Quantum impurity models Algorithms and applications

Size: px
Start display at page:

Download "Quantum impurity models Algorithms and applications"

Transcription

1 1 Quantum impurity models Algorithms and applications Collège de France, 5 Mai 21 O. Parcollet Institut de Physique Théorique CEA-Saclay, France Motivations : why do we need specific algorithms? A few algorithms and examples of applications Out of equilibrium physics. Open problems.

2 Standard case Quantum impurity models Magnetic impurity in a metallic host Thermodynamics : C, χ, transport : ρ? Nanostructures 2 I(V) Dynamical Mean Field Methods (DMFT) Approximations of a lattice model or a solid by an impurity model in a self-consistent bath Requires computing Local Green function G(ω) Quantum dots. Non-equilibrium Current : I(V), conductance, noise? How to solve quantum impurity models?

3 Impurity solvers : a rich toolbox 3 Exact analytic methods (e.g. Bethe Ansatz, BCFT) Controllable algorithms : Exact diagonalization (ED) Numerical Renormalization group (NRG) Density Matrix Renormalization group (DMRG). Continuous Time Quantum Monte Carlo family (CT-QMC) Approximate solvers (e.g. NCA).

4 Anderson model : Hamiltonian vs Action H = ɛ d σd σ + Un d n d + V kσ c kσ d σ + h.c. + ɛ kσ c kσ c kσ σ=, }{{} k,σ=, }{{} k,σ=, }{{} 4 Local site with interaction Hybridization Free electronic band Integrate the fermionic bath V kσ d σ c kσ S = Hybridization function β d σ(τ)g 1 σ (τ τ )d σ (τ )+ σ (iω n ) k β V kσ 2 iω n ɛ kσ dτun d (τ)n d (τ) G 1 σ (iω n) iω n + ɛ σ (iω n )

5 General quantum impurity model 5 A local problem coupled to a free fermionic bath S eff = β d a(τ)g 1 ab (τ τ )d b (τ )+ β G 1 ab (iω n) = (iω n + µ)δ ab ab (iω n ) (Local) Interaction Bath a,b = 1,N : degrees of freedom (e.g. spin, orbital index,...) dτh local ({d a,d a })(τ)

6 6 Challenges for the impurity solvers Why do we need specific algorithms?

7 Universal regime 7 Anderson impurity in a metallic host (structureless bath) Typical energy scale of the bath Δ = D ev very high energy scale (U.V. cut-off). Low energy, universal regime: separation of scales, scaling laws T,ω,T K << D -D Δ(ω) D ω at low energy -D Δ(ω) Flat Bath D ω How to handle the large separation of scales numerically?

8 Baths can have a low-energy structure 8 Gapped bath (insulator, superconductor) : no Kondo effect. The bath can be pseudo-gapped Withoff-Fradkin PRL 64,1835 (199) (ω) ω r (screening transition when r varies) DMFT bath is self-consistently determined and has a structure at low energy Cluster DMFT : bath can have pseudo-gap Ferrero et al. EPL and PRB 29 Analytical methods (Bethe Ansatz & CFT) can not handle this. How to solve an impurity model in such a bath? DMFT bath evolution close to Mott transition metal insulator A. Georges et al., Rev. Mod. Phys. 68, 13, (1996)

9 Multiorbital models 9 Realistic electronic structure calculations for correlated systems e.g. LDA + DMFT. The impurity is d or f shell : 5, 7 bands (3 with crystal-field splitting) Local interaction can be complex : not only density-density (e.g. spin-spin, Hund s coupling) Example : Iron-based superconductors : 5 bands at Fermi level. Need to treat 5 orbitals. Fe-d LDA band structure of LaFeAsO How correlated are those materials? DMFT computation : Aichhorn et al. (29), Haule et al. (28) How to handle N=5,7,... and a general (local) interaction? E#<4 #

10 Multiple impurity models 1 A few impurities, interacting with a free fermionic bath Richer physics than single impurity (Kondo effect vs singlets) Review : M. Ferrero et al., J. Phys.Cond. Mat (27) Cluster DMFT : systematic interpolation between DMFT and lattice. Overcome important limitations of DMFT (short range AF fluctuations, singlet nature of the insulator, d-sc order,...) Real space point of view k-space point of view Single Impurity Model 4 Impurities Anderson model Brillouin zone patching A B D C G G Cluster size = momentum resolution of the self-energy. 8 sites cluster How to solve 8, 16 coupled impurity models in a self-consistent bath?

11 Exact Diagonalisation 11

12 Hamiltonian representation of the Bath Represent the bath with a finite number of auxiliary sites Necessary step for all Hamiltonian methods (ED, NRG, DMRG...) S = β d σ(τ)g 1 σ (τ τ )d σ (τ )+ β dτun d (τ)n d (τ) 12 H = pσ ɛ pσ ξ pσξ pσ + σ ɛ d d σd σ + Un d n d + pσ Ṽ pσ ( ξ pσ d σ + h.c. ) Approximation of Im Δ(ω) by a finite set of Dirac peaks. Different possible shapes for the bath Ṽpσ 2 σ (iω n ) p iω ɛ pσ Δ(ω) = continuous fraction The energy and hoppings of the bath are effective

13 Principle : Exact Diagonalization Caffarel-Krauth, Represent the bath with a finite number of sites (fit V and ε) 2. Compute the ground state of H (Lanczos) and physical quantities : thermodynamics, G(ω),... Examples : Anderson impurity (DMFT bath), ok with only a few sites (5-1). Cluster DMFT of 2d-Hubbard (normal and superconducting phases) e.g. Civelli et al PRL. 1, 4642 (28). Limitations Scaling with size of cluster/number of orbitals is exponential! Small bath ω resolution is poor impossible to resolve low energy scales like Tk Numerical Renormalization Group 13

14 Numerical Renormalization Group 14

15 Numerical Renormalization Group : principle K. Wilson, Rev. Mod. Phys.47, 773, (1975); R. Bulla et al., Rev. Mod. Phys 8, 395 (28) Use a better representation of the bath, adapted to low energy physics. a. Divide the bath spectral function into logarithmic intervals with parameter Λ >1 b. Reduce to a discrete spectrum by associating 1 site to each slice. c. Transform the bath structure into a semi-infinite chain. a) (ω) b) (ω) 1 1 ω 1 Λ 1 Λ 3 Λ 3 Λ 2 Λ 1 1 Λ 2... ω c) ε ε ε ε V t t 1 t 2

16 Numerical Renormalization Group : principle K. Wilson, Rev. Mod. Phys.47, 773, (1975); R. Bulla et al., Rev. Mod. Phys 8, 395 (28) 16 The effective hopping decays exponentially with n H = H imp (f, f )+α σ c) ε ε ε ε V t t 1 t 2 f ξ ξ 1 (f σξ σ +ξ σ f σ)+ σn Approach the chain by successive finite size Hamiltonians H N = Λ (N 1)/2 H imp (f, f )+α σ H N+1 = ΛH N + Λ N/2 σ (f σξ σ + ξ σ f σ)+ ( ) ε n ξ nσξ nσ + t n (ξ nσξ n+1σ + h.c.) N σn ( ε N+1 ξ N+1σ ξ N+1σ + t n (ξ Nσ ξ N+1σ + h.c.) t n Λ n/2 ( ε n ξ nσξ nσ + t n (ξ nσξ n+1σ + h.c.)) )

17 Numerical Renormalization Group : principle 17 H : N ε V t εn t N 1 Iterative diagonalization of HN, with truncation to Ns lowest states ε ε N V t t N 1 r,s N+1 : r N s (N+1) H N+1 : ε V t t N 1 ε N t N ε N+1 a) E N (r) b) c) d) 1/2 Λ E N (r) E N+1 (r) after truncation Evolution of low energy spectrum of HN Allows also computation of thermodynamics, spectral function, at finite T. R. Bulla et al., Rev. Mod. Phys 8, 395 (28) NRG describe the RG flow to the I.R. fixed point

18 NRG : applications 18 Solution of the Kondo model (1 band, S=1/2) H = kσα ɛ k c kσ c kσ + J K S Entropy, susceptibility vs temperature kk σσ Wilson (1975) ckσ σ σσ c k σ S/ln(2) 4T K χ imp Screening of the impurity χ imp T a T K T K γ imp R W T/T K R. Bulla et al., RMP (28)

19 RG evolution of the low energy spectra Anderson model (symmetric case), Krishnamurthy et al, PRB 21, 13 (198) Low-lying energy levels of HN for odd N for U/D = 1.e-3, U/πΓ = 12.6, Λ=2.5 Local Moment 19 Free Local Moment Strong coupling Strong coupling = Spectrum N-1 free fermions = π/2 phase shift Nozières (1974) c) Strong coupling Free Schematic RG flow Singlet { ε ε ε ε V t t 1 t 2 f ξ ξ 1

20 NRG : susceptibility of the Anderson model 2 Anderson model (symetric case), for U/D = 1.e-3, Λ=2.5 Krishnamurthy et al, PRB 21, 13 (198) U/πΓ = 12.6 Local Moment regime Curie law χ imp 1 4T Τχ(T) Strong coupling (SC) χ imp T a T K Free U/πΓ 1

21 NRG & Conformal symmetry (Cardy; Affleck, Ludwig, 1991; I. Affleck, Acta Phys.Polon. B26 (1995) 1869; condmat/951299) NRG give the finite size spectra of the I.R. fixed point Δ(ω) Δ(ω) Flat Bath at low energy ω ω -D D -D ε k = ε kf + α(k k F ) E(k 1,k 2 )=ε k1 + ε k2 = ε k1 q + ε k2 +q = E(k 1 q, k 2 + q) Huge degeneracies powerful symmetries of free fermions & IR fixed point (Conformal, Kac-Moody,...) H is part of the symmetry algebra! With finite spectra, identify the representation at the fixed point Then use CFT to compute various low energy properties. D 21

22 NRG : applications Abrikosov-Suhl-Kondo Resonance in the spectral function (Anderson model) "pi _ T/TK = 28.7 TITK = 8.5 T/TK = T/TK = /< '<-. --J----- F: - T/TK=.15! v cl" Costi et al.. J. Cond. Mat (1994) ti I I 1. i Asymmetric case, varying T Resolution of NRG is much better at low energy than high energy

23 NRG : scaling property 23 Scaling property of the resistivity as a function of T/Tk in the universal regime Costi et al.. J. Cond. Mat (1994) TDK Fi- 12. The scaled resistivity in the Kondo regime showing Ihe universal behaviour Q low temperature up to approximately STK. The inset for 1 versus (T/TK) shows the expected Femd liquid behaviour for khe resistivity at low temperahlre T c.1t~. The mefficienb c, of the Tz term in the resistivity is found to lie within 8% of khe exact result in

24 NRG & DMFT 24 NRG can also solve DMFT (1 band) A(ω) a) R. Bulla et al. (1999) U/W=1. U/W=1.42 U/W= Specially useful.5 to compute transport (e.g. resistivity), e.g. Transport in organics compound κ-(bedt-ttf) 2 Cu[N(CN) 2 ]Cl P. Limelette, P. Wzietek, S. Florens, A. Georges, T.A. Costi, C. Pasquier, D. Jérome, C. Meziere, P. Batail PRL 91, 1641 (23) But : ω/w difficult away from half-filling. CT-QMC is a now a serious competitor (see later)

25 NRG : strengths & limitations 25 Strengths : Energy scale separation built in. Low energy fixed points, crossover towards low temperature. Solve directly in real frequency ( QMC) Limitations : Not precise at high energy (e.g. details in the Hubbard bands) Does not scale well with the size of the impurity problem Flat bath, no spectral function : 3-4 maximum DMFT : 1 band, undoped only.

26 Quantum Monte Carlo 26

27 Monte Carlo sampling Cf e.g. Werner Krauth s book Statistical Mechanics : algorithms & computations Partition function and operator averaging : (assume p(x) >) Z = dx p(x), A = 1 dx A(x)p(x) C Z C 27 Configuration space Probability of configuration x e.g. in classical model : p(x) e βe(x) Principle : use a Markov chain in configuration space. Average replaced by average over the Markov chain. Transition rate Wx y : probability to go from x to y Detailed balance : Ergodicity property : W x y W y x = p(y) p(x) It is possible to reach y from x, x,y in a finite number of steps.

28 Metropolis algorithm To build the Markov chain: Propose moves in the configuration space Accept them with some probability, such that : N. Metropolis et al. J. Chem. Phys Proposition probability (chosen) Acceptance probability (computed) W x y = Wx y prop Wx y acc (1, W acc x y min p(y)w prop y x p(x)w prop x y }{{} R x y )

29 A textbook example : the Ising model 29 Ising model : H = J i,j σ i σ j, σ i = ±1 Configuration : the value of all the Ising spins. p({σ i }) e βh[{σ i}] MC Move (simplest) : flip spin k chosen at random The probability ratio is easy to compute since H is local

30 The sign problem 3 What if p(x) is not always positive? Use p(x) as the probability! A = 1 Z C dx A(x)p(x) = C dx ( A(x) sign(p(x))) p(x) C dx ( sign(p(x)) ) p(x) But generically, the denominator (average of sign (p(x)) decays exponentially as temperature is lowered or in large volume limit. The QMC is correct if <sign> 1, but becomes untractable when <sign> (large error bars). A major limitation of Quantum Monte Carlo (specially for fermions) The sign pb is not intrinsic : it depends on the basis/rewriting of Z! We can hope to find better expression for Z.

31 Monte Carlo 31 A QMC algorithm : Rewrite Z, ideally as a sum of positive terms. Find local ergodic moves Advantages : QMC is a very flexible technique QMC is massively parallel by construction. Drawbacks : Convergence is slow, like 1/ time Sign problem may be severe! Monte Carlo is just a technique to compute sums. How to rewrite Z, which move to use, etc... is your choice!

32 Quantum Monte Carlo for impurity models 32 Hirsch-Fye algorithm : Hirsch-Fye PRL (1986) The historical algorithm: uses a fixed time grid, is limited to densitydensity interaction. The Continuous Time Revolution (CT-QMC) : Expansion in interactions (CT-Int): A.N. Rubtsov et al., PRB (25) Expansion around atomic limit (CT-Hyb): P. Werner et al, PRL (26) Auxiliary field (CT-AUX): similar to Hirsch-Fye, but in continuous time) : E.Gull et al., EPL (28) Work in imaginary time (Matsubara formalism) No sign problem for single impurity (and some N orbital cases). Sign problem reappears for large cluster of impurities CT-QMC are several orders of magnitude faster than Hirsch-Fye and exact (up to Monte Carlo error bars) : no time discretization.

33 Continuous time QMC : principle Write a perturbative expansion of the partition function : 33 H = H a + H b Z = Tr T τ e βh a exp = n = n ( 1) n β τ 1 <τ 2 <...τ n [ dτ 1... β β dτh b (τ) ] [ ] dτ n Tr e βh a H b (τ n )H b (τ n 1 )... H b (τ 1 ) τ n 1 ( τ ) n w(n, γ, τ 1,..., τ n ) }{{} γ Γ n p(x) = x C p(x) Configurations Representation of the configurations a) b) x =(n, γ, τ 1, τ 2,...τ n ) c) β d) τ 1 τ 2 β τ 1 β τ 1 τ 2 τ 3 β

34 Continuous time QMC : principle (II) 34 A CT-QMC move τ 1 τ 2 β remove insert τ 1 τ 3 τ 2 β Move : add/remove one interaction term (= change n by 1 ), e.g. x = (n,...) configuration with n vertices y = (n+1,...) configuration with n+1 vertices Wx y prop = τ Wy x prop = 1 β n +1 The Metropolis rate has a finite limit. Prokofiev (1996) R x y = p(y)w prop y x p(x)w prop x y = w(y)( τ ) n+1 w(x)( τ ) n β τ (n + 1) The algorithm can be formulated directly in continuous time

35 Which perturbative expansion? 35 S eff = β c a(τ)g 1 ab (τ τ )c b (τ )+ β G 1 ab (iω n) = (iω n + µ)δ ab ab (iω n ) a,b = 1,N : degree of freedom (e.g. spin, orbital index,...) dτh local ({c a,c a })(τ) Bath Interaction Expansion in power of the interactions : A.N. Rubtsov et al., Phys. Rev. B 72, (25) Expansion in power of hybridization (around atomic limit) : P. Werner, A. Comanac, L. de Medici, M. Troyer, A. J. Millis, PRL 97, 7645 (26); P. Werner, A.J. Millis, Phys. Rev. B 74, (26)

36 Expansion in interaction 36 Standard perturbative technique at finite temperature. S eff = β σ=, dτdτ c σ(τ)g 1 σ (τ τ )c σ (τ)+ β dτun (τ)n (τ) Z Z =1 U β dτ 1 n (τ 1 )n (τ 1 ) + U 2 2 β dτ 1 dτ 2 T τ n (τ 1 )n (τ 1 )n (τ 2 )n (τ 2 )... Using Wick Theorem : Z Z = n 1 n! β dτ 1... dτ n ( U) [ ] n det G σ(τ i τ j ) 1 i,j n σ=, }{{} w(n, {τ i })

37 S eff = β Expansion in hybridization : Z = n < i=1 n dτ i dτ i Expansion in hybridization c a(τ)g 1 ab (τ τ )c b (τ )+ w is positive (in single impurity problem) Hlocal can be anything (but exponential scaling in N!) Green function computation (or higher order correlations functions): G ab (τ) = 1 δz Z δ ba ( τ) G ab (τ) = n < β G 1 ab (iω n) = (iω n + µ)δ ab ab (iω n ) a i,b i =1,N n dτ i dτ i i=1 dτh local ({c a,c a })(τ) 37 P. Werner et al, PRL (26) [ det ai,b j (τ i τ j) ] ( ) n Tr T e βh local c a 1 i,j n i (τ i )c bi (τ i) i=1 }{{} w(n, {a i,b i }, {τ i }) a i,b i =1,N a,b = 1,N [ ] 1 a i,b j (τ i τ j)δ(τ i τ j = τ)δ ai =aδ bj =bw({τ i })/Z

38 CT-QMC : efficient algorithms Histogram R of expansion order (Werners algo, DMFT, βt=1, δ=, various U) 38 p(k) P. Werner et al, Phys. Rev. Lett 97, 7645 (26) <n> order k βU H-F U/t= U/t=3 U/t=4 U/t=5.5βU Rubtsov U/t Matrix Size Typical matrix size vs β (DMFT, U/t=1) E. Gull et al, Phys. Rev. B 76, (27) Weak Coupling Algorithm Hybridization Expansion Hirsch Fye !t Complexity <n>^3 All diverge like 1/T (singular at T=), but huge prefactor differences CT-QMC is much more efficient

39 CT-QMC : some applications 39

40 Comparison NRG-CTQMC Im Σ(ω) by CTQMC (Werner s algorithm) and NRG for DMFT, 1 band, Bethe Lattice, Beta=4, U = 5.2 et D = 1. Continued by Padé method to real axis from Matsubara Im Σ(ω) Little finite 2 NRG temperature effect -2 Im Σ(ω) 4 M. Ferrero & P. Cornaglia -4-6 CTQMC NRG ω ω

41 Back to multiorbital models Example : Iron-based superconductors LaFeAsO, LDA +DMFT, Aichhorn et al. (29). 41 Possible to solve the 5-band impurity model with Werner s algorithm. Degree of correlations of those materials? Moderate. Extract quasi-particle residue Z /effective mass m* from Matsubara self-energy (Z.62, m* 1.62) Using analytic continuation method, spectral function... ImΣ(iω n ) ω n ( 1 1 Z )

42 Cluster DMFT & cuprates 42 Experiments : Nodal-antinodal dichotomy in cuprates. Nodal region : Quasi-Particle A(k, ω = ) ARPES!!"#$%!# Brillouin zone patchings (,!) ky (!,!) () P - Shen et al. Science 37, 91 (25) Antinodal region: No Quasi-Particle Theory : sector selective Mott transition Some sector of the Brillouin Zone (C) become insulating first. *$!" &' %&% )*+,-.+/,+ %&'( /1,-.+/,+ Gull, OP, Werner, Millis PRB (29) Werner, Gull, OP, Millis PRB (29) Ferrero, Cornaglia, De Leo, OP, Kotliar, Georges, EPL and PRB 29 Only possible with CT-QMC (various flavours) $% $ P + (,) 2 sites cluster D B A C 8 sites cluster (!,) kx

43 CTQMC : strengths & limitations 43 Strengths : A lot faster than before. Solve more general interactions (except CT-AUX) Some have good scaling with number of orbitals/sites Limitations : Works in Matsubara : analytical continuation is an ill-posed pb. Still long for complex interactions & low symmetry... Werner s algorithm scales exponentially with size of the local pb. Open question : Even faster/more precise algorithms, other rewriting of Z...

44 Out of equilibrium physics 44

45 Motivations 45 Nanostructures Quenches in cold atoms I(V) Quantum dots. Current : I(V). Steady state computations Lattice to impurity via DMFT e.g. Change interaction at t=, study relaxation, etc... Methods, e.g. : Time dependent NRG F. Anders et al. Phys. Rev. Lett. 1, 8689 (28) Real time QMC...

46 Real Time Quantum Monte Carlo 46 Diagrammatic Monte Carlo : use the Keldysh contour! Start non-equilibrium at t=, and try to relax to steady state study quench Mühlbacher, Rabani (28) Werner et al (29) Schiro and Fabrizio (29) U= V> U> V> t 1 s 1 t 2 s 2 U> V> t 1 t s 2 s 3 s 1 2 t 3 t max t max t 4 s 4 t3 s3 Switch on interaction Sign problem due to real time (i factor in time evolution) Computation limited in time (does not reach the Kondo time) U> V= iβ t s 6 6 t s 7 7 t 5 s 5 t 4 s 4 Switch on voltage

47 Real Time QMC : applications 47 Quench in Hubbard model M. Eckstein et al, ArXiv: DMFT, change U at t=. Dynamical phase transition at U = 3.2 (?) Solution of a quantum dots (in some regimes) Werner et al. (21) U/Γ=6 V/Γ=8 V/Γ=6 I/Γ.4.2 V/Γ=4 V/Γ=2 V/Γ= tγ V/Γ=.5 Time evolution of the current for different voltage biases (U/Γ=6,T=). In the initial state, the current is given by the steady state current through the non-interacting dot. Interaction turned on at t= FIG. 53 Time evolution of the current for different voltage biases (U/Γ = 6, T = ). In the initial state, the current is given by the steady state current through the non-interacting dot. At time t =, the interaction is turned on. From

48 Conclusion 48 A lot of progress recently on Continuous Time QMC Enable us to solve more complex/realistic models. Open issues : Faster QMC for low symmetry realistic atoms? Real frequency QMC solution? (t-)dmrg for small cluster? Use other diagrammatics? e.g. NCA, cf Gull et al. arxiv: Better methods out of equilibrium?

Introduction to DMFT

Introduction to DMFT Introduction to DMFT Lecture 2 : DMFT formalism 1 Toulouse, May 25th 2007 O. Parcollet 1. Derivation of the DMFT equations 2. Impurity solvers. 1 Derivation of DMFT equations 2 Cavity method. Large dimension

More information

Diagrammatic Monte Carlo simulation of quantum impurity models

Diagrammatic Monte Carlo simulation of quantum impurity models Diagrammatic Monte Carlo simulation of quantum impurity models Philipp Werner ETH Zurich IPAM, UCLA, Jan. 2009 Outline Continuous-time auxiliary field method (CT-AUX) Weak coupling expansion and auxiliary

More information

Diagrammatic Monte Carlo methods for Fermions

Diagrammatic Monte Carlo methods for Fermions Diagrammatic Monte Carlo methods for Fermions Philipp Werner Department of Physics, Columbia University PRL 97, 7645 (26) PRB 74, 15517 (26) PRB 75, 8518 (27) PRB 76, 235123 (27) PRL 99, 12645 (27) PRL

More information

Electronic correlations in models and materials. Jan Kuneš

Electronic correlations in models and materials. Jan Kuneš Electronic correlations in models and materials Jan Kuneš Outline Dynamical-mean field theory Implementation (impurity problem) Single-band Hubbard model MnO under pressure moment collapse metal-insulator

More information

O. Parcollet CEA-Saclay FRANCE

O. Parcollet CEA-Saclay FRANCE Cluster Dynamical Mean Field Analysis of the Mott transition O. Parcollet CEA-Saclay FRANCE Dynamical Breakup of the Fermi Surface in a doped Mott Insulator M. Civelli, M. Capone, S. S. Kancharla, O.P.,

More information

Mott transition : beyond Dynamical Mean Field Theory

Mott transition : beyond Dynamical Mean Field Theory Mott transition : beyond Dynamical Mean Field Theory O. Parcollet 1. Cluster methods. 2. CDMFT 3. Mott transition in frustrated systems : hot-cold spots. Coll: G. Biroli (SPhT), G. Kotliar (Rutgers) Ref:

More information

DMFT and beyond : IPAM, Los Angeles, Jan. 26th 2009 O. Parcollet Institut de Physique Théorique CEA-Saclay, France

DMFT and beyond : IPAM, Los Angeles, Jan. 26th 2009 O. Parcollet Institut de Physique Théorique CEA-Saclay, France DMFT and beyond : From quantum impurities to high temperature superconductors 1 IPAM, Los Angeles, Jan. 26th 29 O. Parcollet Institut de Physique Théorique CEA-Saclay, France Coll : M. Ferrero (IPhT),

More information

(r) 2.0 E N 1.0

(r) 2.0 E N 1.0 The Numerical Renormalization Group Ralf Bulla Institut für Theoretische Physik Universität zu Köln 4.0 3.0 Q=0, S=1/2 Q=1, S=0 Q=1, S=1 E N 2.0 1.0 Contents 1. introduction to basic rg concepts 2. introduction

More information

w2dynamics : operation and applications

w2dynamics : operation and applications w2dynamics : operation and applications Giorgio Sangiovanni ERC Kick-off Meeting, 2.9.2013 Hackers Nico Parragh (Uni Wü) Markus Wallerberger (TU) Patrik Gunacker (TU) Andreas Hausoel (Uni Wü) A solver

More information

De l atome au. supraconducteur à haute température critique. O. Parcollet Institut de Physique Théorique CEA-Saclay, France

De l atome au. supraconducteur à haute température critique. O. Parcollet Institut de Physique Théorique CEA-Saclay, France De l atome au 1 supraconducteur à haute température critique O. Parcollet Institut de Physique Théorique CEA-Saclay, France Quantum liquids Quantum many-body systems, fermions (or bosons), with interactions,

More information

Continuous-time quantum Monte Carlo algorithms for impurity problems

Continuous-time quantum Monte Carlo algorithms for impurity problems Continuous-time quantum Monte Carlo algorithms for impurity problems Michel Ferrero Centre de Physique Théorique Ecole Polytechnique, France Quantum Monte Carlo methods at work for novel phases of matter

More information

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Prof. Luis Gregório Dias DFMT PG5295 Muitos Corpos 1 Electronic Transport in Quantum

More information

Quantum impurities in a bosonic bath

Quantum impurities in a bosonic bath Ralf Bulla Institut für Theoretische Physik Universität zu Köln 27.11.2008 contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity

More information

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges Frithjof B. Anders Institut für Theoretische Physik Universität Bremen Göttingen, December

More information

Continuous time QMC methods

Continuous time QMC methods Continuous time QMC methods Matthias Troyer (ETH Zürich) Philipp Werner (Columbia ETHZ) Emanuel Gull (ETHZ Columbia) Andy J. Millis (Columbia) Olivier Parcollet (Paris) Sebastian Fuchs, Thomas Pruschke

More information

Cluster Extensions to the Dynamical Mean-Field Theory

Cluster Extensions to the Dynamical Mean-Field Theory Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? Thomas Pruschke Institut für Theoretische Physik Universität

More information

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Local moment approach to the multi - orbital single impurity Anderson and Hubbard models Anna Kauch Institute of Theoretical Physics Warsaw University PIPT/Les Houches Summer School on Quantum Magnetism

More information

Dynamical mean field approach to correlated lattice systems in and out of equilibrium

Dynamical mean field approach to correlated lattice systems in and out of equilibrium Dynamical mean field approach to correlated lattice systems in and out of equilibrium Philipp Werner University of Fribourg, Switzerland Kyoto, December 2013 Overview Dynamical mean field approximation

More information

An efficient impurity-solver for the dynamical mean field theory algorithm

An efficient impurity-solver for the dynamical mean field theory algorithm Papers in Physics, vol. 9, art. 95 (217) www.papersinphysics.org Received: 31 March 217, Accepted: 6 June 217 Edited by: D. Domínguez Reviewed by: A. Feiguin, Northeastern University, Boston, United States.

More information

An introduction to the dynamical mean-field theory. L. V. Pourovskii

An introduction to the dynamical mean-field theory. L. V. Pourovskii An introduction to the dynamical mean-field theory L. V. Pourovskii Nordita school on Photon-Matter interaction, Stockholm, 06.10.2016 OUTLINE The standard density-functional-theory (DFT) framework An

More information

Magnetic Moment Collapse drives Mott transition in MnO

Magnetic Moment Collapse drives Mott transition in MnO Magnetic Moment Collapse drives Mott transition in MnO J. Kuneš Institute of Physics, Uni. Augsburg in collaboration with: V. I. Anisimov, A. V. Lukoyanov, W. E. Pickett, R. T. Scalettar, D. Vollhardt,

More information

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 Kondo Effect in Metals and Quantum Dots Jan von Delft

More information

6. Auxiliary field continuous time quantum Monte Carlo

6. Auxiliary field continuous time quantum Monte Carlo 6. Auxiliary field continuous time quantum Monte Carlo The purpose of the auxiliary field continuous time quantum Monte Carlo method 1 is to calculate the full Greens function of the Anderson impurity

More information

Quantum Impurities In and Out of Equilibrium. Natan Andrei

Quantum Impurities In and Out of Equilibrium. Natan Andrei Quantum Impurities In and Out of Equilibrium Natan Andrei HRI 1- Feb 2008 Quantum Impurity Quantum Impurity - a system with a few degrees of freedom interacting with a large (macroscopic) system. Often

More information

Entanglement spectra in the NRG

Entanglement spectra in the NRG PRB 84, 125130 (2011) Entanglement spectra in the NRG Andreas Weichselbaum Ludwig Maximilians Universität, München Arnold Sommerfeld Center (ASC) Acknowledgement Jan von Delft (LMU) Theo Costi (Jülich)

More information

Spin and orbital freezing in unconventional superconductors

Spin and orbital freezing in unconventional superconductors Spin and orbital freezing in unconventional superconductors Philipp Werner University of Fribourg Kyoto, November 2017 Spin and orbital freezing in unconventional superconductors In collaboration with:

More information

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS http://www.staff.science.uu.nl/~mitch003/nrg.html March 2015 Anrew Mitchell Utrecht University Quantum impurity problems Part 1: Quantum impurity problems

More information

Dual fermion approach to unconventional superconductivity and spin/charge density wave

Dual fermion approach to unconventional superconductivity and spin/charge density wave June 24, 2014 (ISSP workshop) Dual fermion approach to unconventional superconductivity and spin/charge density wave Junya Otsuki (Tohoku U, Sendai) in collaboration with H. Hafermann (CEA Gif-sur-Yvette,

More information

The Hubbard model out of equilibrium - Insights from DMFT -

The Hubbard model out of equilibrium - Insights from DMFT - The Hubbard model out of equilibrium - Insights from DMFT - t U Philipp Werner University of Fribourg, Switzerland KITP, October 212 The Hubbard model out of equilibrium - Insights from DMFT - In collaboration

More information

Quantum Cluster Methods (CPT/CDMFT)

Quantum Cluster Methods (CPT/CDMFT) Quantum Cluster Methods (CPT/CDMFT) David Sénéchal Département de physique Université de Sherbrooke Sherbrooke (Québec) Canada Autumn School on Correlated Electrons Forschungszentrum Jülich, Sept. 24,

More information

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014 Numerical Methods in Quantum Many-body Theory Gun Sang Jeon 2014-08-25 Pyeong-chang Summer Institute 2014 Contents Introduction to Computational Physics Monte Carlo Methods: Basics and Applications Numerical

More information

Exotic Kondo effects in nanostructures

Exotic Kondo effects in nanostructures Exotic Kondo effects in nanostructures S. Florens Ne el Institute - CNRS Grenoble e d 1.0 NRG S=1 A(E,B,T=0) A(E,B,T=0) 1.0 NRG S=1/2 0.8 0.6 0.8 0.6 0.4 0.4-1.0 0.0 E/kBTK 1.0-1.0 0.0 E/kBTK 1.0 Some

More information

Transport Coefficients of the Anderson Model via the numerical renormalization group

Transport Coefficients of the Anderson Model via the numerical renormalization group Transport Coefficients of the Anderson Model via the numerical renormalization group T. A. Costi 1, A. C. Hewson 1 and V. Zlatić 2 1 Department of Mathematics, Imperial College, London SW7 2BZ, UK 2 Institute

More information

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Frithjof B Anders Institut für theoretische Physik, Universität Bremen Concepts in Electron Correlation,

More information

Strange metal from local quantum chaos

Strange metal from local quantum chaos Strange metal from local quantum chaos John McGreevy (UCSD) hello based on work with Daniel Ben-Zion (UCSD) 2017-08-26 Compressible states of fermions at finite density The metallic states that we understand

More information

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Current/recent students Saurabh Dayal (current PhD student) Wasanthi De Silva (new grad student 212) Jeong-Pil Song (finished

More information

Continuous Time Monte Carlo methods for fermions

Continuous Time Monte Carlo methods for fermions Continuous Time Monte Carlo methods for fermions Alexander Lichtenstein University of Hamburg In collaboration with A. Rubtsov (Moscow University) P. Werner (ETH Zurich) Outline Calculation of Path Integral

More information

A continuous time algorithm for quantum impurity models

A continuous time algorithm for quantum impurity models ISSP, Aug. 6 p.1 A continuou time algorithm for quantum impurity model Philipp Werner Department of Phyic, Columbia Univerity cond-mat/512727 ISSP, Aug. 6 p.2 Outline Introduction Dynamical mean field

More information

A Holographic Model of the Kondo Effect (Part 1)

A Holographic Model of the Kondo Effect (Part 1) A Holographic Model of the Kondo Effect (Part 1) Andy O Bannon Quantum Field Theory, String Theory, and Condensed Matter Physics Kolymbari, Greece September 1, 2014 Credits Based on 1310.3271 Johanna Erdmenger

More information

Role of Hund Coupling in Two-Orbital Systems

Role of Hund Coupling in Two-Orbital Systems Role of Hund Coupling in Two-Orbital Systems Gun Sang Jeon Ewha Womans University 2013-08-30 NCTS Workshop on Quantum Condensation (QC13) collaboration with A. J. Kim, M.Y. Choi (SNU) Mott-Hubbard Transition

More information

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu Introduction: The Kondo effect in metals de Haas, de Boer

More information

Holographic Kondo and Fano Resonances

Holographic Kondo and Fano Resonances Holographic Kondo and Fano Resonances Andy O Bannon Disorder in Condensed Matter and Black Holes Lorentz Center, Leiden, the Netherlands January 13, 2017 Credits Johanna Erdmenger Würzburg Carlos Hoyos

More information

Classical Monte Carlo Simulations

Classical Monte Carlo Simulations Classical Monte Carlo Simulations Hyejin Ju April 17, 2012 1 Introduction Why do we need numerics? One of the main goals of condensed matter is to compute expectation values O = 1 Z Tr{O e βĥ} (1) and

More information

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory From utzwiller Wave Functions to Dynamical Mean-Field Theory Dieter Vollhardt Autumn School on Correlated Electrons DMFT at 25: Infinite Dimensions Forschungszentrum Jülich, September 15, 2014 Supported

More information

Solution of the Anderson impurity model via the functional renormalization group

Solution of the Anderson impurity model via the functional renormalization group Solution of the Anderson impurity model via the functional renormalization group Simon Streib, Aldo Isidori, and Peter Kopietz Institut für Theoretische Physik, Goethe-Universität Frankfurt Meeting DFG-Forschergruppe

More information

Heavy Fermion systems

Heavy Fermion systems Heavy Fermion systems Satellite structures in core-level and valence-band spectra Kondo peak Kondo insulator Band structure and Fermi surface d-electron heavy Fermion and Kondo insulators Heavy Fermion

More information

Phase Diagram of the Multi-Orbital Hubbard Model

Phase Diagram of the Multi-Orbital Hubbard Model Phase Diagram of the Multi-Orbital Hubbard Model Submitted by Bence Temesi BACHELOR THESIS Faculty of Physics at Ludwig-Maximilians-Universität München Supervisor: Prof. Dr. Jan von Delft Munich, August

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information

Superconductivity, antiferromagnetism and Mott critical point in the BEDT family

Superconductivity, antiferromagnetism and Mott critical point in the BEDT family Superconductivity, antiferromagnetism and Mott critical point in the BEDT family A.-M. Tremblay P. Sémon, G. Sordi, K. Haule, B. Kyung, D. Sénéchal ISCOM 2013, 14 19 July 2013 Half-filled band: Not always

More information

Dynamical Mean Field within Iterative Perturbation Theory

Dynamical Mean Field within Iterative Perturbation Theory Vol. 111 (2007) ACTA PHYSICA POLONICA A No. 5 Proceedings of the XII National School Correlated Electron Systems..., Ustroń 2006 Dynamical Mean Field within Iterative Perturbation Theory B. Radzimirski

More information

Time Evolving Block Decimation Algorithm

Time Evolving Block Decimation Algorithm Time Evolving Block Decimation Algorithm Application to bosons on a lattice Jakub Zakrzewski Marian Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University,

More information

Effet Kondo dans les nanostructures: Morceaux choisis

Effet Kondo dans les nanostructures: Morceaux choisis Effet Kondo dans les nanostructures: Morceaux choisis Pascal SIMON Rencontre du GDR Méso: Aussois du 05 au 08 Octobre 2009 OUTLINE I. The traditional (old-fashioned?) Kondo effect II. Direct access to

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

Local moment approach to multi-orbital Anderson and Hubbard models

Local moment approach to multi-orbital Anderson and Hubbard models Local moment approach to multi-orbital Anderson and Hubbard models Anna Kauch 1 and Krzysztof Byczuk,1 1 Institute of Theoretical Physics, Warsaw University, ul. Hoża 69, PL--681 Warszawa, Poland Theoretical

More information

Quantum Impurity Solvers for DMFT

Quantum Impurity Solvers for DMFT Quantum Impurity Solvers for DMFT Vijay B. Shenoy (shenoy@physics.iisc.ernet.in) Centre for Condensed Matter Theory Department of Physics Indian Institute of Science, Bangalore VBS Quantum Impurity Solvers

More information

CFT approach to multi-channel SU(N) Kondo effect

CFT approach to multi-channel SU(N) Kondo effect CFT approach to multi-channel SU(N) Kondo effect Sho Ozaki (Keio Univ.) In collaboration with Taro Kimura (Keio Univ.) Seminar @ Chiba Institute of Technology, 2017 July 8 Contents I) Introduction II)

More information

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates arxiv:0905.1096, To appear in New. J. Phys. Erez Berg 1, Steven A. Kivelson 1, Doug J. Scalapino 2 1 Stanford University, 2

More information

Part III: Impurities in Luttinger liquids

Part III: Impurities in Luttinger liquids Functional RG for interacting fermions... Part III: Impurities in Luttinger liquids 1. Luttinger liquids 2. Impurity effects 3. Microscopic model 4. Flow equations 5. Results S. Andergassen, T. Enss (Stuttgart)

More information

Accelerated Monte Carlo simulations with restricted Boltzmann machines

Accelerated Monte Carlo simulations with restricted Boltzmann machines Accelerated simulations with restricted Boltzmann machines Li Huang 1 Lei Wang 2 1 China Academy of Engineering Physics 2 Institute of Physics, Chinese Academy of Sciences July 6, 2017 Machine Learning

More information

Serge Florens. ITKM - Karlsruhe. with: Lars Fritz and Matthias Vojta

Serge Florens. ITKM - Karlsruhe. with: Lars Fritz and Matthias Vojta 0.5 setgray0 0.5 setgray1 Universal crossovers and critical dynamics for quantum phase transitions in impurity models Serge Florens ITKM - Karlsruhe with: Lars Fritz and Matthias Vojta p. 1 Summary The

More information

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Krzysztof Byczuk Institute of Physics, Augsburg University Institute of Theoretical Physics, Warsaw University October

More information

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS NUMERICAL METODS FOR QUANTUM IMPURITY MODELS http://www.staff.science.uu.nl/~mitch003/nrg.html March 2015 Andrew Mitchell, Utrecht University Quantum impurity problems Part 1: Quantum impurity problems

More information

Origin of the superconducting state in the collapsed tetragonal phase of KFe 2 As 2 : Supplemental Information

Origin of the superconducting state in the collapsed tetragonal phase of KFe 2 As 2 : Supplemental Information Origin of the superconducting state in the collapsed tetragonal phase of KFe As : Supplemental Information Daniel Guterding, Steffen Backes, Harald O. Jeschke, and Roser Valentí Institut für Theoretische

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

NiO - hole doping and bandstructure of charge transfer insulator

NiO - hole doping and bandstructure of charge transfer insulator NiO - hole doping and bandstructure of charge transfer insulator Jan Kuneš Institute for Physics, Uni. Augsburg Collaboration: V. I. Anisimov S. L. Skornyakov A. V. Lukoyanov D. Vollhardt Outline NiO -

More information

Resonating Valence Bond point of view in Graphene

Resonating Valence Bond point of view in Graphene Resonating Valence Bond point of view in Graphene S. A. Jafari Isfahan Univ. of Technology, Isfahan 8456, Iran Nov. 29, Kolkata S. A. Jafari, Isfahan Univ of Tech. RVB view point in graphene /2 OUTLINE

More information

arxiv: v2 [cond-mat.str-el] 27 Feb 2013

arxiv: v2 [cond-mat.str-el] 27 Feb 2013 Spin-boson coupling in continuous-time quantum Monte Carlo Junya Otsuki 1,2 1 Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, D-86135

More information

Diagrammatic extensions of (E)DMFT: Dual boson

Diagrammatic extensions of (E)DMFT: Dual boson Diagrammatic extensions of (E)DMFT: Dual boson IPhT, CEA Saclay, France ISSP, June 25, 2014 Collaborators Mikhail Katsnelson (University of Nijmegen, The Netherlands) Alexander Lichtenstein (University

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Finite-frequency Matsubara FRG for the SIAM

Finite-frequency Matsubara FRG for the SIAM Finite-frequency Matsubara FRG for the SIAM Final status report Christoph Karrasch & Volker Meden Ralf Hedden & Kurt Schönhammer Numerical RG: Robert Peters & Thomas Pruschke Experiments on superconducting

More information

Gapless Spin Liquids in Two Dimensions

Gapless Spin Liquids in Two Dimensions Gapless Spin Liquids in Two Dimensions MPA Fisher (with O. Motrunich, Donna Sheng, Matt Block) Boulder Summerschool 7/20/10 Interest Quantum Phases of 2d electrons (spins) with emergent rather than broken

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Mar 2006

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Mar 2006 Non-Fermi-liquid phases in the two-band Hubbard model: Finite-temperature exact diagonalization study of Hund s rule coupling A. Liebsch and T. A. Costi Institut für Festkörperforschung, Forschungszentrum

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

The bosonic Kondo effect:

The bosonic Kondo effect: The bosonic Kondo effect: probing spin liquids and multicomponent cold gases Serge Florens Institut für Theorie der Kondensierten Materie (Karlsruhe) with: Lars Fritz, ITKM (Karlsruhe) Matthias Vojta,

More information

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) New perspectives in superconductors E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) E. Bascones leni@icmm.csic.es Outline Talk I: Correlations in iron superconductors Introduction

More information

Realistic many-body calculations with spatial correlations and for systems with molecular orbitals

Realistic many-body calculations with spatial correlations and for systems with molecular orbitals Realistic many-body calculations with spatial correlations and for systems with molecular orbitals Harald O. Jeschke Johannes Ferber, Hunpyo Lee, Kateryna Foyevtsova, Roser Valentí Institut für Theoretische

More information

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures Kondo Effects in Metals: magnetic impurities

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

Fate of the Kondo impurity in a superconducting medium

Fate of the Kondo impurity in a superconducting medium Karpacz, 2 8 March 214 Fate of the Kondo impurity in a superconducting medium T. Domański M. Curie Skłodowska University Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures Motivation Physical dilemma

More information

FROM NODAL LIQUID TO NODAL INSULATOR

FROM NODAL LIQUID TO NODAL INSULATOR FROM NODAL LIQUID TO NODAL INSULATOR Collaborators: Urs Ledermann and Maurice Rice John Hopkinson (Toronto) GORDON, 2004, Oxford Doped Mott insulator? Mott physics: U Antiferro fluctuations: J SC fluctuations

More information

Electronic structure of correlated electron systems. G.A.Sawatzky UBC Lecture

Electronic structure of correlated electron systems. G.A.Sawatzky UBC Lecture Electronic structure of correlated electron systems G.A.Sawatzky UBC Lecture 6 011 Influence of polarizability on the crystal structure Ionic compounds are often cubic to maximize the Madelung energy i.e.

More information

Functional renormalization group approach to interacting Fermi systems DMFT as a booster rocket

Functional renormalization group approach to interacting Fermi systems DMFT as a booster rocket Functional renormalization group approach to interacting Fermi systems DMFT as a booster rocket Walter Metzner, Max-Planck-Institute for Solid State Research 1. Introduction 2. Functional RG for Fermi

More information

Quantum Spin-Metals in Weak Mott Insulators

Quantum Spin-Metals in Weak Mott Insulators Quantum Spin-Metals in Weak Mott Insulators MPA Fisher (with O. Motrunich, Donna Sheng, Simon Trebst) Quantum Critical Phenomena conference Toronto 9/27/08 Quantum Spin-metals - spin liquids with Bose

More information

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018 High Tc superconductivity in cuprates: Determination of pairing interaction Han-Yong Choi / SKKU SNU Colloquium May 30 018 It all began with Discovered in 1911 by K Onnes. Liquid He in 1908. Nobel prize

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory Renormalization of microscopic Hamiltonians Renormalization Group without Field Theory Alberto Parola Università dell Insubria (Como - Italy) Renormalization Group Universality Only dimensionality and

More information

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES N.M.Plakida Joint Institute for Nuclear Research, Dubna, Russia CORPES, Dresden, 26.05.2005 Publications and collaborators: N.M. Plakida,

More information

Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base

Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base PHYSICAL REVIEW B 75, 553 2007 Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base Kristjan Haule Department of

More information

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346 Excitonic Condensation in Systems of Strongly Correlated Electrons Jan Kuneš and Pavel Augustinský DFG FOR1346 Motivation - unconventional long-range order incommensurate spin spirals complex order parameters

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University PY502, Computational Physics, December 12, 2017 Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Advancing Research in Basic Science and Mathematics Example:

More information

An introduction to Dynamical Mean Field Theory (DMFT) and DFT+DMFT

An introduction to Dynamical Mean Field Theory (DMFT) and DFT+DMFT An introduction to Dynamical Mean Field Theory (DMFT) and DFT+DMFT B. Amadon CEA, DAM, DIF, F-9297 Arpajon, France International summer School in electronic structure Theory: electron correlation in Physics

More information

The density matrix renormalization group and tensor network methods

The density matrix renormalization group and tensor network methods The density matrix renormalization group and tensor network methods Outline Steve White Exploiting the low entanglement of ground states Matrix product states and DMRG 1D 2D Tensor network states Some

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS

QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS International Journal of Modern Physics B, Vol. 13, No. 18 (1999) 2331 2342 c World Scientific Publishing Company QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS QIMIAO SI, J. LLEWEILUN SMITH and KEVIN INGERSENT

More information

Anomalous Behavior in an Anderston-Holstein Model. for a Single Molecule Transistor

Anomalous Behavior in an Anderston-Holstein Model. for a Single Molecule Transistor Anomalous Behavior in an Anderston-Holstein Model for a Single Molecule Transistor Alexander Davis Dr Kevin Ingersent August 3, 2011 Abstract This lab was designed to test whether Poisson statistics can

More information

Odd-frequency superconductivity in two-channel Kondo lattice and its electromagnetic response

Odd-frequency superconductivity in two-channel Kondo lattice and its electromagnetic response 2014/06/20 (fri) @NHSCP2014 Odd-frequency superconductivity in two-channel Kondo lattice and its electromagnetic response Department of Basic Science, The University of Tokyo JSPS Postdoctoral Fellow Shintaro

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

Relativistic magnetotransport in graphene

Relativistic magnetotransport in graphene Relativistic magnetotransport in graphene Markus Müller in collaboration with Lars Fritz (Harvard) Subir Sachdev (Harvard) Jörg Schmalian (Iowa) Landau Memorial Conference June 6, 008 Outline Relativistic

More information

Superconducting properties of carbon nanotubes

Superconducting properties of carbon nanotubes Superconducting properties of carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf A. De Martino, F. Siano Overview Superconductivity in ropes of nanotubes

More information