Estimation and Prediction Scenarios

Size: px
Start display at page:

Download "Estimation and Prediction Scenarios"

Transcription

1 Recursive BLUE BLUP and the Kalman filter: Estimation and Prediction Scenarios Amir Khodabandeh GNSS Research Centre, Curtin University of Technology, Perth, Australia IUGG 2011, Recursive 28 June BLUE-BLUP 7 July 2011, and the Melbourne, Kalman filter Australia 1

2 1. Basic concepts of Prediction Content An introductory example (Bi variate sampled data) Best prediction within different dff classes of statistics 2. Best linear prediction (BLP) BLP and its examples BLP based Kalman filter and its limitations 3. Bestlinear unbiased prediction (BLUP) 2

3 4. BLUE BLUP recursion Content Initialization (Prediction = Estimation) Time update Measurement update 5. Summaryand and concluding remarks 3

4 Basic concepts of Prediction Histogram (Empirical density) of bivariate data Joint Histogram of sampled data Marginal Histograms [Weight] [Height] 4

5 Basic concepts of Prediction Histograms of for a given sampled value of Empirical conditional density [Weight] [Height] 5

6 Basic concepts of Prediction Bivariate sampled data set of size 5000 Empirical conditional mean Case 1: Guessing variable based on its mean Case 2: Guessing variable based on its mean conditioned on a given value of 6

7 Basic concepts of Prediction Mean squared error (MSE) Case 2 Case 1 Mean value = Mean value =

8 Basic concepts of Prediction Estimation Guessing the value of an unknown parameter ( ) describing the distribution of a random vector ( ) :Sample value of 8

9 Basic concepts of Prediction Prediction Guessing an outcome of an un observable random vector ( ) using an observable random vector ( ) 9

10 Basic concepts of Prediction Prediction error: Class of all statistics statistic Best predictor (BP): Solution: Limitations: Information on Conditional PDF should be available BP is generally a non linear predictor 10

11 Basic concepts of Prediction Prediction error: Class of affine statistics statistic We restrict to the class of affine statistics, at the cost of Best linear predictor (BLP): Solution: Do we still, in practice, need to further restrict the class of affine statistics? 11

12 Best linear prediction (BLP) Example: random signal extraction : A signal with known sinusoidal mean : The observed signal with ihmeasurement noise: Perfect observation: Observed signal Predicted signal

13 Best linear prediction (BLP) Example: random signal extraction No observation: : A signal with known sinusoidal mean : The observed signal with ihmeasurement noise: Observed signal Predicted signal

14 Best linear prediction (BLP) Example: interpolation and extrapolation (A zero mean signal with no measurement error) Exponential auto covariance function : 2D position of the signal 14

15 Best linear prediction (BLP) Case 1: A sparse grid of observations True Signal Predicted Signal 15

16 Best linear prediction (BLP) Case 2: A dense grid of observations True Signal Predicted Signal 16

17 Best linear prediction (BLP) The BLP is applicable to any linear model, thus the model underlying Kalman filter Kalman filter structure in batch form *That thesystem noises areuncorrelated in time makes therecursionpossible in thetime updatetime *That the measurement noises are uncorrelated in time makes the recursion possible in the measurement update together with Recursion gets feasible 17

18 Best linear prediction (BLP) Limitations: The BLP based Kalman filter requires information on and In most applications, the information on the mean and initial uncertainty of the state vector is not available! (UNKNOWN!) 18

19 Best linear prediction (BLP) An ad hoc solution: Given a user defined value of, we set the elements of to sufficiently large values! Two unresolved problems: Diffuse filter 1) To what extent should the initial uncertainty take large values, in order to practically fulfil? 2) Would the first problem (Prediction part) be solved, one still needs to determine the unknown mean (Estimation part). 19

20 Best linear unbiased prediction (BLUP) We further restrict to the class of unbiased linear statistics The price to pay for such simplification: Underlying Model observable un observable, with unknown 20

21 Best linear unbiased prediction (BLUP) Class of linear unbiased statistics: Prediction error: Estimation error: is a square invertible matrix Solution: 21

22 BLUE BLUP recursion Innovation process: Using an invertible transformation to transform misclosures to the group wise uncorrelated misclosures decomposition Block diagonal Block diagonal 22

23 Statistics of the uncorrelated misclosures: BLUE BLUP recursion The innovations are the prediction error of the misclosures In case of partitioned linear models: Through a proper basis matrix Predicted residuals! 23

24 BLUE BLUP recursion Kalman dynamic model and the simplified assumptions: Dynamic model The time link between the to be predicted variables Transition matrix ti System noise Simplified assumptions: Zero mean noise Initial variable is uncorrelated with the system noises System noises are uncorrelated with the measurement noises Uncorrelated system noises in time 24

25 BLUE BLUP recursion Measurement model and the simplified assumptions: Measurement model The link between the observables and the to be predicted variables State vector Measurement noise Simplified assumptions: Zero mean noise Initial i variable is uncorrelated with the observations Uncorrelated observations in time 25

26 BLUE BLUP recursion The BLUP is applicable to any linear model, thus the model underlying Kalman filter Partitioned form 26

27 BLUE BLUP recursion Initialization : The linear unbiased statistic is proposed The misclosure vector of the initial model : Prediction Estimation a square invertible matrix since since 27

28 BLUE BLUP recursion Initialization : Prediction = Estimation *The solution is independent of the initial uncertainty Although the solutions are identical, but their quality is judged in a different way! Prediction Error variance matrices Estimation 28

29 BLUE BLUP recursion Time update:, 29

30 BLUE BLUP recursion Time update: *The BLUP (BLUE) of a linear function is the linear function of the BLUP (BLUE) zero Prediction Estimation Error variance matrices zero Prediction Estimation 30

31 Measurement update: BLUE BLUP recursion, 31

32 BLUE BLUP recursion Measurement update: Predicted residuals *The BLUP of a linear function is the linear function of the BLUP zero 32

33 Measurement update: BLUE BLUP recursion In case of prediction, we propose the linear unbiased statistic In case of estimation, we propose the linear unbiased statistic Prediction Estimation 33

34 BLUE BLUP recursion Recursion of and Initialization: Time update: Measurement update: Prediction gain matrix: Estimation gain matrix: 34

35 BLUE BLUP recursion Recursive algorithm Collecting the estimator and the predictor into one single state vector Initialization: with 35

36 BLUE BLUP recursion Recursive algorithm Collecting the estimator and the predictor into one single state vector Time update: with 36

37 BLUE BLUP recursion Recursive algorithm Collecting the estimator and the predictor into one single state vector Measurement update: with 37

38 Block diagram of the algorithm BLUE BLUP recursion BLUE BLUP 38

39 Summary and concluding remarks Prediction ::: when observations are used to guess a random vector Estimation ::: when observations are used to guess an unknown nonrandom vector Best predictors within different classes of statistics: BLP based Kalman filter requires the initial uncertainty of the state vector, whereas the BLUP based one is independent of it. 39

40 Summary and concluding remarks BLUE recursion cannot stand on its own, since it requires the predicted residuals andtherefore the predicted state vector Theestimation estimation gain matrix isrelated to the prediction gain matrix as, which both become identical if BLUE=BLUP when the system noise is absent 40

Statistics 910, #15 1. Kalman Filter

Statistics 910, #15 1. Kalman Filter Statistics 910, #15 1 Overview 1. Summary of Kalman filter 2. Derivations 3. ARMA likelihoods 4. Recursions for the variance Kalman Filter Summary of Kalman filter Simplifications To make the derivations

More information

Adaptive ensemble Kalman filtering of nonlinear systems

Adaptive ensemble Kalman filtering of nonlinear systems Adaptive ensemble Kalman filtering of nonlinear systems Tyrus Berry George Mason University June 12, 213 : Problem Setup We consider a system of the form: x k+1 = f (x k ) + ω k+1 ω N (, Q) y k+1 = h(x

More information

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Kalman Filter Kalman Filter Predict: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Update: K = P k k 1 Hk T (H k P k k 1 Hk T + R) 1 x k k = x k k 1 + K(z k H k x k k 1 ) P k k =(I

More information

X t = a t + r t, (7.1)

X t = a t + r t, (7.1) Chapter 7 State Space Models 71 Introduction State Space models, developed over the past 10 20 years, are alternative models for time series They include both the ARIMA models of Chapters 3 6 and the Classical

More information

Least Squares. Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 175A Winter UCSD

Least Squares. Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 175A Winter UCSD Least Squares Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 75A Winter 0 - UCSD (Unweighted) Least Squares Assume linearity in the unnown, deterministic model parameters Scalar, additive noise model: y f (

More information

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006 Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems Eric Kostelich Data Mining Seminar, Feb. 6, 2006 kostelich@asu.edu Co-Workers Istvan Szunyogh, Gyorgyi Gyarmati, Ed Ott, Brian

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Endogenous Information Choice

Endogenous Information Choice Endogenous Information Choice Lecture 7 February 11, 2015 An optimizing trader will process those prices of most importance to his decision problem most frequently and carefully, those of less importance

More information

Mixed-Model Estimation of genetic variances. Bruce Walsh lecture notes Uppsala EQG 2012 course version 28 Jan 2012

Mixed-Model Estimation of genetic variances. Bruce Walsh lecture notes Uppsala EQG 2012 course version 28 Jan 2012 Mixed-Model Estimation of genetic variances Bruce Walsh lecture notes Uppsala EQG 01 course version 8 Jan 01 Estimation of Var(A) and Breeding Values in General Pedigrees The above designs (ANOVA, P-O

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Prediction Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict the

More information

The Kalman Filter. Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience. Sarah Dance

The Kalman Filter. Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience. Sarah Dance The Kalman Filter Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience Sarah Dance School of Mathematical and Physical Sciences, University of Reading s.l.dance@reading.ac.uk July

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 13: Learning in Gaussian Graphical Models, Non-Gaussian Inference, Monte Carlo Methods Some figures

More information

Statistical and Adaptive Signal Processing

Statistical and Adaptive Signal Processing r Statistical and Adaptive Signal Processing Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing Dimitris G. Manolakis Massachusetts Institute of Technology Lincoln Laboratory

More information

VAR Model. (k-variate) VAR(p) model (in the Reduced Form): Y t-2. Y t-1 = A + B 1. Y t + B 2. Y t-p. + ε t. + + B p. where:

VAR Model. (k-variate) VAR(p) model (in the Reduced Form): Y t-2. Y t-1 = A + B 1. Y t + B 2. Y t-p. + ε t. + + B p. where: VAR Model (k-variate VAR(p model (in the Reduced Form: where: Y t = A + B 1 Y t-1 + B 2 Y t-2 + + B p Y t-p + ε t Y t = (y 1t, y 2t,, y kt : a (k x 1 vector of time series variables A: a (k x 1 vector

More information

Kriging Luc Anselin, All Rights Reserved

Kriging Luc Anselin, All Rights Reserved Kriging Luc Anselin Spatial Analysis Laboratory Dept. Agricultural and Consumer Economics University of Illinois, Urbana-Champaign http://sal.agecon.uiuc.edu Outline Principles Kriging Models Spatial Interpolation

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Dr. Gabriele Bleser Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche

More information

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Financial Econometrics / 49

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Financial Econometrics / 49 State-space Model Eduardo Rossi University of Pavia November 2013 Rossi State-space Model Financial Econometrics - 2013 1 / 49 Outline 1 Introduction 2 The Kalman filter 3 Forecast errors 4 State smoothing

More information

Signal Processing - Lecture 7

Signal Processing - Lecture 7 1 Introduction Signal Processing - Lecture 7 Fitting a function to a set of data gathered in time sequence can be viewed as signal processing or learning, and is an important topic in information theory.

More information

ECONOMETRIC METHODS II: TIME SERIES LECTURE NOTES ON THE KALMAN FILTER. The Kalman Filter. We will be concerned with state space systems of the form

ECONOMETRIC METHODS II: TIME SERIES LECTURE NOTES ON THE KALMAN FILTER. The Kalman Filter. We will be concerned with state space systems of the form ECONOMETRIC METHODS II: TIME SERIES LECTURE NOTES ON THE KALMAN FILTER KRISTOFFER P. NIMARK The Kalman Filter We will be concerned with state space systems of the form X t = A t X t 1 + C t u t 0.1 Z t

More information

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ).

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ). .8.6 µ =, σ = 1 µ = 1, σ = 1 / µ =, σ =.. 3 1 1 3 x Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ ). The Gaussian distribution Probably the most-important distribution in all of statistics

More information

Fundamentals of Data Assimilation

Fundamentals of Data Assimilation National Center for Atmospheric Research, Boulder, CO USA GSI Data Assimilation Tutorial - June 28-30, 2010 Acknowledgments and References WRFDA Overview (WRF Tutorial Lectures, H. Huang and D. Barker)

More information

The Instability of Correlations: Measurement and the Implications for Market Risk

The Instability of Correlations: Measurement and the Implications for Market Risk The Instability of Correlations: Measurement and the Implications for Market Risk Prof. Massimo Guidolin 20254 Advanced Quantitative Methods for Asset Pricing and Structuring Winter/Spring 2018 Threshold

More information

Introduction to Mobile Robotics Probabilistic Robotics

Introduction to Mobile Robotics Probabilistic Robotics Introduction to Mobile Robotics Probabilistic Robotics Wolfram Burgard 1 Probabilistic Robotics Key idea: Explicit representation of uncertainty (using the calculus of probability theory) Perception Action

More information

Introduction. Spatial Processes & Spatial Patterns

Introduction. Spatial Processes & Spatial Patterns Introduction Spatial data: set of geo-referenced attribute measurements: each measurement is associated with a location (point) or an entity (area/region/object) in geographical (or other) space; the domain

More information

Derivation of the Kalman Filter

Derivation of the Kalman Filter Derivation of the Kalman Filter Kai Borre Danish GPS Center, Denmark Block Matrix Identities The key formulas give the inverse of a 2 by 2 block matrix, assuming T is invertible: T U 1 L M. (1) V W N P

More information

401 Review. 6. Power analysis for one/two-sample hypothesis tests and for correlation analysis.

401 Review. 6. Power analysis for one/two-sample hypothesis tests and for correlation analysis. 401 Review Major topics of the course 1. Univariate analysis 2. Bivariate analysis 3. Simple linear regression 4. Linear algebra 5. Multiple regression analysis Major analysis methods 1. Graphical analysis

More information

Lessons in Estimation Theory for Signal Processing, Communications, and Control

Lessons in Estimation Theory for Signal Processing, Communications, and Control Lessons in Estimation Theory for Signal Processing, Communications, and Control Jerry M. Mendel Department of Electrical Engineering University of Southern California Los Angeles, California PRENTICE HALL

More information

ECE531 Lecture 11: Dynamic Parameter Estimation: Kalman-Bucy Filter

ECE531 Lecture 11: Dynamic Parameter Estimation: Kalman-Bucy Filter ECE531 Lecture 11: Dynamic Parameter Estimation: Kalman-Bucy Filter D. Richard Brown III Worcester Polytechnic Institute 09-Apr-2009 Worcester Polytechnic Institute D. Richard Brown III 09-Apr-2009 1 /

More information

ARMA Estimation Recipes

ARMA Estimation Recipes Econ. 1B D. McFadden, Fall 000 1. Preliminaries ARMA Estimation Recipes hese notes summarize procedures for estimating the lag coefficients in the stationary ARMA(p,q) model (1) y t = µ +a 1 (y t-1 -µ)

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 12: Gaussian Belief Propagation, State Space Models and Kalman Filters Guest Kalman Filter Lecture by

More information

Solutions to Homework Set #6 (Prepared by Lele Wang)

Solutions to Homework Set #6 (Prepared by Lele Wang) Solutions to Homework Set #6 (Prepared by Lele Wang) Gaussian random vector Given a Gaussian random vector X N (µ, Σ), where µ ( 5 ) T and 0 Σ 4 0 0 0 9 (a) Find the pdfs of i X, ii X + X 3, iii X + X

More information

The Kalman Filter (part 1) Definition. Rudolf Emil Kalman. Why do we need a filter? Definition. HCI/ComS 575X: Computational Perception.

The Kalman Filter (part 1) Definition. Rudolf Emil Kalman. Why do we need a filter? Definition. HCI/ComS 575X: Computational Perception. The Kalman Filter (part 1) HCI/ComS 575X: Computational Perception Instructor: Alexander Stoytchev http://www.cs.iastate.edu/~alex/classes/2007_spring_575x/ March 5, 2007 HCI/ComS 575X: Computational Perception

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Probabilistic Fundamentals in Robotics Gaussian Filters Course Outline Basic mathematical framework Probabilistic models of mobile robots Mobile

More information

Best prediction in linear models with mixed integer/real unknowns: theory and application

Best prediction in linear models with mixed integer/real unknowns: theory and application J Geod (2007) 81:759 780 DOI 10.1007/s00190-007-0140-6 ORIGINAL ARTICLE Best prediction in linear models with mixed integer/real unknowns: theory and application P. J. G. Teunissen Received: 19 September

More information

Better Simulation Metamodeling: The Why, What and How of Stochastic Kriging

Better Simulation Metamodeling: The Why, What and How of Stochastic Kriging Better Simulation Metamodeling: The Why, What and How of Stochastic Kriging Jeremy Staum Collaborators: Bruce Ankenman, Barry Nelson Evren Baysal, Ming Liu, Wei Xie supported by the NSF under Grant No.

More information

Chapter 6. Random Processes

Chapter 6. Random Processes Chapter 6 Random Processes Random Process A random process is a time-varying function that assigns the outcome of a random experiment to each time instant: X(t). For a fixed (sample path): a random process

More information

A TERM PAPER REPORT ON KALMAN FILTER

A TERM PAPER REPORT ON KALMAN FILTER A TERM PAPER REPORT ON KALMAN FILTER By B. Sivaprasad (Y8104059) CH. Venkata Karunya (Y8104066) Department of Electrical Engineering Indian Institute of Technology, Kanpur Kanpur-208016 SCALAR KALMAN FILTER

More information

Introduction to Probability and Stocastic Processes - Part I

Introduction to Probability and Stocastic Processes - Part I Introduction to Probability and Stocastic Processes - Part I Lecture 2 Henrik Vie Christensen vie@control.auc.dk Department of Control Engineering Institute of Electronic Systems Aalborg University Denmark

More information

M.Sc. in Meteorology. Numerical Weather Prediction

M.Sc. in Meteorology. Numerical Weather Prediction M.Sc. in Meteorology UCD Numerical Weather Prediction Prof Peter Lynch Meteorology & Climate Cehtre School of Mathematical Sciences University College Dublin Second Semester, 2005 2006. Text for the Course

More information

Kalman Filter and Ensemble Kalman Filter

Kalman Filter and Ensemble Kalman Filter Kalman Filter and Ensemble Kalman Filter 1 Motivation Ensemble forecasting : Provides flow-dependent estimate of uncertainty of the forecast. Data assimilation : requires information about uncertainty

More information

Mixed-Models. version 30 October 2011

Mixed-Models. version 30 October 2011 Mixed-Models version 30 October 2011 Mixed models Mixed models estimate a vector! of fixed effects and one (or more) vectors u of random effects Both fixed and random effects models always include a vector

More information

Brian J. Etherton University of North Carolina

Brian J. Etherton University of North Carolina Brian J. Etherton University of North Carolina The next 90 minutes of your life Data Assimilation Introit Different methodologies Barnes Analysis in IDV NWP Error Sources 1. Intrinsic Predictability Limitations

More information

Feb 21 and 25: Local weighted least squares: Quadratic loess smoother

Feb 21 and 25: Local weighted least squares: Quadratic loess smoother Feb 1 and 5: Local weighted least squares: Quadratic loess smoother An example of weighted least squares fitting of data to a simple model for the purposes of simultaneous smoothing and interpolation is

More information

Adaptive Data Assimilation and Multi-Model Fusion

Adaptive Data Assimilation and Multi-Model Fusion Adaptive Data Assimilation and Multi-Model Fusion Pierre F.J. Lermusiaux, Oleg G. Logoutov and Patrick J. Haley Jr. Mechanical Engineering and Ocean Science and Engineering, MIT We thank: Allan R. Robinson

More information

9 Multi-Model State Estimation

9 Multi-Model State Estimation Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof. N. Shimkin 9 Multi-Model State

More information

Gaussian Filtering Strategies for Nonlinear Systems

Gaussian Filtering Strategies for Nonlinear Systems Gaussian Filtering Strategies for Nonlinear Systems Canonical Nonlinear Filtering Problem ~u m+1 = ~ f (~u m )+~ m+1 ~v m+1 = ~g(~u m+1 )+~ o m+1 I ~ f and ~g are nonlinear & deterministic I Noise/Errors

More information

SIMON FRASER UNIVERSITY School of Engineering Science

SIMON FRASER UNIVERSITY School of Engineering Science SIMON FRASER UNIVERSITY School of Engineering Science Course Outline ENSC 810-3 Digital Signal Processing Calendar Description This course covers advanced digital signal processing techniques. The main

More information

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities.

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities. 19 KALMAN FILTER 19.1 Introduction In the previous section, we derived the linear quadratic regulator as an optimal solution for the fullstate feedback control problem. The inherent assumption was that

More information

7. The Multivariate Normal Distribution

7. The Multivariate Normal Distribution of 5 7/6/2009 5:56 AM Virtual Laboratories > 5. Special Distributions > 2 3 4 5 6 7 8 9 0 2 3 4 5 7. The Multivariate Normal Distribution The Bivariate Normal Distribution Definition Suppose that U and

More information

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS) No. of Printed Pages : 6 MMT-008 M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS) Term-End Examination 0064 December, 202 MMT-008 : PROBABILITY AND STATISTICS Time : 3 hours Maximum

More information

Lecture Notes 4 Vector Detection and Estimation. Vector Detection Reconstruction Problem Detection for Vector AGN Channel

Lecture Notes 4 Vector Detection and Estimation. Vector Detection Reconstruction Problem Detection for Vector AGN Channel Lecture Notes 4 Vector Detection and Estimation Vector Detection Reconstruction Problem Detection for Vector AGN Channel Vector Linear Estimation Linear Innovation Sequence Kalman Filter EE 278B: Random

More information

Markov localization uses an explicit, discrete representation for the probability of all position in the state space.

Markov localization uses an explicit, discrete representation for the probability of all position in the state space. Markov Kalman Filter Localization Markov localization localization starting from any unknown position recovers from ambiguous situation. However, to update the probability of all positions within the whole

More information

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages:

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages: Glossary The ISI glossary of statistical terms provides definitions in a number of different languages: http://isi.cbs.nl/glossary/index.htm Adjusted r 2 Adjusted R squared measures the proportion of the

More information

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari MS&E 226: Small Data Lecture 11: Maximum likelihood (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 18 The likelihood function 2 / 18 Estimating the parameter This lecture develops the methodology behind

More information

1. Determine if each of the following are valid autocorrelation matrices of WSS processes. (Correlation Matrix),R c =

1. Determine if each of the following are valid autocorrelation matrices of WSS processes. (Correlation Matrix),R c = ENEE630 ADSP Part II w/ solution. Determine if each of the following are valid autocorrelation matrices of WSS processes. (Correlation Matrix) R a = 4 4 4,R b = 0 0,R c = j 0 j 0 j 0 j 0 j,r d = 0 0 0

More information

Kalman filter using the orthogonality principle

Kalman filter using the orthogonality principle Appendix G Kalman filter using the orthogonality principle This appendix presents derivation steps for obtaining the discrete Kalman filter equations using a method based on the orthogonality principle.

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

Consistent Bivariate Distribution

Consistent Bivariate Distribution A Characterization of the Normal Conditional Distributions MATSUNO 79 Therefore, the function ( ) = G( : a/(1 b2)) = N(0, a/(1 b2)) is a solu- tion for the integral equation (10). The constant times of

More information

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Fin. Econometrics / 53

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Fin. Econometrics / 53 State-space Model Eduardo Rossi University of Pavia November 2014 Rossi State-space Model Fin. Econometrics - 2014 1 / 53 Outline 1 Motivation 2 Introduction 3 The Kalman filter 4 Forecast errors 5 State

More information

Random vectors X 1 X 2. Recall that a random vector X = is made up of, say, k. X k. random variables.

Random vectors X 1 X 2. Recall that a random vector X = is made up of, say, k. X k. random variables. Random vectors Recall that a random vector X = X X 2 is made up of, say, k random variables X k A random vector has a joint distribution, eg a density f(x), that gives probabilities P(X A) = f(x)dx Just

More information

F & B Approaches to a simple model

F & B Approaches to a simple model A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 215 http://www.astro.cornell.edu/~cordes/a6523 Lecture 11 Applications: Model comparison Challenges in large-scale surveys

More information

1 Data Arrays and Decompositions

1 Data Arrays and Decompositions 1 Data Arrays and Decompositions 1.1 Variance Matrices and Eigenstructure Consider a p p positive definite and symmetric matrix V - a model parameter or a sample variance matrix. The eigenstructure is

More information

Unit 10: Simple Linear Regression and Correlation

Unit 10: Simple Linear Regression and Correlation Unit 10: Simple Linear Regression and Correlation Statistics 571: Statistical Methods Ramón V. León 6/28/2004 Unit 10 - Stat 571 - Ramón V. León 1 Introductory Remarks Regression analysis is a method for

More information

Regression. Oscar García

Regression. Oscar García Regression Oscar García Regression methods are fundamental in Forest Mensuration For a more concise and general presentation, we shall first review some matrix concepts 1 Matrices An order n m matrix is

More information

Frequentist-Bayesian Model Comparisons: A Simple Example

Frequentist-Bayesian Model Comparisons: A Simple Example Frequentist-Bayesian Model Comparisons: A Simple Example Consider data that consist of a signal y with additive noise: Data vector (N elements): D = y + n The additive noise n has zero mean and diagonal

More information

A time series is called strictly stationary if the joint distribution of every collection (Y t

A time series is called strictly stationary if the joint distribution of every collection (Y t 5 Time series A time series is a set of observations recorded over time. You can think for example at the GDP of a country over the years (or quarters) or the hourly measurements of temperature over a

More information

Approximating likelihoods for large spatial data sets

Approximating likelihoods for large spatial data sets Approximating likelihoods for large spatial data sets By Michael Stein, Zhiyi Chi, and Leah Welty Jessi Cisewski April 28, 2009 1 Introduction Given a set of spatial data, often the desire is to estimate

More information

Probabilistic Fundamentals in Robotics. DAUIN Politecnico di Torino July 2010

Probabilistic Fundamentals in Robotics. DAUIN Politecnico di Torino July 2010 Probabilistic Fundamentals in Robotics Gaussian Filters Basilio Bona DAUIN Politecnico di Torino July 2010 Course Outline Basic mathematical framework Probabilistic models of mobile robots Mobile robot

More information

MID-TERM EXAM ANSWERS. p t + δ t = Rp t 1 + η t (1.1)

MID-TERM EXAM ANSWERS. p t + δ t = Rp t 1 + η t (1.1) ECO 513 Fall 2005 C.Sims MID-TERM EXAM ANSWERS (1) Suppose a stock price p t and the stock dividend δ t satisfy these equations: p t + δ t = Rp t 1 + η t (1.1) δ t = γδ t 1 + φp t 1 + ε t, (1.2) where

More information

Gaussian processes. Basic Properties VAG002-

Gaussian processes. Basic Properties VAG002- Gaussian processes The class of Gaussian processes is one of the most widely used families of stochastic processes for modeling dependent data observed over time, or space, or time and space. The popularity

More information

6.4 Kalman Filter Equations

6.4 Kalman Filter Equations 6.4 Kalman Filter Equations 6.4.1 Recap: Auxiliary variables Recall the definition of the auxiliary random variables x p k) and x m k): Init: x m 0) := x0) S1: x p k) := Ak 1)x m k 1) +uk 1) +vk 1) S2:

More information

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends Reliability and Risk Analysis Stochastic process The sequence of random variables {Y t, t = 0, ±1, ±2 } is called the stochastic process The mean function of a stochastic process {Y t} is the function

More information

Kalman Filter Computer Vision (Kris Kitani) Carnegie Mellon University

Kalman Filter Computer Vision (Kris Kitani) Carnegie Mellon University Kalman Filter 16-385 Computer Vision (Kris Kitani) Carnegie Mellon University Examples up to now have been discrete (binary) random variables Kalman filtering can be seen as a special case of a temporal

More information

Local Ensemble Transform Kalman Filter

Local Ensemble Transform Kalman Filter Local Ensemble Transform Kalman Filter Brian Hunt 11 June 2013 Review of Notation Forecast model: a known function M on a vector space of model states. Truth: an unknown sequence {x n } of model states

More information

data lam=36.9 lam=6.69 lam=4.18 lam=2.92 lam=2.21 time max wavelength modulus of max wavelength cycle

data lam=36.9 lam=6.69 lam=4.18 lam=2.92 lam=2.21 time max wavelength modulus of max wavelength cycle AUTOREGRESSIVE LINEAR MODELS AR(1) MODELS The zero-mean AR(1) model x t = x t,1 + t is a linear regression of the current value of the time series on the previous value. For > 0 it generates positively

More information

Ensemble Data Assimilation and Uncertainty Quantification

Ensemble Data Assimilation and Uncertainty Quantification Ensemble Data Assimilation and Uncertainty Quantification Jeff Anderson National Center for Atmospheric Research pg 1 What is Data Assimilation? Observations combined with a Model forecast + to produce

More information

Modern Methods of Data Analysis - WS 07/08

Modern Methods of Data Analysis - WS 07/08 Modern Methods of Data Analysis Lecture VIc (19.11.07) Contents: Maximum Likelihood Fit Maximum Likelihood (I) Assume N measurements of a random variable Assume them to be independent and distributed according

More information

Multivariate Geostatistics

Multivariate Geostatistics Hans Wackernagel Multivariate Geostatistics An Introduction with Applications Third, completely revised edition with 117 Figures and 7 Tables Springer Contents 1 Introduction A From Statistics to Geostatistics

More information

Multiple Bits Distributed Moving Horizon State Estimation for Wireless Sensor Networks. Ji an Luo

Multiple Bits Distributed Moving Horizon State Estimation for Wireless Sensor Networks. Ji an Luo Multiple Bits Distributed Moving Horizon State Estimation for Wireless Sensor Networks Ji an Luo 2008.6.6 Outline Background Problem Statement Main Results Simulation Study Conclusion Background Wireless

More information

CS 532: 3D Computer Vision 6 th Set of Notes

CS 532: 3D Computer Vision 6 th Set of Notes 1 CS 532: 3D Computer Vision 6 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Intro to Covariance

More information

Lifting Detail from Darkness

Lifting Detail from Darkness Lifting Detail from Darkness J.P.Lewis zilla@computer.org Disney The Secret Lab Lewis / Detail from Darkness p.1/38 Brightness-Detail Decomposition detail image image intensity Separate detail by Wiener

More information

CS491/691: Introduction to Aerial Robotics

CS491/691: Introduction to Aerial Robotics CS491/691: Introduction to Aerial Robotics Topic: State Estimation Dr. Kostas Alexis (CSE) World state (or system state) Belief state: Our belief/estimate of the world state World state: Real state of

More information

OPTIMAL CONTROL AND ESTIMATION

OPTIMAL CONTROL AND ESTIMATION OPTIMAL CONTROL AND ESTIMATION Robert F. Stengel Department of Mechanical and Aerospace Engineering Princeton University, Princeton, New Jersey DOVER PUBLICATIONS, INC. New York CONTENTS 1. INTRODUCTION

More information

A SIGNAL THEORETIC INTRODUCTION TO RANDOM PROCESSES

A SIGNAL THEORETIC INTRODUCTION TO RANDOM PROCESSES A SIGNAL THEORETIC INTRODUCTION TO RANDOM PROCESSES ROY M. HOWARD Department of Electrical Engineering & Computing Curtin University of Technology Perth, Australia WILEY CONTENTS Preface xiii 1 A Signal

More information

Stochastic population forecast: a supra-bayesian approach to combine experts opinions and observed past forecast errors

Stochastic population forecast: a supra-bayesian approach to combine experts opinions and observed past forecast errors Stochastic population forecast: a supra-bayesian approach to combine experts opinions and observed past forecast errors Rebecca Graziani and Eugenio Melilli 1 Abstract We suggest a method for developing

More information

Least Squares Estimation Namrata Vaswani,

Least Squares Estimation Namrata Vaswani, Least Squares Estimation Namrata Vaswani, namrata@iastate.edu Least Squares Estimation 1 Recall: Geometric Intuition for Least Squares Minimize J(x) = y Hx 2 Solution satisfies: H T H ˆx = H T y, i.e.

More information

L06. LINEAR KALMAN FILTERS. NA568 Mobile Robotics: Methods & Algorithms

L06. LINEAR KALMAN FILTERS. NA568 Mobile Robotics: Methods & Algorithms L06. LINEAR KALMAN FILTERS NA568 Mobile Robotics: Methods & Algorithms 2 PS2 is out! Landmark-based Localization: EKF, UKF, PF Today s Lecture Minimum Mean Square Error (MMSE) Linear Kalman Filter Gaussian

More information

6.435, System Identification

6.435, System Identification SET 6 System Identification 6.435 Parametrized model structures One-step predictor Identifiability Munther A. Dahleh 1 Models of LTI Systems A complete model u = input y = output e = noise (with PDF).

More information

Interpretation of two error statistics estimation methods: 1 - the Derozier s method 2 the NMC method (lagged forecast)

Interpretation of two error statistics estimation methods: 1 - the Derozier s method 2 the NMC method (lagged forecast) Interpretation of two error statistics estimation methods: 1 - the Derozier s method 2 the NMC method (lagged forecast) Richard Ménard, Yan Yang and Yves Rochon Air Quality Research Division Environment

More information

Linear Methods for Regression. Lijun Zhang

Linear Methods for Regression. Lijun Zhang Linear Methods for Regression Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Linear Regression Models and Least Squares Subset Selection Shrinkage Methods Methods Using Derived

More information

Factor Analysis and Kalman Filtering (11/2/04)

Factor Analysis and Kalman Filtering (11/2/04) CS281A/Stat241A: Statistical Learning Theory Factor Analysis and Kalman Filtering (11/2/04) Lecturer: Michael I. Jordan Scribes: Byung-Gon Chun and Sunghoon Kim 1 Factor Analysis Factor analysis is used

More information

Covariance Matrix Simplification For Efficient Uncertainty Management

Covariance Matrix Simplification For Efficient Uncertainty Management PASEO MaxEnt 2007 Covariance Matrix Simplification For Efficient Uncertainty Management André Jalobeanu, Jorge A. Gutiérrez PASEO Research Group LSIIT (CNRS/ Univ. Strasbourg) - Illkirch, France *part

More information

Mini-Course 07 Kalman Particle Filters. Henrique Massard da Fonseca Cesar Cunha Pacheco Wellington Bettencurte Julio Dutra

Mini-Course 07 Kalman Particle Filters. Henrique Massard da Fonseca Cesar Cunha Pacheco Wellington Bettencurte Julio Dutra Mini-Course 07 Kalman Particle Filters Henrique Massard da Fonseca Cesar Cunha Pacheco Wellington Bettencurte Julio Dutra Agenda State Estimation Problems & Kalman Filter Henrique Massard Steady State

More information

On dealing with spatially correlated residuals in remote sensing and GIS

On dealing with spatially correlated residuals in remote sensing and GIS On dealing with spatially correlated residuals in remote sensing and GIS Nicholas A. S. Hamm 1, Peter M. Atkinson and Edward J. Milton 3 School of Geography University of Southampton Southampton SO17 3AT

More information

Efficient Data Assimilation for Spatiotemporal Chaos: a Local Ensemble Transform Kalman Filter

Efficient Data Assimilation for Spatiotemporal Chaos: a Local Ensemble Transform Kalman Filter Efficient Data Assimilation for Spatiotemporal Chaos: a Local Ensemble Transform Kalman Filter arxiv:physics/0511236 v1 28 Nov 2005 Brian R. Hunt Institute for Physical Science and Technology and Department

More information

Linear Prediction Theory

Linear Prediction Theory Linear Prediction Theory Joseph A. O Sullivan ESE 524 Spring 29 March 3, 29 Overview The problem of estimating a value of a random process given other values of the random process is pervasive. Many problems

More information

Predictive Control of Gyroscopic-Force Actuators for Mechanical Vibration Damping

Predictive Control of Gyroscopic-Force Actuators for Mechanical Vibration Damping ARC Centre of Excellence for Complex Dynamic Systems and Control, pp 1 15 Predictive Control of Gyroscopic-Force Actuators for Mechanical Vibration Damping Tristan Perez 1, 2 Joris B Termaat 3 1 School

More information

Sensor Tasking and Control

Sensor Tasking and Control Sensor Tasking and Control Sensing Networking Leonidas Guibas Stanford University Computation CS428 Sensor systems are about sensing, after all... System State Continuous and Discrete Variables The quantities

More information

Dependence. Practitioner Course: Portfolio Optimization. John Dodson. September 10, Dependence. John Dodson. Outline.

Dependence. Practitioner Course: Portfolio Optimization. John Dodson. September 10, Dependence. John Dodson. Outline. Practitioner Course: Portfolio Optimization September 10, 2008 Before we define dependence, it is useful to define Random variables X and Y are independent iff For all x, y. In particular, F (X,Y ) (x,

More information

OPTIMAL ESTIMATION of DYNAMIC SYSTEMS

OPTIMAL ESTIMATION of DYNAMIC SYSTEMS CHAPMAN & HALL/CRC APPLIED MATHEMATICS -. AND NONLINEAR SCIENCE SERIES OPTIMAL ESTIMATION of DYNAMIC SYSTEMS John L Crassidis and John L. Junkins CHAPMAN & HALL/CRC A CRC Press Company Boca Raton London

More information