, Warsaw University October

More information

Numerical renormalization group method for quantum impurity systems

Numerical renormalization group method for quantum impurity systems Numerical renormalization group method for quantum impurity systems Ralf Bulla* Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Institut für Physik, Universität Augsburg, 86135 Augsburg,

More information

Diagrammatic Monte Carlo simulation of quantum impurity models

Diagrammatic Monte Carlo simulation of quantum impurity models Diagrammatic Monte Carlo simulation of quantum impurity models Philipp Werner ETH Zurich IPAM, UCLA, Jan. 2009 Outline Continuous-time auxiliary field method (CT-AUX) Weak coupling expansion and auxiliary

More information

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS http://www.staff.science.uu.nl/~mitch003/nrg.html March 2015 Anrew Mitchell Utrecht University Quantum impurity problems Part 1: Quantum impurity problems

More information

Spatial and temporal propagation of Kondo correlations. Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund

Spatial and temporal propagation of Kondo correlations. Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund Spatial and temporal propagation of Kondo correlations Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund Collaborators Collaborators Benedikt Lechtenberg Collaborators

More information

The Mott Metal-Insulator Transition

The Mott Metal-Insulator Transition Florian Gebhard The Mott Metal-Insulator Transition Models and Methods With 38 Figures Springer 1. Metal Insulator Transitions 1 1.1 Classification of Metals and Insulators 2 1.1.1 Definition of Metal

More information

arxiv:cond-mat/ v2 [cond-mat.str-el] 13 Dec 1999

arxiv:cond-mat/ v2 [cond-mat.str-el] 13 Dec 1999 Exhaustion Physics in the Periodic Anderson Model from Iterated Perturbation Theory arxiv:cond-mat/9905408v2 [cond-mat.str-el] 13 Dec 1999 N. S. Vidhyadhiraja 1,2,A. N. Tahvildar-Zadeh 1, M. Jarrell 2,

More information

IMPACT ionization and thermalization in photo-doped Mott insulators

IMPACT ionization and thermalization in photo-doped Mott insulators IMPACT ionization and thermalization in photo-doped Mott insulators Philipp Werner (Fribourg) in collaboration with Martin Eckstein (Hamburg) Karsten Held (Vienna) Cargese, September 16 Motivation Photo-doping:

More information

Role of Hund Coupling in Two-Orbital Systems

Role of Hund Coupling in Two-Orbital Systems Role of Hund Coupling in Two-Orbital Systems Gun Sang Jeon Ewha Womans University 2013-08-30 NCTS Workshop on Quantum Condensation (QC13) collaboration with A. J. Kim, M.Y. Choi (SNU) Mott-Hubbard Transition

More information

Surprises in Correlated Electron Physics

Surprises in Correlated Electron Physics Vol. 111 (2007) ACTA PHYSICA POLONICA A No. 4 Proceedings of the XII National School Correlated Electron Systems..., Ustroń 2006 Surprises in Correlated Electron Physics K. Byczuk a,b, W. Hofstetter c,

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Mar 2006

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Mar 2006 Non-Fermi-liquid phases in the two-band Hubbard model: Finite-temperature exact diagonalization study of Hund s rule coupling A. Liebsch and T. A. Costi Institut für Festkörperforschung, Forschungszentrum

More information

O. Parcollet CEA-Saclay FRANCE

O. Parcollet CEA-Saclay FRANCE Cluster Dynamical Mean Field Analysis of the Mott transition O. Parcollet CEA-Saclay FRANCE Dynamical Breakup of the Fermi Surface in a doped Mott Insulator M. Civelli, M. Capone, S. S. Kancharla, O.P.,

More information

Surprising Effects of the Interaction between Electrons in Solids. Dieter Vollhardt

Surprising Effects of the Interaction between Electrons in Solids. Dieter Vollhardt Surprising Effects of the Interaction between Electrons in Solids Dieter Vollhardt Shanghai Jiao Tong University; April 6, 2016 Augsburg: founded in 15 BC Roman Emperor Augustus 63 BC 14 AD Center founded

More information

Surprises in correlated electron physics

Surprises in correlated electron physics Surprises in correlated electron physics K. Byczuk 1,, W. Hofstetter 3, M. Kollar 1, and D. Vollhardt 1 (1) Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute for Physics,

More information

arxiv: v2 [cond-mat.str-el] 3 Sep 2012

arxiv: v2 [cond-mat.str-el] 3 Sep 2012 Full density matrix numerical renormalization group calculation of impurity susceptibility and specific heat of the Anderson impurity model arxiv:7.63v [cond-mat.str-el] 3 Sep L. Merker, A. Weichselbaum,

More information

Many body physics issues with the core-hole propagator and resonant inelastic X-ray scattering

Many body physics issues with the core-hole propagator and resonant inelastic X-ray scattering Many body physics issues with the core-hole propagator and resonant inelastic X-ray scattering Jim Freericks (Georgetown University) Funding: Civilian Research and Development Foundation In collaboration

More information

Field-Driven Quantum Systems, From Transient to Steady State

Field-Driven Quantum Systems, From Transient to Steady State Field-Driven Quantum Systems, From Transient to Steady State Herbert F. Fotso The Ames Laboratory Collaborators: Lex Kemper Karlis Mikelsons Jim Freericks Device Miniaturization Ultracold Atoms Optical

More information

DMFT for correlated bosons and boson-fermion mixtures

DMFT for correlated bosons and boson-fermion mixtures DMFT for correlated bosons and boson-fermion mixtures Workshop on Recent developments in dynamical mean-field theory ETH ürich, September 29, 2009 Dieter Vollhardt Supported by Deutsche Forschungsgemeinschaft

More information

Dynamical Mean Field within Iterative Perturbation Theory

Dynamical Mean Field within Iterative Perturbation Theory Vol. 111 (2007) ACTA PHYSICA POLONICA A No. 5 Proceedings of the XII National School Correlated Electron Systems..., Ustroń 2006 Dynamical Mean Field within Iterative Perturbation Theory B. Radzimirski

More information

Metal-Insulator Transitions and Realistic Modelling of Correlated Electron Systems

Metal-Insulator Transitions and Realistic Modelling of Correlated Electron Systems John von Neumann Institute for Computing Metal-Insulator Transitions and Realistic Modelling of Correlated Electron Systems N. Blümer, K. Held, G. Keller, D. Vollhardt published in NIC Symposium 2001,

More information

Inelastic light scattering and the correlated metal-insulator transition

Inelastic light scattering and the correlated metal-insulator transition Inelastic light scattering and the correlated metal-insulator transition Jim Freericks (Georgetown University) Tom Devereaux (University of Waterloo) Ralf Bulla (University of Augsburg) Funding: National

More information

Dynamical Mean-Field Theory for Correlated Electron Materials Dieter Vollhardt

Dynamical Mean-Field Theory for Correlated Electron Materials Dieter Vollhardt Center for Electronic Correlations and Magnetism University of Augsburg Dynamical Mean-Field Theory for Correlated Electron Materials Dieter Vollhardt XXIII Latin American Symposium on Solid State Physics

More information

1 From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

1 From Gutzwiller Wave Functions to Dynamical Mean-Field Theory 1 From Gutzwiller Wave Functions to Dynamical Mean-Field Theory Dieter Vollhardt Center for Electronic Correlations and Magnetism University of Augsburg Contents 1 Introduction 2 1.1 Modeling of correlated

More information

Linearized dynamical mean-field theory for the Mott-Hubbard transition

Linearized dynamical mean-field theory for the Mott-Hubbard transition Eur. Phys. J. B 13, 257 264 (2000) THE EUROPEAN PHYSICAL JOURNAL B c EDP Sciences Società Italiana di Fisica Springer-Verlag 2000 Linearized dynamical mean-field theory for the Mott-Hubbard transition

More information

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu Introduction: The Kondo effect in metals de Haas, de Boer

More information

Spectral Density Functional Theory

Spectral Density Functional Theory Spectral Density Functional Theory Sergej Savrasov Financial support NSF US DOE LANL Collaborators and Content Constructing New Functionals to Access Energetics and Spectra of Correlated Solids Phonons

More information

Transport Coefficients of the Anderson Model via the numerical renormalization group

Transport Coefficients of the Anderson Model via the numerical renormalization group Transport Coefficients of the Anderson Model via the numerical renormalization group T. A. Costi 1, A. C. Hewson 1 and V. Zlatić 2 1 Department of Mathematics, Imperial College, London SW7 2BZ, UK 2 Institute

More information

Kondo satellites in photoemission spectra of heavy fermion compounds

Kondo satellites in photoemission spectra of heavy fermion compounds Kondo satellites in photoemission spectra of heavy fermion compounds P. Wölfle, Universität Karlsruhe J. Kroha, Universität Bonn Outline Introduction: Kondo resonances in the photoemission spectra of Ce

More information

Towards exploiting non-abelian symmetries in the Dynamical Mean-Field Theory using the Numerical Renormalization Group

Towards exploiting non-abelian symmetries in the Dynamical Mean-Field Theory using the Numerical Renormalization Group master s sis chair of oretical solid state physics faculty of physics ludwig-maximilians-universität münchen Towards exploiting non-abelian symmetries in Dynamical Mean-Field Theory using Numerical Renormalization

More information

Numerical renormalization group and multi-orbital Kondo physics

Numerical renormalization group and multi-orbital Kondo physics Numerical renormalization group and multi-orbital Kondo physics Theo Costi Institute for Advanced Simulation (IAS-3) and Institute for Theoretical Nanoelectronics (PGI-2) Research Centre Jülich 25th September

More information

arxiv: v1 [cond-mat.str-el] 20 Mar 2008

arxiv: v1 [cond-mat.str-el] 20 Mar 2008 arxiv:83.34v1 [cond-mat.str-el] 2 Mar 28 A Numerical Renormalization Group approach to Non-Equilibrium Green s Functions for Quantum Impurity Models Frithjof B. Anders Institut für Theoretische Physik,

More information

Coulomb-Blockade and Quantum Critical Points in Quantum Dots

Coulomb-Blockade and Quantum Critical Points in Quantum Dots Coulomb-Blockade and Quantum Critical Points in Quantum Dots Frithjof B Anders Institut für theoretische Physik, Universität Bremen, Germany funded by the NIC Jülich Collaborators: Theory: Experiment:

More information

5 Introduction to Dynamical Mean-Field Theory

5 Introduction to Dynamical Mean-Field Theory 5 Introduction to Dynamical Mean-Field Theory Marcus Kollar Center for Electronic Correlations and Magnetism University of Augsburg Contents 1 Introduction 2 2 Fermions in infinite dimensions 6 3 Simplifications

More information

Metal - Insulator transitions: overview, classification, descriptions

Metal - Insulator transitions: overview, classification, descriptions Metal - Insulator transitions: overview, classification, descriptions Krzysztof Byczuk Institute of Physics, Augsburg University http://www.physik.uni-augsburg.de/theo3/kbyczuk/index.html January 19th,

More information

Quantum Cluster Methods (CPT/CDMFT)

Quantum Cluster Methods (CPT/CDMFT) Quantum Cluster Methods (CPT/CDMFT) David Sénéchal Département de physique Université de Sherbrooke Sherbrooke (Québec) Canada Autumn School on Correlated Electrons Forschungszentrum Jülich, Sept. 24,

More information

NiO - hole doping and bandstructure of charge transfer insulator

NiO - hole doping and bandstructure of charge transfer insulator NiO - hole doping and bandstructure of charge transfer insulator Jan Kuneš Institute for Physics, Uni. Augsburg Collaboration: V. I. Anisimov S. L. Skornyakov A. V. Lukoyanov D. Vollhardt Outline NiO -

More information

w2dynamics : operation and applications

w2dynamics : operation and applications w2dynamics : operation and applications Giorgio Sangiovanni ERC Kick-off Meeting, 2.9.2013 Hackers Nico Parragh (Uni Wü) Markus Wallerberger (TU) Patrik Gunacker (TU) Andreas Hausoel (Uni Wü) A solver

More information

FROM NODAL LIQUID TO NODAL INSULATOR

FROM NODAL LIQUID TO NODAL INSULATOR FROM NODAL LIQUID TO NODAL INSULATOR Collaborators: Urs Ledermann and Maurice Rice John Hopkinson (Toronto) GORDON, 2004, Oxford Doped Mott insulator? Mott physics: U Antiferro fluctuations: J SC fluctuations

More information

Realistic Modeling of Materials with Strongly Correlated Electrons

Realistic Modeling of Materials with Strongly Correlated Electrons Realistic Modeling of Materials with Strongly Correlated Electrons G. Keller 1, K. Held 2, V. Eyert 1, V. I. Anisimov 3, K. Byczuk 1, M. Kollar 1, I. Leonov 1, X. Ren 1, and D. Vollhardt 1 1 Theoretical

More information

Metal-to-Insilator Phase Transition. Hubbard Model.

Metal-to-Insilator Phase Transition. Hubbard Model. Master M2 Sciences de la Matière ENS de Lyon 2016-2017 Phase Transitions and Critical Phenomena Metal-to-Insilator Phase Transition. Hubbard Model. Vitaly Gorelov January 13, 2017 Abstract In this essay

More information

Vertex-corrected perturbation theory for the electron-phonon problem with nonconstant density of states

Vertex-corrected perturbation theory for the electron-phonon problem with nonconstant density of states PHYSICAL REVIEW B VOLUME 58, NUMBER 17 1 NOVEMBER 1998-I Vertex-corrected perturbation theory for the electron-phonon problem with nonconstant density of states J. K. Freericks Department of Physics, Georgetown

More information

Ubiquity of Linear Resistivity at Intermediate Temperature in Bad Metals

Ubiquity of Linear Resistivity at Intermediate Temperature in Bad Metals Ubiquity of Linear Resistivity at Intermediate Temperature in Bad Metals G. R. Boyd V. Zlatić Institute of Physics, Zagreb POB 304, Croatia and J. K. Freericks (Dated: October 3, 2018) arxiv:1404.2859v1

More information

Absence of orbital-dependent Mott transition in Ca 2 x Sr x RuO 4

Absence of orbital-dependent Mott transition in Ca 2 x Sr x RuO 4 EUROPHYSICS LETTERS 1 July 23 Europhys. Lett., 63 (1), pp. 97 13 (23) Absence of orbital-dependent Mott transition in Ca 2 x Sr x RuO 4 A. Liebsch Institut für Festkörperforschung, Forschungszentrum Jülich

More information

A typical medium approach to Anderson localization in correlated systems.

A typical medium approach to Anderson localization in correlated systems. A typical medium approach to Anderson localization in correlated systems. N.S.Vidhyadhiraja Theoretical Sciences Unit Jawaharlal Nehru center for Advanced Scientific Research Bangalore, India Outline Models

More information

Evidence for exhaustion in the conductivity of the infinite-dimensional periodic Anderson model

Evidence for exhaustion in the conductivity of the infinite-dimensional periodic Anderson model PHYSICAL REVIEW B VOLUME 60, NUMBER 15 15 OCTOBER 1999-I Evidence for exhaustion in the conductivity of the infinite-dimensional periodic Anderson model A. N. Tahvildar-Zadeh and M. Jarrell Department

More information

Theory of magnetic interactions in real materials. Mikhail Katsnelson

Theory of magnetic interactions in real materials. Mikhail Katsnelson Theory of magnetic interactions in real materials Mikhail Katsnelson Outline 1. Introduction 2. Exchange interactions from first principles 3. Beyond DFT: correlated systems and LDA+DMFT 4. Applications:

More information

The mapping problem in nonequilibrium dynamical mean-field theory

The mapping problem in nonequilibrium dynamical mean-field theory The mapping problem in nonequilibrium dynamical mean-field theory Masterarbeit im Fach Physik vorgelegt der Mathematisch-Naturwissenschaflichen Fakultät der Universität Augsburg von Christian Gramsch Januar

More information

Continuous time QMC methods

Continuous time QMC methods Continuous time QMC methods Matthias Troyer (ETH Zürich) Philipp Werner (Columbia ETHZ) Emanuel Gull (ETHZ Columbia) Andy J. Millis (Columbia) Olivier Parcollet (Paris) Sebastian Fuchs, Thomas Pruschke

More information

Metal-insulator transition with Gutzwiller-Jastrow wave functions

Metal-insulator transition with Gutzwiller-Jastrow wave functions Metal-insulator transition with Gutzwiller-Jastrow wave functions Odenwald, July 20, 2010 Andrea Di Ciolo Institut für Theoretische Physik, Goethe Universität Frankfurt Metal-insulator transition withgutzwiller-jastrow

More information

Nonresonant inelastic light scattering in the Hubbard model

Nonresonant inelastic light scattering in the Hubbard model Nonresonant inelastic light scattering in the Hubbard model J. K. Freericks, 1 T. P. Devereaux, 2 R. Bulla, 3 and Th. Pruschke 3 1 Department of Physics, Georgetown University, Washington, D.C. 20057 2

More information

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Current/recent students Saurabh Dayal (current PhD student) Wasanthi De Silva (new grad student 212) Jeong-Pil Song (finished

More information

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl Magnetism, Bad Metals and Superconductivity: Iron Pnictides and Beyond September 11, 2014 Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises Gertrud Zwicknagl Institut

More information

Computational design and optimization of nanoscale spintronic and thermoelectric devices

Computational design and optimization of nanoscale spintronic and thermoelectric devices Computational design and optimization of nanoscale spintronic and thermoelectric devices J. K. Freericks, A. Y. Liu, and B. A. Jones Department of Physics, Georgetown University, and IBM s Almaden Research

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

PHYSICAL REVIEW B VOLUME 57, NUMBER 19 ARTICLES. Charge-transfer metal-insulator transitions in the spin- 1 2

PHYSICAL REVIEW B VOLUME 57, NUMBER 19 ARTICLES. Charge-transfer metal-insulator transitions in the spin- 1 2 PHYSICAL REVIEW B VOLUME 57, NUMBER 19 15 MAY 1998-I ARTICLES Charge-transfer metal-insulator transitions in the spin- 1 2 Falicov-Kimball model Woonki Chung and J. K. Freericks Department of Physics,

More information

A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID

A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID ABSTRACT--- I demonstrate a contradiction which arises if we assume that the Fermi surface in a heavy electron metal represents

More information

arxiv: v2 [cond-mat.dis-nn] 26 Sep 2011

arxiv: v2 [cond-mat.dis-nn] 26 Sep 2011 Anderson-Hubbard model with box disorder: Statistical dynamical mean-field theory investigation arxiv:06.4028v2 [cond-mat.dis-nn] 26 Sep 20 D. Semmler, K. Byczuk, 2 and W. Hofstetter Institut für Theoretische

More information

Numerical Renormalization Group for Quantum Impurities 1

Numerical Renormalization Group for Quantum Impurities 1 B 3 Numerical Renormalization Group for Quantum Impurities 1 T. A. Costi Institute for Advanced Simulation (IAS-3) Forschungszentrum Jülich GmbH Contents 1 Introduction 2 2 Quantum impurity models 3 3

More information

Dynamical cluster approximation: Nonlocal dynamics of correlated electron systems

Dynamical cluster approximation: Nonlocal dynamics of correlated electron systems PHYSICAL REVIEW B VOLUME 61, NUMBER 19 15 MAY 2-I Dynamical cluster approximation: Nonlocal dynamics of correlated electron systems M. H. Hettler* Department of Physics, University of Cincinnati, Cincinnati,

More information

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 Kondo Effect in Metals and Quantum Dots Jan von Delft

More information

Fluctuating exchange theory of dynamical electron correlations and magnetism

Fluctuating exchange theory of dynamical electron correlations and magnetism Fluctuating exchange theory of dynamical electron correlations and magnetism Václav Drchal Institute of Physics ASCR, Praha, Czech Republic Grant Agency of ASCR: project IAA11616 Workshop Frontiers in

More information

Computational Approaches to Quantum Critical Phenomena ( ) ISSP. Fermion Simulations. July 31, Univ. Tokyo M. Imada.

Computational Approaches to Quantum Critical Phenomena ( ) ISSP. Fermion Simulations. July 31, Univ. Tokyo M. Imada. Computational Approaches to Quantum Critical Phenomena (2006.7.17-8.11) ISSP Fermion Simulations July 31, 2006 ISSP, Kashiwa Univ. Tokyo M. Imada collaboration T. Kashima, Y. Noda, H. Morita, T. Mizusaki,

More information

Gapless Spin Liquids in Two Dimensions

Gapless Spin Liquids in Two Dimensions Gapless Spin Liquids in Two Dimensions MPA Fisher (with O. Motrunich, Donna Sheng, Matt Block) Boulder Summerschool 7/20/10 Interest Quantum Phases of 2d electrons (spins) with emergent rather than broken

More information

Continuous Time Monte Carlo methods for fermions

Continuous Time Monte Carlo methods for fermions Continuous Time Monte Carlo methods for fermions Alexander Lichtenstein University of Hamburg In collaboration with A. Rubtsov (Moscow University) P. Werner (ETH Zurich) Outline Calculation of Path Integral

More information

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS NUMERICAL METODS FOR QUANTUM IMPURITY MODELS http://www.staff.science.uu.nl/~mitch003/nrg.html March 2015 Andrew Mitchell, Utrecht University Quantum impurity problems Part 1: Quantum impurity problems

More information

Dual fermion approach to unconventional superconductivity and spin/charge density wave

Dual fermion approach to unconventional superconductivity and spin/charge density wave June 24, 2014 (ISSP workshop) Dual fermion approach to unconventional superconductivity and spin/charge density wave Junya Otsuki (Tohoku U, Sendai) in collaboration with H. Hafermann (CEA Gif-sur-Yvette,

More information

Orbital order and Hund's rule frustration in Kondo lattices

Orbital order and Hund's rule frustration in Kondo lattices Orbital order and Hund's rule frustration in Kondo lattices Ilya Vekhter Louisiana State University, USA 4/29/2015 TAMU work done with Leonid Isaev, LSU Kazushi Aoyama, Kyoto Indranil Paul, CNRS Phys.

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS

QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS International Journal of Modern Physics B, Vol. 13, No. 18 (1999) 2331 2342 c World Scientific Publishing Company QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS QIMIAO SI, J. LLEWEILUN SMITH and KEVIN INGERSENT

More information

Solution of the Anderson impurity model via the functional renormalization group

Solution of the Anderson impurity model via the functional renormalization group Solution of the Anderson impurity model via the functional renormalization group Simon Streib, Aldo Isidori, and Peter Kopietz Institut für Theoretische Physik, Goethe-Universität Frankfurt Meeting DFG-Forschergruppe

More information

Metal-Mott insulator transitions

Metal-Mott insulator transitions University of Ljubljana Faculty of Mathematics and Physics Seminar I b Metal-Mott insulator transitions Author: Alen Horvat Advisor: doc. dr. Tomaž Rejec Co-advisor: dr. Jernej Mravlje Ljubljana, September

More information

Anderson impurity model at finite Coulomb interaction U: Generalized noncrossing approximation

Anderson impurity model at finite Coulomb interaction U: Generalized noncrossing approximation PHYSICAL REVIEW B, VOLUME 64, 155111 Anderson impurity model at finite Coulomb interaction U: Generalized noncrossing approximation K. Haule, 1,2 S. Kirchner, 2 J. Kroha, 2 and P. Wölfle 2 1 J. Stefan

More information

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models arxiv:1609.03760 Lode Pollet Dario Hügel Hugo Strand, Philipp Werner (Uni Fribourg) Algorithmic developments diagrammatic

More information

Fate of the Kondo impurity in a superconducting medium

Fate of the Kondo impurity in a superconducting medium Karpacz, 2 8 March 214 Fate of the Kondo impurity in a superconducting medium T. Domański M. Curie Skłodowska University Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures Motivation Physical dilemma

More information