Kondo satellites in photoemission spectra of heavy fermion compounds

Size: px
Start display at page:

Download "Kondo satellites in photoemission spectra of heavy fermion compounds"

Transcription

1 Kondo satellites in photoemission spectra of heavy fermion compounds P. Wölfle, Universität Karlsruhe J. Kroha, Universität Bonn

2 Outline Introduction: Kondo resonances in the photoemission spectra of Ce systems Single ion Anderson model of 4f multiplets: slave boson mean field theory Spectral function from perturbative RG method Spectral function in non-crossing approximation Comparison with experiment and conclusion

3 Collaborators: Theory Experiment S. Kirchner, Universität Karlsruhe (till 2004) G. Sellier, S. Hüfner, Universität Saarbrücken D. Ehm S. Schmidt F. Reinert Universität Würzburg O. Stockert, MPI-CPS, Dresden C. Geibel H. v. Löhneysen, Universität Karlsruhe

4 Modelling Ce compounds: Periodic Anderson model Localized 4f electrons hybridizing with conduction electron band Single ion physics expected to dominate local properties observed in photoemission spectra Lattice effects leading to coherent transport less important for PES

5 Multiorbital single impurity Anderson model 4f-states m, σ > : 7 spin-degenerate levels split by octet spin-orbit interaction crystal field sextet four doublets three doublets conduction band

6 Kondo resonances in the single particle spectra Model system: triplet of localized states, occupation n=1 Kondo resonances main resonance at Fermi level above Fermi level : rigid shift of multiplet below Fermi level: mirror image of excited levels width of excited levels of order a few T K

7 Methods: Pseudoparticle representation Limit of infinite Coulomb interaction U: multiple occupancy of f-states excluded b + Pseudoparticle operators: (empty level), (singly occupied level) f-electron operator:, f = f b + + el m m f + m = + m m = m + + Constraint: Q b b f f 1 Implementation of constraint H H λq, + λ

8 Methods: Slave boson mean field theory Replace Bose operators by mean field plus fluctuations: ˆ ˆ ˆ b= r+ aˆ, r = b, λ = λ + λ 0 Mean field Hamiltonian Mean field equations Level shifts: Kondo temperature: ε 0 = ε0 + λ0 = αt K, α 1 ε = ε + ( ε ε ) T m K 0 m 0 M 1 mm D Γ = { ( ) } De ε ε m= 1 m 0 Γ π ε0 2Γ 00 00

9 Electron spectral function: sb MFT + fluctuations dm, where G σ ( ω) = [( ω ε ) δ iγ ( ω)] f,, m, m' d, m m, m' m, m' 1 ε = ε + ( ε ε ) and at ε dm, = ( εdm, εd,0) Resonance peaks at dm, d,0 dm, d,0 Resonance widths: Γ = Γ = 2 mm, r mm, O( TK) weak dependence on ε bare level spacings

10 Methods: Mapping on to Kondo model Elimination of empty and multiply occupied states yields Kondo model : where H = H + J f f c c + ( ε ε ) f f K 0 m, m' m', σ ' m, σ k, σ k', σ' m 0 m, σ m, σ σσ, ', mm, ' kk, ' m J = 2 V V /( ε + ε ) Constraint: mm, ' m m' m m' m, σ f f + m, σ m, σ Perturbative second order correction to exchange constants ( ε = ε ε ): m = 1 m 0 D (2) f ( ε ) mm ' ml m ' l l ε + ω + ε D m l J ( ω) = N(0) J J { dε + ( ω ω)} ε N( J J / D ) ml m ' l l n{([ εm εl ] ω ) } l Logarithmically divergent terms at ω = ± [ ε ε ] m l

11 Methods: Renormalization group equations Poor man s scaling (Anderson, 1970) remove high energy states at ±D and absorb change into coupling constant g(d), depending on running cutoff D, take D 0. Extend renormalization group meth. to energy dependent coupling functions dg dg mm, ' dln D mm, ' ( ω) dln D ( ω) = 2 g g Θ( D ω) l ml, lm, ' = 2 g g Θ( D ω) l ml, lm, ' ω = ω ε + ε Θ-(step)-functions account for absence of renormalization if energy is outside the bandwidth D Two levels, splitting ε: 01 g 1 ( ω) =Θ( ω ε ε) 2ln[ ω ε / T ] 1 +Θ( ε ω ε ) 2ln( ε / T K ) l K ε ω ε m K 1/ln( ε / T )

12 Methods: Decoherence stops RG flow Logarithmic divergencies involving excited states are cut off by the finite spin relaxation rate (even at T=0): γ ε [ln( ε / )] T K 2 To account for this effect, we replace the conduction electron energy in the RG equations by 2 2 ω + γ Width of Kondo satellite peaks γ, increasing with ε Systematic and controlled method, provided γ T K, or ε / T K 1 ε T 2 ln ( / K )

13 Methods: Non-crossing approximation Conserving approximation derived from generating functional Pseudoparticle self energies: Σ ( ) f, σ, m, m' ω = = Γmm, ' dε f( ε) Ac, σ ( ε) Gb( ε + ω) Conduction electron DOS = Γ dε f( ε) A ( ε) G ( ε + ω) mm, ', σ mm, ' c, σ f, σ, mm, ' Γ mm Ac, σ ( ε ) Bare level broadening, ' ( ω) = [( ω λ ε ) δ Σ ( ω)] G f, σ, m, m' 0 f, m m, m' f, σ, m, m' G ( ω) = [ ω λ Σ ( ω)] b 0 b 1 1 el G ( ), σ,, ' ω = f m m

14 Results: Theoretical 4f spectrum in NCA

15 Results: Temperature dependence of 4f spectrum

16 Results: PES of CeCu 6 D. Ehm et al. (2002)

17 Results: Temperature dependence of PES of CeCu 6

18 Results: PES of CeCu 2 Si 2 F. Reinert et al.(2001)

19 Results: PES of CeRu 2 Si 2

20 Results: PES of CeNi 2 Ge 2 D. Ehm et al.(2005)

21 Results: PES of CeSi 2 D. Ehm et al. (2005)

22 Results: Kondo temperature and crystal field splittings D. Ehm et al.(2005)

23 Conclusion Photoemission spectra of Ce compounds may be modelled within single ion Anderson model of spin-orbit and crystal field split ionic states Excited crystal field split 4f-states lead to Kondo-type satellite resonance peaks in the single particle spectral function The peak positions are given by a rigid shift of the multiplet up to the Fermi level, as obtained by slave boson mean field theory The Kondo character of the peaks is apparent from logarithmically divergent terms in perturbation theory Summing the leading logarithms by renormalization group methods, observing the effect of phase decoherence for excited states yields resonance peaks of width increasing with level splitting Quantitative results were obtained within NCA, in excellent agreement with experiment

24 Methods: Diagrams of one loop RG equation Main contribution from Keldysh comp. of conduction electron G and real part of pseudofermion G:

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Prof. Luis Gregório Dias DFMT PG5295 Muitos Corpos 1 Electronic Transport in Quantum

More information

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl Magnetism, Bad Metals and Superconductivity: Iron Pnictides and Beyond September 11, 2014 Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises Gertrud Zwicknagl Institut

More information

Anderson impurity model at finite Coulomb interaction U: Generalized noncrossing approximation

Anderson impurity model at finite Coulomb interaction U: Generalized noncrossing approximation PHYSICAL REVIEW B, VOLUME 64, 155111 Anderson impurity model at finite Coulomb interaction U: Generalized noncrossing approximation K. Haule, 1,2 S. Kirchner, 2 J. Kroha, 2 and P. Wölfle 2 1 J. Stefan

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information

Theory of the thermoelectricity of intermetallic compounds with Ce or Yb ions

Theory of the thermoelectricity of intermetallic compounds with Ce or Yb ions PHYSICAL REVIEW B 71, 165109 2005 Theory of the thermoelectricity of intermetallic compounds with Ce or Yb ions V. Zlatić 1 and R. Monnier 2 1 Institute of Physics, Bijenička cesta 46, P. O. Box 304, 10001

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

Heavy Fermion systems

Heavy Fermion systems Heavy Fermion systems Satellite structures in core-level and valence-band spectra Kondo peak Kondo insulator Band structure and Fermi surface d-electron heavy Fermion and Kondo insulators Heavy Fermion

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Orbital order and Hund's rule frustration in Kondo lattices

Orbital order and Hund's rule frustration in Kondo lattices Orbital order and Hund's rule frustration in Kondo lattices Ilya Vekhter Louisiana State University, USA 4/29/2015 TAMU work done with Leonid Isaev, LSU Kazushi Aoyama, Kyoto Indranil Paul, CNRS Phys.

More information

Electron Transport in Strongly Correlated Quantum Dots, Wires and Films

Electron Transport in Strongly Correlated Quantum Dots, Wires and Films Subproject B2.9 Electron Transport in Strongly Correlated Quantum Dots, Wires and Films Principle Investigator: Peter Wölfle CFN-Financed Scientists: Verena Koerting (E13/2, 12 months), Christine Köhler

More information

8.512 Theory of Solids II Spring 2009

8.512 Theory of Solids II Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 8.5 Theory of Solids II Spring 009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Lecture : The Kondo Problem:

More information

Nernst effect and Kondo scattering in (CeLa)Cu 2 Si 2

Nernst effect and Kondo scattering in (CeLa)Cu 2 Si 2 Nernst effect and Kondo scattering in (CeLa)Cu 2 Si 2 Peijie Sun MPI Chemical Physics of Solids, Dresden (IOP-CAS, from April 212) Collaborators: C. Geibel, F. Steglich 1 Outline Introduction to magneto-thermoelectric

More information

PHYSICAL REVIEW B 68, Received 4 April 2003; revised manuscript received 10 June 2003; published 28 October 2003

PHYSICAL REVIEW B 68, Received 4 April 2003; revised manuscript received 10 June 2003; published 28 October 2003 PHYSICAL REVIEW B 68, 559 23 Pseudogaps in the t-j model: An extended dynamical mean-field theory study K. Haule,,4 A. Rosch, 2 J. Kroha, 3 and P. Wölfle 2 Department of Physics and Astronomy, Rutgers

More information

(r) 2.0 E N 1.0

(r) 2.0 E N 1.0 The Numerical Renormalization Group Ralf Bulla Institut für Theoretische Physik Universität zu Köln 4.0 3.0 Q=0, S=1/2 Q=1, S=0 Q=1, S=1 E N 2.0 1.0 Contents 1. introduction to basic rg concepts 2. introduction

More information

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory From utzwiller Wave Functions to Dynamical Mean-Field Theory Dieter Vollhardt Autumn School on Correlated Electrons DMFT at 25: Infinite Dimensions Forschungszentrum Jülich, September 15, 2014 Supported

More information

A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID

A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID ABSTRACT--- I demonstrate a contradiction which arises if we assume that the Fermi surface in a heavy electron metal represents

More information

Fate of the Kondo impurity in a superconducting medium

Fate of the Kondo impurity in a superconducting medium Karpacz, 2 8 March 214 Fate of the Kondo impurity in a superconducting medium T. Domański M. Curie Skłodowska University Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures Motivation Physical dilemma

More information

Cluster Functional Renormalization Group

Cluster Functional Renormalization Group Cluster Functional Renormalization Group Johannes Reuther Free University Berlin Helmholtz-Center Berlin California Institute of Technology (Pasadena) Lefkada, September 26, 2014 Johannes Reuther Cluster

More information

Part III: Impurities in Luttinger liquids

Part III: Impurities in Luttinger liquids Functional RG for interacting fermions... Part III: Impurities in Luttinger liquids 1. Luttinger liquids 2. Impurity effects 3. Microscopic model 4. Flow equations 5. Results S. Andergassen, T. Enss (Stuttgart)

More information

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 Kondo Effect in Metals and Quantum Dots Jan von Delft

More information

Enhancement of thermal transport in the degenerate periodic Anderson model

Enhancement of thermal transport in the degenerate periodic Anderson model Enhancement of thermal transport in the degenerate periodic Anderson model V. Zlatić, 1, R. Monnier, 3 and J. K. Freerics 4 1 Institute of Physics, Bijeniča c. 46, 10001 Zagreb, Croatia International School

More information

AN EVALUATION OF OPTICAL CONDUCTIVITY OF PROTOTYPE NON-FERMI LIQUID KONDO ALLOYS

AN EVALUATION OF OPTICAL CONDUCTIVITY OF PROTOTYPE NON-FERMI LIQUID KONDO ALLOYS Int. J. Chem. Sci.: 10(3), 01, 1419-147 ISSN 097-768X www.sadgurupublications.com AN EVALUATION OF OPTICAL CONDUCTIVITY OF PROTOTYPE NON-FERMI LIQUID KONDO ALLOYS A. K. SINGH * and L. K. MISHRA a Department

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Relationship between the thermopower and entropy of strongly correlated electron systems

Relationship between the thermopower and entropy of strongly correlated electron systems Relationship between the thermopower and entropy of strongly correlated electron systems V. Zlatić, 1,2 R. Monnier, 3 J. K. Freericks, 4 and K. W. Becker 2 1 Institute of Physics, Bijenička cesta 46, 10001

More information

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Frithjof B Anders Institut für theoretische Physik, Universität Bremen Concepts in Electron Correlation,

More information

Noncrossing approximation solution of the anisotropic Anderson impurity model

Noncrossing approximation solution of the anisotropic Anderson impurity model PHYSICAL REVIEW B 67, 045102 2003 Noncrossing approximation solution of the anisotropic Anderson impurity model Peter S. Riseborough Department of Physics, Barton Hall, 1900 N. 13th St., Temple University,

More information

Theory of Electron Spin Resonance in Ferromagnetically Correlated Heavy Fermion Compounds

Theory of Electron Spin Resonance in Ferromagnetically Correlated Heavy Fermion Compounds magnetochemistry Article Theory of Electron Spin Resonance in Ferromagnetically Correlated Heavy Fermion Compounds Pedro Schlottmann Department of Physics, Florida State University, Tallahassee, FL 32306,

More information

Electronic structure of correlated electron systems. Lecture 2

Electronic structure of correlated electron systems. Lecture 2 Electronic structure of correlated electron systems Lecture 2 Band Structure approach vs atomic Band structure Delocalized Bloch states Fill up states with electrons starting from the lowest energy No

More information

Hybridization effects in 4f systems as observed by photoemission spectroscopy

Hybridization effects in 4f systems as observed by photoemission spectroscopy Hybridization eects in 4 systems as observed by photoemission spectroscopy Yu. Kucherenko Institute or Metal Physics, Academy o Sciences o Ukraine, Kiev C. Laubschat, S.L. Molodtsov, S. Danzenbächer et

More information

Critical and Glassy Spin Dynamics in Non-Fermi-Liquid Heavy-Fermion Metals

Critical and Glassy Spin Dynamics in Non-Fermi-Liquid Heavy-Fermion Metals Critical and Glassy Spin Dynamics in Non-Fermi-Liquid Heavy-Fermion Metals D. E. MacLaughlin Department of Physics University of California Riverside, California U.S.A. Leiden p.1 Behavior of spin fluctuations

More information

Review of typical behaviours observed in strongly correlated systems. Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen.

Review of typical behaviours observed in strongly correlated systems. Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen. Review of typical behaviours observed in strongly correlated systems Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen. Introduction : Major part of solid state physics of the second part

More information

Mott insulators. Introduction Cluster-model description Chemical trend Band description Self-energy correction

Mott insulators. Introduction Cluster-model description Chemical trend Band description Self-energy correction Mott insulators Introduction Cluster-model description Chemical trend Band description Self-energy correction Introduction Mott insulators Lattice models for transition-metal compounds Hubbard model Anderson-lattice

More information

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Frithjof B. Anders Institut für Theoretische Physik Universität Bremen Göttingen, December

More information

Spin-Singlet Resonance State in Proton-Embedded Metals: Discovery of novel high-t K system leading to high-t c superconductivity

Spin-Singlet Resonance State in Proton-Embedded Metals: Discovery of novel high-t K system leading to high-t c superconductivity Mesoscopic & Condensed Matter Physics 2015 Spin-Singlet Resonance State in Proton-Embedded Metals: Discovery of novel high-t K system leading to high-t c superconductivity Yasutami Takada Institute for

More information

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA LCI -birthplace of liquid crystal display May, 4 1970 protests Fashion school is in top-3 in USA Clinical Psychology program is Top-5 in USA Topological insulators driven by electron spin Maxim Dzero Kent

More information

arxiv: v1 [cond-mat.str-el] 13 Mar 2017

arxiv: v1 [cond-mat.str-el] 13 Mar 2017 Time-resolved collapse and revival of the Kondo state near a quantum phase transition arxiv:1703.04443v1 [cond-mat.str-el] 13 Mar 2017 Christoph Wetli, 1 Johann Kroha, 2,3 Kristin Kliemt, 4 Cornelius Krellner,

More information

Spatial and temporal propagation of Kondo correlations. Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund

Spatial and temporal propagation of Kondo correlations. Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund Spatial and temporal propagation of Kondo correlations Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund Collaborators Collaborators Benedikt Lechtenberg Collaborators

More information

A theoretical study of the single-molecule transistor

A theoretical study of the single-molecule transistor A theoretical study of the single-molecule transistor B. C. Friesen Department of Physics, Oklahoma Baptist University, Shawnee, OK 74804 J. K. Ingersent Department of Physics, University of Florida, Gainesville,

More information

Lecture 6 Photons, electrons and other quanta. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

Lecture 6 Photons, electrons and other quanta. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku Lecture 6 Photons, electrons and other quanta EECS 598-002 Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku From classical to quantum theory In the beginning of the 20 th century, experiments

More information

Quantum Impurities In and Out of Equilibrium. Natan Andrei

Quantum Impurities In and Out of Equilibrium. Natan Andrei Quantum Impurities In and Out of Equilibrium Natan Andrei HRI 1- Feb 2008 Quantum Impurity Quantum Impurity - a system with a few degrees of freedom interacting with a large (macroscopic) system. Often

More information

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering DE-FG02-08ER46544 Overview

More information

Relationship between the thermopower and entropy of strongly correlated electron systems

Relationship between the thermopower and entropy of strongly correlated electron systems Relationship between the thermopower and entropy of strongly correlated electron systems V. Zlatić 1,2, R. Monnier 3, J. Freericks 4, K. W. Becker 2 1 Institute of Physics, Bijenička c. 46, 11 Zagreb,

More information

Quantum impurities in a bosonic bath

Quantum impurities in a bosonic bath Ralf Bulla Institut für Theoretische Physik Universität zu Köln 27.11.2008 contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity

More information

First principle calculations of plutonium and plutonium compounds: part 1

First principle calculations of plutonium and plutonium compounds: part 1 First principle calculations of plutonium and plutonium compounds: part 1 A. B. Shick Institute of Physics ASCR, Prague, CZ Outline: u Lecture 1: Methods of Correlated band theory DFT and DFT+U u Lecture

More information

"From a theoretical tool to the lab"

From a theoretical tool to the lab N "From a theoretical tool to the lab" Aline Ramires Institute for Theoretical Studies - ETH - Zürich Cold Quantum Coffee ITP - Heidelberg University - 13th June 2017 ETH - Hauptgebäude The Institute for

More information

A guide to. Feynman diagrams in the many-body problem

A guide to. Feynman diagrams in the many-body problem A guide to. Feynman diagrams in the many-body problem Richard D. Mattuck SECOND EDITION PAGE Preface to second edition v Preface to first edition. vi i 0. The Many-Body Problem for Everybody 1 0.0 What

More information

Lecture 12 Multiplet splitting

Lecture 12 Multiplet splitting Lecture 12 Multiplet splitting Multiplet splitting Atomic various L and S terms Both valence and core levels Rare earths Transition metals Paramagnetic free molecules Consider 3s level emission from Mn2+

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction

Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction Journal of Physics: Conference Series PAPER OPEN ACCESS Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction To cite this article: V S Protsenko and A

More information

Coherence by elevated temperature

Coherence by elevated temperature Coherence by elevated temperature Volker Meden with Dante Kennes, Alex Kashuba, Mikhail Pletyukhov, Herbert Schoeller Institut für Theorie der Statistischen Physik Goal dynamics of dissipative quantum

More information

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS NUMERICAL METODS FOR QUANTUM IMPURITY MODELS http://www.staff.science.uu.nl/~mitch003/nrg.html March 2015 Andrew Mitchell, Utrecht University Quantum impurity problems Part 1: Quantum impurity problems

More information

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Anna Kauch Institute of Theoretical Physics Warsaw University PIPT/Les Houches Summer School on Quantum Magnetism

More information

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Angle-Resolved Two-Photon Photoemission of Mott Insulator Angle-Resolved Two-Photon Photoemission of Mott Insulator Takami Tohyama Institute for Materials Research (IMR) Tohoku University, Sendai Collaborators IMR: H. Onodera, K. Tsutsui, S. Maekawa H. Onodera

More information

f-electron Fermi surface exclusion above T K in CeRu 2 Si 2 Dr. Jim Allen, Univ of Michigan (KITP Correlated Electrons Program 9/17/02) 1

f-electron Fermi surface exclusion above T K in CeRu 2 Si 2 Dr. Jim Allen, Univ of Michigan (KITP Correlated Electrons Program 9/17/02) 1 f-electron Fermi surface exclusion above TK in CeRu_Si_ f-electron Fermi surface exclusion above T K in CeRu Si Luttinger counting theorem Conjecture (Fulde & Zwicknagl, 9) f-electrons counted in Fermi

More information

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES N.M.Plakida Joint Institute for Nuclear Research, Dubna, Russia CORPES, Dresden, 26.05.2005 Publications and collaborators: N.M. Plakida,

More information

The effect of magnetic impurities on metals the Kondo problem has been studied for nearly half a century [], and attracts continued interest till now

The effect of magnetic impurities on metals the Kondo problem has been studied for nearly half a century [], and attracts continued interest till now Available at: http://www.ictp.trieste.it/~pub off IC/2/38 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR

More information

Examples of Lifshitz topological transition in interacting fermionic systems

Examples of Lifshitz topological transition in interacting fermionic systems Examples of Lifshitz topological transition in interacting fermionic systems Joseph Betouras (Loughborough U. Work in collaboration with: Sergey Slizovskiy (Loughborough, Sam Carr (Karlsruhe/Kent and Jorge

More information

Calculating Band Structure

Calculating Band Structure Calculating Band Structure Nearly free electron Assume plane wave solution for electrons Weak potential V(x) Brillouin zone edge Tight binding method Electrons in local atomic states (bound states) Interatomic

More information

Non-equilibrium time evolution of bosons from the functional renormalization group

Non-equilibrium time evolution of bosons from the functional renormalization group March 14, 2013, Condensed Matter Journal Club University of Florida at Gainesville Non-equilibrium time evolution of bosons from the functional renormalization group Peter Kopietz, Universität Frankfurt

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

Present and future prospects of the (functional) renormalization group

Present and future prospects of the (functional) renormalization group Schladming Winter School 2011: Physics at all scales: the renormalization group Present and future prospects of the (functional) renormalization group Peter Kopietz, Universität Frankfurt panel discussion

More information

Sommerfeld-Drude model. Ground state of ideal electron gas

Sommerfeld-Drude model. Ground state of ideal electron gas Sommerfeld-Drude model Recap of Drude model: 1. Treated electrons as free particles moving in a constant potential background. 2. Treated electrons as identical and distinguishable. 3. Applied classical

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

Dynamic properties of interacting bosons and magnons

Dynamic properties of interacting bosons and magnons Ultracold Quantum Gases beyond Equilibrium Natal, Brasil, September 27 October 1, 2010 Dynamic properties of interacting bosons and magnons Peter Kopietz, Universität Frankfurt collaboration: A. Kreisel,

More information

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS http://www.staff.science.uu.nl/~mitch003/nrg.html March 2015 Anrew Mitchell Utrecht University Quantum impurity problems Part 1: Quantum impurity problems

More information

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling FRG approach to interacting fermions with partial bosonization: from weak to strong coupling Talk at conference ERG08, Heidelberg, June 30, 2008 Peter Kopietz, Universität Frankfurt collaborators: Lorenz

More information

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation Lecture 17 Page 1 Lecture 17 L17.P1 Review Schrödinger equation The general solution of Schrödinger equation in three dimensions (if V does not depend on time) is where functions are solutions of time-independent

More information

Mott insulators. Mott-Hubbard type vs charge-transfer type

Mott insulators. Mott-Hubbard type vs charge-transfer type Mott insulators Mott-Hubbard type vs charge-transfer type Cluster-model description Chemical trend Band theory Self-energy correction Electron-phonon interaction Mott insulators Mott-Hubbard type vs charge-transfer

More information

X-Ray Magnetic Circular Dichroism: basic concepts and theory for 4f rare earth ions and 3d metals. Stefania PIZZINI Laboratoire Louis Néel - Grenoble

X-Ray Magnetic Circular Dichroism: basic concepts and theory for 4f rare earth ions and 3d metals. Stefania PIZZINI Laboratoire Louis Néel - Grenoble X-Ray Magnetic Circular Dichroism: basic concepts and theory for 4f rare earth ions and 3d metals Stefania PIZZINI Laboratoire Louis Néel - Grenoble I) - History and basic concepts of XAS - XMCD at M 4,5

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Exciton in the Topological Kondo Insulator SmB 6

Exciton in the Topological Kondo Insulator SmB 6 Exciton in the Topological Kondo Insulator SmB 6 Collin Broholm* Institute for Quantum Matter, Johns Hopkins University Quantum Condensed Matter Division, Oak Ridge National Laboratory *Supported by U.S.

More information

2.1 Experimental and theoretical studies

2.1 Experimental and theoretical studies Chapter 2 NiO As stated before, the first-row transition-metal oxides are among the most interesting series of materials, exhibiting wide variations in physical properties related to electronic structure.

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

arxiv: v1 [cond-mat.str-el] 4 Oct 2017

arxiv: v1 [cond-mat.str-el] 4 Oct 2017 Scaling analysis of the extended single impurity Anderson model: Renormalization due to valence fluctuations Rukhsan Ul Haq and N. S. Vidhyadhiraja Theoretical Sciences Unit, Jawaharlal Nehru Centre for

More information

CFT approach to multi-channel SU(N) Kondo effect

CFT approach to multi-channel SU(N) Kondo effect CFT approach to multi-channel SU(N) Kondo effect Sho Ozaki (Keio Univ.) In collaboration with Taro Kimura (Keio Univ.) Seminar @ Chiba Institute of Technology, 2017 July 8 Contents I) Introduction II)

More information

Lecture 6: Fluctuation-Dissipation theorem and introduction to systems of interest

Lecture 6: Fluctuation-Dissipation theorem and introduction to systems of interest Lecture 6: Fluctuation-Dissipation theorem and introduction to systems of interest In the last lecture, we have discussed how one can describe the response of a well-equilibriated macroscopic system to

More information

Réunion du GDR MICO Dinard 6-9 décembre Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram

Réunion du GDR MICO Dinard 6-9 décembre Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram Réunion du GDR MICO Dinard 6-9 décembre 2010 1 Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram Claudine Lacroix, institut Néel, CNRS-UJF, Grenoble 1- The

More information

Transport Coefficients of the Anderson Model via the numerical renormalization group

Transport Coefficients of the Anderson Model via the numerical renormalization group Transport Coefficients of the Anderson Model via the numerical renormalization group T. A. Costi 1, A. C. Hewson 1 and V. Zlatić 2 1 Department of Mathematics, Imperial College, London SW7 2BZ, UK 2 Institute

More information

arxiv: v1 [cond-mat.str-el] 9 Apr 2015

arxiv: v1 [cond-mat.str-el] 9 Apr 2015 Electronic structure and transport properties of CeNi 9 In 2 R. Kurleto a, P. Starowicz a, J. Goraus b, S. Baran a, Yu. Tyvanchuk c, Ya. M. Kalychak c, A. Szytu la a arxiv:154.2415v1 [cond-mat.str-el]

More information

Transfer of spectral weight in spectroscopies of correlated electron systems

Transfer of spectral weight in spectroscopies of correlated electron systems PHYSICAL REVIEW B VOLUME 54, NUMBER 12 15 SEPTEMBER 1996-II Transfer of spectral weight in spectroscopies of correlated electron systems M. J. Rozenberg* Laboratoire de Physique Théorique, Ecole Normale

More information

Charges and Spins in Quantum Dots

Charges and Spins in Quantum Dots Charges and Spins in Quantum Dots L.I. Glazman Yale University Chernogolovka 2007 Outline Confined (0D) Fermi liquid: Electron-electron interaction and ground state properties of a quantum dot Confined

More information

Fermi polaron-polaritons in MoSe 2

Fermi polaron-polaritons in MoSe 2 Fermi polaron-polaritons in MoSe 2 Meinrad Sidler, Patrick Back, Ovidiu Cotlet, Ajit Srivastava, Thomas Fink, Martin Kroner, Eugene Demler, Atac Imamoglu Quantum impurity problem Nonperturbative interaction

More information

Before we go to the topic of hole, we discuss this important topic. The effective mass m is defined as. 2 dk 2

Before we go to the topic of hole, we discuss this important topic. The effective mass m is defined as. 2 dk 2 Notes for Lecture 7 Holes, Electrons In the previous lecture, we learned how electrons move in response to an electric field to generate current. In this lecture, we will see why the hole is a natural

More information

Electronic structure of Ce 2 Rh 3 Al 9

Electronic structure of Ce 2 Rh 3 Al 9 Materials Science-Poland, Vol. 24, No. 3, 2006 Electronic structure of Ce 2 Rh 3 Al 9 J. GORAUS 1*, A. ŚLEBARSKI 1, J. DENISZCZYK 2 1 Institute of Physics, University of Silesia, ul. Bankowa 12, 40-007

More information

Physics 607 Exam 2. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 2. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physics 607 Exam Please be well-organized, and show all significant steps clearly in all problems. You are graded on your work, so please do not just write down answers with no explanation! Do all your

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Luttinger Liquid at the Edge of a Graphene Vacuum

Luttinger Liquid at the Edge of a Graphene Vacuum Luttinger Liquid at the Edge of a Graphene Vacuum H.A. Fertig, Indiana University Luis Brey, CSIC, Madrid I. Introduction: Graphene Edge States (Non-Interacting) II. III. Quantum Hall Ferromagnetism and

More information

Math Questions for the 2011 PhD Qualifier Exam 1. Evaluate the following definite integral 3" 4 where! ( x) is the Dirac! - function. # " 4 [ ( )] dx x 2! cos x 2. Consider the differential equation dx

More information

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Michael Ruby, Nino Hatter, Benjamin Heinrich Falko Pientka, Yang Peng, Felix von Oppen, Nacho Pascual, Katharina

More information

Two energy scales and slow crossover in YbAl 3

Two energy scales and slow crossover in YbAl 3 Two energy scales and slow crossover in YbAl 3 Jon Lawrence University of California, Irvine http://www.physics.uci.edu/~jmlawren/research.html YbAl 3 is an intermediate valence (IV) compound with a large

More information

Photoelectron Peak Intensities in Solids

Photoelectron Peak Intensities in Solids Photoelectron Peak Intensities in Solids Electronic structure of solids Photoelectron emission through solid Inelastic scattering Other excitations Intrinsic and extrinsic Shake-up, shake-down and shake-off

More information

Quantum phase transitions

Quantum phase transitions Quantum phase transitions Thomas Vojta Department of Physics, University of Missouri-Rolla Phase transitions and critical points Quantum phase transitions: How important is quantum mechanics? Quantum phase

More information

Lecture contents. A few concepts from Quantum Mechanics. Tight-binding model Solid state physics review

Lecture contents. A few concepts from Quantum Mechanics. Tight-binding model Solid state physics review Lecture contents A few concepts from Quantum Mechanics Particle in a well Two wells: QM perturbation theory Many wells (atoms) BAND formation Tight-binding model Solid state physics review Approximations

More information

Quantum Transport through Coulomb-Blockade Systems

Quantum Transport through Coulomb-Blockade Systems Quantum Transport through Coulomb-Blockade Systems Björn Kubala Institut für Theoretische Physik III Ruhr-Universität Bochum COQUSY6 p.1 Overview Motivation Single-electron box/transistor Coupled single-electron

More information

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron):

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron): April 6th, 24 Chemistry 2A 2nd Midterm. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (-electron): E n = m e Z 2 e 4 /2 2 n 2 = E Z 2 /n 2, n =, 2, 3,... where Ze is

More information

Dynamically Induced Kondo Effect in Double Quantum Dots

Dynamically Induced Kondo Effect in Double Quantum Dots JEP Letters, Vol. 77, No. 7, 2003, pp. 366 370. ranslated from Pis ma v Zhurnal Éksperimental noœ i eoreticheskoœ Fiziki, Vol. 77, No. 7, 2003, pp. 434 438. Original Russian ext Copyright 2003 by Kiselev,

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

Many electrons: Density functional theory Part II. Bedřich Velický VI.

Many electrons: Density functional theory Part II. Bedřich Velický VI. Many electrons: Density functional theory Part II. Bedřich Velický velicky@karlov.mff.cuni.cz VI. NEVF 514 Surface Physics Winter Term 013-014 Troja 1 st November 013 This class is the second devoted to

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information