Solutions to Homework Set #6 (Prepared by Lele Wang)

Size: px
Start display at page:

Download "Solutions to Homework Set #6 (Prepared by Lele Wang)"

Transcription

1 Solutions to Homework Set #6 (Prepared by Lele Wang) Gaussian random vector Given a Gaussian random vector X N (µ, Σ), where µ ( 5 ) T and 0 Σ (a) Find the pdfs of i X, ii X + X 3, iii X + X + X 3, iv X 3 given (X, X ), and v (X, X 3 ) given X (b) What is P{X + X X 3 < 0}? Express your answer using the Q function (c) Find the joint pdf on AX, where A [ ] Solution: (a) i The marginal pdfs of a jointly Gaussian pdf are Gaussian Therefore X N (, ) ii Since X and X 3 are independent (σ 3 0), the variance of the sum is the sum of the variances Also the sum of two jointly Gaussian random variables is also Gaussian Therefore X + X 3 N (7, 3) iii Since X + X + X 3 is a linear transformation of a Gaussian random vector, X + X + X 3 [ ] X X, X 3 it is a Gaussian random vector with mean and variance µ [ ] 5 9 and σ [ ] Thus X + X + X 3 N (9, ) iv Since σ 3 0, X 3 and X are uncorrelated and hence independent since they are jointly Gaussian; similarly, since σ 3 0, X 3 and X are independent Therefore the conditional pdf of X 3 given (X, X ) is the same as the pdf of X 3, which is N (, 9)

2 v We use the general formula for the conditional Gaussian pdf: X {X x } N ( Σ Σ (x µ ) + µ, Σ Σ Σ Σ ) In the case of (X, X 3 ) X, Σ [ ], Σ [ ], Σ 0 [ ] Therefore the mean and variance of (X, X 3 ) given X x are [ ] [ ] [ µ (X,X 3 ) X x ] [ ] [ ] 5 x + 4 +, 0 [ ] [ ] [ ] [ ] [ ] 4 0 [ ] Σ (X,X 3 ) X Thus X and X 3 are conditionally independent given X The conditional densities are X {X x } N (x + 4, 3) and X 3 {X x} N (, 9) (b) Let X +X X 3 Similarly as part (a)iii, X +X X 3 is a linear transformation of a Gaussian random vector, X + X X 3 [ ] X X, X 3 it is a Gaussian random vector with mean and variance µ [ ] 5 5 and σ [ ] Thus X + X X 3 N (5, ), ie, N (5, ) Thus { } ( ) ( 5) (0 5) 5 P{ < 0} P < Q (c) In general, AX N (Aµ X, AΣ X A T ) For this problem, Thus N µ Aµ X Σ AΣ X A T [ ([ ] [ ]) 9 6, 6 [ ] 5 [ ] 9, ] [ ] 6 6

3 Gaussian Markov chain Let X,, and Z be jointly Gaussian random variables with zero mean and unit variance, ie, E(X) E( ) E(Z) 0 and E(X ) E( ) E(Z ) Let ρ X, denote the correlation coefficient between X and, and let ρ,z denote the correlation coefficient between and Z Suppose that X and Z are conditionally independent given (a) Find ρ X,Z in terms of ρ X, and ρ,z (b) Find the MMSE estimate of Z given (X, ) and the corresponding MSE Solution: (a) From the definition of ρ X,Z, we have where, ρ X,Z Cov(X, Z) σ X σ Z, Cov(X, Z) E(XZ) E(X)E(Z) E(XZ) 0 E(XZ), σ X E(X ) E(X) 0, σ E( ) E( ) 0 Thus, ρ X,Z E(XZ) Moreover, since X and Z are conditionally independent given, E(XZ) E(E(XZ )) E[E(X )E(Z )] Now E(X ) can be easily calculated from the bivariate Gaussian conditional density Similarly, we have Therefore, combining the above, E(X ) E(X) + ρ X, σ X σ ( E( )) ρ X, E(Z ) ρ,z ρ X,Z E(XZ) E[E(X )E(Z )] E(ρ X, ρ,z ) ρ X, ρ,z E( ) ρ X, ρ,z (b) X, and Z are jointly Gaussian random variables Thus, the minimum MSE estimate of Z given (X, ) is linear [ ] ρx, Σ (X, ) T, ρ X, [ ] [ ] E(XZ) ρx,z Σ (X, ) T Z, E( Z) Σ Z(X, ) T [ ρ X,Z ρ,z ] ρ,z 3

4 Therefore, [ ] Ẑ Σ Z(X, ) T Σ X (X, ) T [ ] [ ] [ ] ρ ρ X,Z ρ X, X,Z ρ X, [ [ ] ρ ρ X,Z ρ X,,Z ρ ρ X, X, ρ X, [ 0 ρ X, ρ,z + ρ,z ] [ X ], ][ ] X where the last equality follows from the result of (a) Thus, Ẑ [ ] [ ] X 0 ρ,z ρ,z The corresponding MSE is MSE Σ Z Σ Z(X, ) T Σ Σ (X, ) T (X, ) T Z [ ] [ ] [ ] ρ ρ X,Z ρ X, ρx,z,z ρ X, ρ,z [ [ ] [ ] ] ρ ρ X,Z ρ X, ρx,z,z ρ ρ X, X, ρ,z [ ] [ ] ρ 0 ρ X,Z,Z ρ,z ρ,z 3 Prediction of an autoregressive process Let X be a random vector with zero mean and covariance matrix α α α n α α Σ X α α α n for α < X, X,, X n are observed, find the best linear MSE estimate (predictor) of X n Compute its MSE Solution: We have α n α n Σ X α n α α n α 4

5 By defining [ X ] T X n, we have α n Σ, α n Therefore, and Σ X [ α n α ] T, Σ X [ α n α ], σ x ˆX n Σ X Σ [ α n α ] α n α n h T (where h T Σ X Σ ) [ 0 0 α ] (since h T Σ Σ X ) αx n ; MSE σ x Σ X Σ Σ X h T Σ X [ 0 0 α ] α α n 4 Noise cancellation A classical problem in statistical signal processing involves estimating a weak signal (eg, the heart beat of a fetus) in the presence of a strong interference (the heart beat of its mother) by making two observations; one with the weak signal present and one without (by placing one microphone on the mother s belly and another close to her heart) The observations can then be combined to estimate the weak signal by cancelling out the interference The following is a simple version of this application Let the weak signal X be a random variable with mean µ and variance P, and the observations be X + Z (Z being the strong interference), and Z + Z (Z is a measurement noise), where Z and Z are zero mean with variances N and N, respectively Assume that X, Z and Z are uncorrelated Find the best linear MSE estimate of X given and and its MSE Interprete the results Solution: This is a vector linear MSE problem Since Z and Z are zero mean, µ X µ µ and µ 0 We first normalize the random variables by subtracting off their means to get α 5

6 X X µ, and [ ] µ Now using the orthogonality principle we can find the best linear MSE estimate ˆX of X To do so we first find [ ] [ ] P + N N Σ P and Σ N N + N X 0 Thus, ˆX Σ T XΣ [ P 0 ] [ ] N + N N P (N + N ) + N N N P + N P [ ] (N + N ) N P (N + N ) + N N The best linear MSE estimate is ˆX ˆX + µ Thus, P ˆX ((N + N )( µ) N ) + µ P (N + N ) + N N (P ((N + N ) N )) + N N µ) P (N + N ) + N N The MSE can be calculated by MSE σx Σ T XΣ Σ X P P [ ] (N + N ) N P (N + N ) + N N P (N + N ) P P (N + N ) + N N P N N P (N + N ) + N N The equation for the MSE makes perfect sense First, note that if N and N are held constant but P goes to infinity, the MSE tends to N N N +N Next, note that if both N and N go to infinity, the MSE goes to σx, ie, the estimate becomes worthless Finally, note that if either N or N goes to 0, the MSE also goes to 0 This is because the estimator will then use the measurement with zero noise variance (that is, the one with no noise) and ignore the other measurement [ ] P 0 6

7 Solutions to Additional Exercises Markov chain Suppose X and X 3 are independent given X Show that f(x, x, x 3 ) f(x )f(x x )f(x 3 x ) f(x 3 )f(x x 3 )f(x x ) In other words, if X X X 3 forms a Markov Chain, then so does X 3 X X Solution: By definition of conditional independence, f(x, x 3 x ) f(x x )f(x 3 x ) Therefore, using the definition of conditional density, f(x 3 x, x ) f(x, x, x 3 ) f(x, x ) f(x, x 3 x )f(x ) f(x x )f(x ) f(x x )f(x 3 x ) f(x x ) f(x 3 x ) We are given that X and X 3 are independent given X Then f(x, x, x 3 ) f(x )f(x x )f(x 3 x, x ) f(x )f(x x )f(x 3 x ), In this case X X X 3 is said to form a Markov chain Similarly, f(x, x, x 3 ) f(x 3 )f(x x 3 )f(x x, x 3 ) f(x 3 )f(x x 3 )f(x x ), This shows that if X X X 3 is a Markov chain, then X 3 X X is also a Markov chain Proof of Property 4 In Lecture Notes #6 it was stated that conditionals of a Gaussian random vector are Gaussian In this problem you will prove that fact If [ ] is a zero-mean GRV then X { y} N ( Σ X X Σ y, σ X Σ XΣ Σ X) Justify each of the following steps of the proof (a) Let ˆX be the best MSE linear estimate of X given Then ˆX and X ˆX are individually zero-mean Gaussians Find their variances (b) ˆX and X ˆX are independent (c) Now write X ˆX + (X ˆX) If y then X Σ X Σ y + (X ˆX) (d) Now complete the proof Remark: This proof can be extended to vector X Solution: (a) Let ˆX be the best MSE linear estimate of X given In the MSE vector case section of Lecture Notes #6 it was shown that ˆX and X ˆX are individually zero-mean Gaussian random variables with variances Σ X Σ Σ X and σx Σ XΣ Σ X, respectively 7

8 (b) The random variables ˆX and X ˆX are jointly Gaussian since they are obtained by a linear transformation of the GRV [ X ] T By orthogonality, ˆX and X ˆX are uncorrelated, so they are also independent By the same reasoning, X ˆX and are independent (c) Now write X ˆX + (X ˆX) Then given y since X ˆX is independent of X Σ X Σ y + (X ˆX), (d) Thus X { y} is Gaussian with mean Σ X Σ y and variance σ X Σ XΣ Σ X 3 Additive nonwhite Gaussian noise channel Let i X + Z i for i,,, n be n observations of a signal X N(0, P ) The additive noise random variables Z, Z,, Z n are zero mean jointly Gaussian random variables that are independent of X and have correlation E(Z i Z j ) N i j for i, j n (a) Find the best MSE estimate of X given,,, n (b) Find the MSE of the estimate in part (a) Hint: the coefficients for the best estimate are of the form h T [ a b b b b a ] Solution: (a) The best estimate of X is of the form ˆX n h i i i We apply the orthogonality condition E(X j ) E( ˆX j ) for j n: P n h i E( i j ) i n h i E((X + Z i )(X + Z j )) i n h i (P + N i j ) i There are n equations with n unknowns: P P + N P + N/ P + N/ n P + N/ n P P + N/ P + N P + N/ n 3 P + N/ n P P + N/ n P + N/ n 3 P + N P + N/ P P + N/ n P + N/ n P + N/ P + N h h h n h n 8

9 By the hint, there are only degrees of freedom given, a and b Solving this equation using the first rows of the matrix, we obtain h h P 3N + (n + )P h n h n (b) The minimum mean square error is MSE E(X ˆX)X n P P h i i P ( i ) (n + )P 3N + (n + )P 3P N 3N + (n + )P 4 Sufficient statistic The bias of a coin is a random variable P U[0, ] Let Z, Z,, Z 0 be the outcomes of 0 coin flips Thus Z i B(P ) and {Z, Z,, Z 0 } are conditionally independent given P If X is the total number of heads, then X {P p} Binom(0, p) Assuming that the total number of heads is 9, show that is independent of the order of the outcomes Solution: f P Z,Z,,Z 0 (p z, z,, z 0 ) f P X (p 9) The tosses of the coin are conditionally independent given the bias, that is, p Z,,Z 0 P (z,, z 0 p) p Z P (z p)p Z P (z p) p Z0 P (z 0 p) Suppose that the order of the outcomes is nine heads followed by one tail Then p Z,,Z 0 P (H, H,, H, T p) p 9 ( p) We use Bayes rule to find the conditional pdf of P f P Z,,Z 0 (p H,, H, T ) p Z,Z,,Z 0 P (H,, H, T p) p Z,Z,,Z 0 (H, H,, H, T ) f P (p) This expression is zero when p < 0 or p > since the a priori pdf f P (p) is zero For 0 p : f P Z,,Z 0 (p H,, H, T ) p 9 ( p) 0 f Z,Z,,Z 0 P (H,, H, T p)f P (p) dp p 9 ( p) 0 p9 ( p) dp p9 ( p) /0 0p 9 ( p) 9

10 Note that the result is independent of the order of heads and tails This is due to the fact that the tosses are conditionally independent, and therefore the conditional pmf of (Z,, Z 0 ) given P is a function only of the number of heads 5 Gambling Let X, X, X 3, be independent random variables with the same mean µ > 0 and the same variance σ Find the limit of P{ n n i X i < µ/} as n Solution: By the weak law of large numbers, the sample mean n n i X i converges to the mean E(X) in probability, so P( S n µ < ɛ) as n But if S n µ > µ/ then P (S n < µ/) 0 0

UCSD ECE153 Handout #34 Prof. Young-Han Kim Tuesday, May 27, Solutions to Homework Set #6 (Prepared by TA Fatemeh Arbabjolfaei)

UCSD ECE153 Handout #34 Prof. Young-Han Kim Tuesday, May 27, Solutions to Homework Set #6 (Prepared by TA Fatemeh Arbabjolfaei) UCSD ECE53 Handout #34 Prof Young-Han Kim Tuesday, May 7, 04 Solutions to Homework Set #6 (Prepared by TA Fatemeh Arbabjolfaei) Linear estimator Consider a channel with the observation Y XZ, where the

More information

UCSD ECE153 Handout #30 Prof. Young-Han Kim Thursday, May 15, Homework Set #6 Due: Thursday, May 22, 2011

UCSD ECE153 Handout #30 Prof. Young-Han Kim Thursday, May 15, Homework Set #6 Due: Thursday, May 22, 2011 UCSD ECE153 Handout #30 Prof. Young-Han Kim Thursday, May 15, 2014 Homework Set #6 Due: Thursday, May 22, 2011 1. Linear estimator. Consider a channel with the observation Y = XZ, where the signal X and

More information

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN Lecture Notes 5 Convergence and Limit Theorems Motivation Convergence with Probability Convergence in Mean Square Convergence in Probability, WLLN Convergence in Distribution, CLT EE 278: Convergence and

More information

Solutions to Homework Set #5 (Prepared by Lele Wang) MSE = E [ (sgn(x) g(y)) 2],, where f X (x) = 1 2 2π e. e (x y)2 2 dx 2π

Solutions to Homework Set #5 (Prepared by Lele Wang) MSE = E [ (sgn(x) g(y)) 2],, where f X (x) = 1 2 2π e. e (x y)2 2 dx 2π Solutions to Homework Set #5 (Prepared by Lele Wang). Neural net. Let Y X + Z, where the signal X U[,] and noise Z N(,) are independent. (a) Find the function g(y) that minimizes MSE E [ (sgn(x) g(y))

More information

Lecture 4: Least Squares (LS) Estimation

Lecture 4: Least Squares (LS) Estimation ME 233, UC Berkeley, Spring 2014 Xu Chen Lecture 4: Least Squares (LS) Estimation Background and general solution Solution in the Gaussian case Properties Example Big picture general least squares estimation:

More information

UCSD ECE153 Handout #27 Prof. Young-Han Kim Tuesday, May 6, Solutions to Homework Set #5 (Prepared by TA Fatemeh Arbabjolfaei)

UCSD ECE153 Handout #27 Prof. Young-Han Kim Tuesday, May 6, Solutions to Homework Set #5 (Prepared by TA Fatemeh Arbabjolfaei) UCSD ECE53 Handout #7 Prof. Young-Han Kim Tuesday, May 6, 4 Solutions to Homework Set #5 (Prepared by TA Fatemeh Arbabjolfaei). Neural net. Let Y = X + Z, where the signal X U[,] and noise Z N(,) are independent.

More information

UCSD ECE250 Handout #24 Prof. Young-Han Kim Wednesday, June 6, Solutions to Exercise Set #7

UCSD ECE250 Handout #24 Prof. Young-Han Kim Wednesday, June 6, Solutions to Exercise Set #7 UCSD ECE50 Handout #4 Prof Young-Han Kim Wednesday, June 6, 08 Solutions to Exercise Set #7 Polya s urn An urn initially has one red ball and one white ball Let X denote the name of the first ball drawn

More information

Math 180B Problem Set 3

Math 180B Problem Set 3 Math 180B Problem Set 3 Problem 1. (Exercise 3.1.2) Solution. By the definition of conditional probabilities we have Pr{X 2 = 1, X 3 = 1 X 1 = 0} = Pr{X 3 = 1 X 2 = 1, X 1 = 0} Pr{X 2 = 1 X 1 = 0} = P

More information

Exercises with solutions (Set D)

Exercises with solutions (Set D) Exercises with solutions Set D. A fair die is rolled at the same time as a fair coin is tossed. Let A be the number on the upper surface of the die and let B describe the outcome of the coin toss, where

More information

More than one variable

More than one variable Chapter More than one variable.1 Bivariate discrete distributions Suppose that the r.v. s X and Y are discrete and take on the values x j and y j, j 1, respectively. Then the joint p.d.f. of X and Y, to

More information

UCSD ECE250 Handout #20 Prof. Young-Han Kim Monday, February 26, Solutions to Exercise Set #7

UCSD ECE250 Handout #20 Prof. Young-Han Kim Monday, February 26, Solutions to Exercise Set #7 UCSD ECE50 Handout #0 Prof. Young-Han Kim Monday, February 6, 07 Solutions to Exercise Set #7. Minimum waiting time. Let X,X,... be i.i.d. exponentially distributed random variables with parameter λ, i.e.,

More information

Introduction to Probability and Stocastic Processes - Part I

Introduction to Probability and Stocastic Processes - Part I Introduction to Probability and Stocastic Processes - Part I Lecture 2 Henrik Vie Christensen vie@control.auc.dk Department of Control Engineering Institute of Electronic Systems Aalborg University Denmark

More information

Final Examination Solutions (Total: 100 points)

Final Examination Solutions (Total: 100 points) Final Examination Solutions (Total: points) There are 4 problems, each problem with multiple parts, each worth 5 points. Make sure you answer all questions. Your answer should be as clear and readable

More information

Multivariate probability distributions and linear regression

Multivariate probability distributions and linear regression Multivariate probability distributions and linear regression Patrik Hoyer 1 Contents: Random variable, probability distribution Joint distribution Marginal distribution Conditional distribution Independence,

More information

Appendix A : Introduction to Probability and stochastic processes

Appendix A : Introduction to Probability and stochastic processes A-1 Mathematical methods in communication July 5th, 2009 Appendix A : Introduction to Probability and stochastic processes Lecturer: Haim Permuter Scribe: Shai Shapira and Uri Livnat The probability of

More information

2. Variance and Covariance: We will now derive some classic properties of variance and covariance. Assume real-valued random variables X and Y.

2. Variance and Covariance: We will now derive some classic properties of variance and covariance. Assume real-valued random variables X and Y. CS450 Final Review Problems Fall 08 Solutions or worked answers provided Problems -6 are based on the midterm review Identical problems are marked recap] Please consult previous recitations and textbook

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

18.440: Lecture 26 Conditional expectation

18.440: Lecture 26 Conditional expectation 18.440: Lecture 26 Conditional expectation Scott Sheffield MIT 1 Outline Conditional probability distributions Conditional expectation Interpretation and examples 2 Outline Conditional probability distributions

More information

ECE Homework Set 3

ECE Homework Set 3 ECE 450 1 Homework Set 3 0. Consider the random variables X and Y, whose values are a function of the number showing when a single die is tossed, as show below: Exp. Outcome 1 3 4 5 6 X 3 3 4 4 Y 0 1 3

More information

Chapter 4 continued. Chapter 4 sections

Chapter 4 continued. Chapter 4 sections Chapter 4 sections Chapter 4 continued 4.1 Expectation 4.2 Properties of Expectations 4.3 Variance 4.4 Moments 4.5 The Mean and the Median 4.6 Covariance and Correlation 4.7 Conditional Expectation SKIP:

More information

ECE 450 Homework #3. 1. Given the joint density function f XY (x,y) = 0.5 1<x<2, 2<y< <x<4, 2<y<3 0 else

ECE 450 Homework #3. 1. Given the joint density function f XY (x,y) = 0.5 1<x<2, 2<y< <x<4, 2<y<3 0 else ECE 450 Homework #3 0. Consider the random variables X and Y, whose values are a function of the number showing when a single die is tossed, as show below: Exp. Outcome 1 3 4 5 6 X 3 3 4 4 Y 0 1 3 4 5

More information

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text.

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text. TEST #3 STA 536 December, 00 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. You will have access to a copy

More information

4 Derivations of the Discrete-Time Kalman Filter

4 Derivations of the Discrete-Time Kalman Filter Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof N Shimkin 4 Derivations of the Discrete-Time

More information

Kalman Filtering. Namrata Vaswani. March 29, Kalman Filter as a causal MMSE estimator

Kalman Filtering. Namrata Vaswani. March 29, Kalman Filter as a causal MMSE estimator Kalman Filtering Namrata Vaswani March 29, 2018 Notes are based on Vincent Poor s book. 1 Kalman Filter as a causal MMSE estimator Consider the following state space model (signal and observation model).

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Problem Set 8 Fall 2007

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Problem Set 8 Fall 2007 UC Berkeley Department of Electrical Engineering and Computer Science EE 6: Probablity and Random Processes Problem Set 8 Fall 007 Issued: Thursday, October 5, 007 Due: Friday, November, 007 Reading: Bertsekas

More information

UCSD ECE 153 Handout #46 Prof. Young-Han Kim Thursday, June 5, Solutions to Homework Set #8 (Prepared by TA Fatemeh Arbabjolfaei)

UCSD ECE 153 Handout #46 Prof. Young-Han Kim Thursday, June 5, Solutions to Homework Set #8 (Prepared by TA Fatemeh Arbabjolfaei) UCSD ECE 53 Handout #46 Prof. Young-Han Kim Thursday, June 5, 04 Solutions to Homework Set #8 (Prepared by TA Fatemeh Arbabjolfaei). Discrete-time Wiener process. Let Z n, n 0 be a discrete time white

More information

UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, Practice Final Examination (Winter 2017)

UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, Practice Final Examination (Winter 2017) UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, 208 Practice Final Examination (Winter 207) There are 6 problems, each problem with multiple parts. Your answer should be as clear and readable

More information

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011 UCSD ECE53 Handout #40 Prof. Young-Han Kim Thursday, May 9, 04 Homework Set #8 Due: Thursday, June 5, 0. Discrete-time Wiener process. Let Z n, n 0 be a discrete time white Gaussian noise (WGN) process,

More information

Random Variables. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay

Random Variables. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay 1 / 13 Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay August 8, 2013 2 / 13 Random Variable Definition A real-valued

More information

Chapter 4 : Expectation and Moments

Chapter 4 : Expectation and Moments ECE5: Analysis of Random Signals Fall 06 Chapter 4 : Expectation and Moments Dr. Salim El Rouayheb Scribe: Serge Kas Hanna, Lu Liu Expected Value of a Random Variable Definition. The expected or average

More information

Covariance. Lecture 20: Covariance / Correlation & General Bivariate Normal. Covariance, cont. Properties of Covariance

Covariance. Lecture 20: Covariance / Correlation & General Bivariate Normal. Covariance, cont. Properties of Covariance Covariance Lecture 0: Covariance / Correlation & General Bivariate Normal Sta30 / Mth 30 We have previously discussed Covariance in relation to the variance of the sum of two random variables Review Lecture

More information

ENGR352 Problem Set 02

ENGR352 Problem Set 02 engr352/engr352p02 September 13, 2018) ENGR352 Problem Set 02 Transfer function of an estimator 1. Using Eq. (1.1.4-27) from the text, find the correct value of r ss (the result given in the text is incorrect).

More information

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R In probabilistic models, a random variable is a variable whose possible values are numerical outcomes of a random phenomenon. As a function or a map, it maps from an element (or an outcome) of a sample

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

11 - The linear model

11 - The linear model 11-1 The linear model S. Lall, Stanford 2011.02.15.01 11 - The linear model The linear model The joint pdf and covariance Example: uniform pdfs The importance of the prior Linear measurements with Gaussian

More information

1 Random variables and distributions

1 Random variables and distributions Random variables and distributions In this chapter we consider real valued functions, called random variables, defined on the sample space. X : S R X The set of possible values of X is denoted by the set

More information

ENGG2430A-Homework 2

ENGG2430A-Homework 2 ENGG3A-Homework Due on Feb 9th,. Independence vs correlation a For each of the following cases, compute the marginal pmfs from the joint pmfs. Explain whether the random variables X and Y are independent,

More information

[POLS 8500] Review of Linear Algebra, Probability and Information Theory

[POLS 8500] Review of Linear Algebra, Probability and Information Theory [POLS 8500] Review of Linear Algebra, Probability and Information Theory Professor Jason Anastasopoulos ljanastas@uga.edu January 12, 2017 For today... Basic linear algebra. Basic probability. Programming

More information

Lecture 2: Review of Basic Probability Theory

Lecture 2: Review of Basic Probability Theory ECE 830 Fall 2010 Statistical Signal Processing instructor: R. Nowak, scribe: R. Nowak Lecture 2: Review of Basic Probability Theory Probabilistic models will be used throughout the course to represent

More information

01 Probability Theory and Statistics Review

01 Probability Theory and Statistics Review NAVARCH/EECS 568, ROB 530 - Winter 2018 01 Probability Theory and Statistics Review Maani Ghaffari January 08, 2018 Last Time: Bayes Filters Given: Stream of observations z 1:t and action data u 1:t Sensor/measurement

More information

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as L30-1 EEL 5544 Noise in Linear Systems Lecture 30 OTHER TRANSFORMS For a continuous, nonnegative RV X, the Laplace transform of X is X (s) = E [ e sx] = 0 f X (x)e sx dx. For a nonnegative RV, the Laplace

More information

ECE 302, Final 3:20-5:20pm Mon. May 1, WTHR 160 or WTHR 172.

ECE 302, Final 3:20-5:20pm Mon. May 1, WTHR 160 or WTHR 172. ECE 302, Final 3:20-5:20pm Mon. May 1, WTHR 160 or WTHR 172. 1. Enter your name, student ID number, e-mail address, and signature in the space provided on this page, NOW! 2. This is a closed book exam.

More information

Algorithms for Uncertainty Quantification

Algorithms for Uncertainty Quantification Algorithms for Uncertainty Quantification Tobias Neckel, Ionuț-Gabriel Farcaș Lehrstuhl Informatik V Summer Semester 2017 Lecture 2: Repetition of probability theory and statistics Example: coin flip Example

More information

Review of probability

Review of probability Review of probability Computer Sciences 760 Spring 2014 http://pages.cs.wisc.edu/~dpage/cs760/ Goals for the lecture you should understand the following concepts definition of probability random variables

More information

E X A M. Probability Theory and Stochastic Processes Date: December 13, 2016 Duration: 4 hours. Number of pages incl.

E X A M. Probability Theory and Stochastic Processes Date: December 13, 2016 Duration: 4 hours. Number of pages incl. E X A M Course code: Course name: Number of pages incl. front page: 6 MA430-G Probability Theory and Stochastic Processes Date: December 13, 2016 Duration: 4 hours Resources allowed: Notes: Pocket calculator,

More information

Bivariate distributions

Bivariate distributions Bivariate distributions 3 th October 017 lecture based on Hogg Tanis Zimmerman: Probability and Statistical Inference (9th ed.) Bivariate Distributions of the Discrete Type The Correlation Coefficient

More information

Probability Review. Chao Lan

Probability Review. Chao Lan Probability Review Chao Lan Let s start with a single random variable Random Experiment A random experiment has three elements 1. sample space Ω: set of all possible outcomes e.g.,ω={1,2,3,4,5,6} 2. event

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Math 3215 Intro. Probability & Statistics Summer 14. Homework 5: Due 7/3/14

Math 3215 Intro. Probability & Statistics Summer 14. Homework 5: Due 7/3/14 Math 325 Intro. Probability & Statistics Summer Homework 5: Due 7/3/. Let X and Y be continuous random variables with joint/marginal p.d.f. s f(x, y) 2, x y, f (x) 2( x), x, f 2 (y) 2y, y. Find the conditional

More information

Lecture 25: Review. Statistics 104. April 23, Colin Rundel

Lecture 25: Review. Statistics 104. April 23, Colin Rundel Lecture 25: Review Statistics 104 Colin Rundel April 23, 2012 Joint CDF F (x, y) = P [X x, Y y] = P [(X, Y ) lies south-west of the point (x, y)] Y (x,y) X Statistics 104 (Colin Rundel) Lecture 25 April

More information

6.041/6.431 Fall 2010 Quiz 2 Solutions

6.041/6.431 Fall 2010 Quiz 2 Solutions 6.04/6.43: Probabilistic Systems Analysis (Fall 200) 6.04/6.43 Fall 200 Quiz 2 Solutions Problem. (80 points) In this problem: (i) X is a (continuous) uniform random variable on [0, 4]. (ii) Y is an exponential

More information

Raquel Prado. Name: Department of Applied Mathematics and Statistics AMS-131. Spring 2010

Raquel Prado. Name: Department of Applied Mathematics and Statistics AMS-131. Spring 2010 Raquel Prado Name: Department of Applied Mathematics and Statistics AMS-131. Spring 2010 Final Exam (Type B) The midterm is closed-book, you are only allowed to use one page of notes and a calculator.

More information

MATHEMATICS 154, SPRING 2009 PROBABILITY THEORY Outline #11 (Tail-Sum Theorem, Conditional distribution and expectation)

MATHEMATICS 154, SPRING 2009 PROBABILITY THEORY Outline #11 (Tail-Sum Theorem, Conditional distribution and expectation) MATHEMATICS 154, SPRING 2009 PROBABILITY THEORY Outline #11 (Tail-Sum Theorem, Conditional distribution and expectation) Last modified: March 7, 2009 Reference: PRP, Sections 3.6 and 3.7. 1. Tail-Sum Theorem

More information

Multivariate Random Variable

Multivariate Random Variable Multivariate Random Variable Author: Author: Andrés Hincapié and Linyi Cao This Version: August 7, 2016 Multivariate Random Variable 3 Now we consider models with more than one r.v. These are called multivariate

More information

Expectation. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Expectation. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Expectation DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Aim Describe random variables with a few numbers: mean, variance,

More information

MULTIVARIATE PROBABILITY DISTRIBUTIONS

MULTIVARIATE PROBABILITY DISTRIBUTIONS MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined

More information

conditional cdf, conditional pdf, total probability theorem?

conditional cdf, conditional pdf, total probability theorem? 6 Multiple Random Variables 6.0 INTRODUCTION scalar vs. random variable cdf, pdf transformation of a random variable conditional cdf, conditional pdf, total probability theorem expectation of a random

More information

ECE534, Spring 2018: Solutions for Problem Set #3

ECE534, Spring 2018: Solutions for Problem Set #3 ECE534, Spring 08: Solutions for Problem Set #3 Jointly Gaussian Random Variables and MMSE Estimation Suppose that X, Y are jointly Gaussian random variables with µ X = µ Y = 0 and σ X = σ Y = Let their

More information

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu Home Work: 1 1. Describe the sample space when a coin is tossed (a) once, (b) three times, (c) n times, (d) an infinite number of times. 2. A coin is tossed until for the first time the same result appear

More information

CS 630 Basic Probability and Information Theory. Tim Campbell

CS 630 Basic Probability and Information Theory. Tim Campbell CS 630 Basic Probability and Information Theory Tim Campbell 21 January 2003 Probability Theory Probability Theory is the study of how best to predict outcomes of events. An experiment (or trial or event)

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables This Version: July 30, 2015 Multiple Random Variables 2 Now we consider models with more than one r.v. These are called multivariate models For instance: height and weight An

More information

Bivariate Distributions. Discrete Bivariate Distribution Example

Bivariate Distributions. Discrete Bivariate Distribution Example Spring 7 Geog C: Phaedon C. Kyriakidis Bivariate Distributions Definition: class of multivariate probability distributions describing joint variation of outcomes of two random variables (discrete or continuous),

More information

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems Review of Basic Probability The fundamentals, random variables, probability distributions Probability mass/density functions

More information

STOR Lecture 16. Properties of Expectation - I

STOR Lecture 16. Properties of Expectation - I STOR 435.001 Lecture 16 Properties of Expectation - I Jan Hannig UNC Chapel Hill 1 / 22 Motivation Recall we found joint distributions to be pretty complicated objects. Need various tools from combinatorics

More information

Lecture 2: Review of Probability

Lecture 2: Review of Probability Lecture 2: Review of Probability Zheng Tian Contents 1 Random Variables and Probability Distributions 2 1.1 Defining probabilities and random variables..................... 2 1.2 Probability distributions................................

More information

Lecture 11. Probability Theory: an Overveiw

Lecture 11. Probability Theory: an Overveiw Math 408 - Mathematical Statistics Lecture 11. Probability Theory: an Overveiw February 11, 2013 Konstantin Zuev (USC) Math 408, Lecture 11 February 11, 2013 1 / 24 The starting point in developing the

More information

Review of Probability Theory

Review of Probability Theory Review of Probability Theory Arian Maleki and Tom Do Stanford University Probability theory is the study of uncertainty Through this class, we will be relying on concepts from probability theory for deriving

More information

Communication Theory II

Communication Theory II Communication Theory II Lecture 5: Review on Probability Theory Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt Febraury 22 th, 2015 1 Lecture Outlines o Review on probability theory

More information

Quick Tour of Basic Probability Theory and Linear Algebra

Quick Tour of Basic Probability Theory and Linear Algebra Quick Tour of and Linear Algebra Quick Tour of and Linear Algebra CS224w: Social and Information Network Analysis Fall 2011 Quick Tour of and Linear Algebra Quick Tour of and Linear Algebra Outline Definitions

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#17 (Wednesday October 31) Kalman Filters. Lecturer: Drew Bagnell Scribe:Greydon Foil 1

Statistical Techniques in Robotics (16-831, F12) Lecture#17 (Wednesday October 31) Kalman Filters. Lecturer: Drew Bagnell Scribe:Greydon Foil 1 Statistical Techniques in Robotics (16-831, F12) Lecture#17 (Wednesday October 31) Kalman Filters Lecturer: Drew Bagnell Scribe:Greydon Foil 1 1 Gauss Markov Model Consider X 1, X 2,...X t, X t+1 to be

More information

3. Probability and Statistics

3. Probability and Statistics FE661 - Statistical Methods for Financial Engineering 3. Probability and Statistics Jitkomut Songsiri definitions, probability measures conditional expectations correlation and covariance some important

More information

Expectation. DS GA 1002 Probability and Statistics for Data Science. Carlos Fernandez-Granda

Expectation. DS GA 1002 Probability and Statistics for Data Science.   Carlos Fernandez-Granda Expectation DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Aim Describe random variables with a few numbers: mean,

More information

Lecture 11. Multivariate Normal theory

Lecture 11. Multivariate Normal theory 10. Lecture 11. Multivariate Normal theory Lecture 11. Multivariate Normal theory 1 (1 1) 11. Multivariate Normal theory 11.1. Properties of means and covariances of vectors Properties of means and covariances

More information

If we want to analyze experimental or simulated data we might encounter the following tasks:

If we want to analyze experimental or simulated data we might encounter the following tasks: Chapter 1 Introduction If we want to analyze experimental or simulated data we might encounter the following tasks: Characterization of the source of the signal and diagnosis Studying dependencies Prediction

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

1: PROBABILITY REVIEW

1: PROBABILITY REVIEW 1: PROBABILITY REVIEW Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2016 M. Rutkowski (USydney) Slides 1: Probability Review 1 / 56 Outline We will review the following

More information

STAT 414: Introduction to Probability Theory

STAT 414: Introduction to Probability Theory STAT 414: Introduction to Probability Theory Spring 2016; Homework Assignments Latest updated on April 29, 2016 HW1 (Due on Jan. 21) Chapter 1 Problems 1, 8, 9, 10, 11, 18, 19, 26, 28, 30 Theoretical Exercises

More information

ECE Lecture #10 Overview

ECE Lecture #10 Overview ECE 450 - Lecture #0 Overview Introduction to Random Vectors CDF, PDF Mean Vector, Covariance Matrix Jointly Gaussian RV s: vector form of pdf Introduction to Random (or Stochastic) Processes Definitions

More information

Mock Exam - 2 hours - use of basic (non-programmable) calculator is allowed - all exercises carry the same marks - exam is strictly individual

Mock Exam - 2 hours - use of basic (non-programmable) calculator is allowed - all exercises carry the same marks - exam is strictly individual Mock Exam - 2 hours - use of basic (non-programmable) calculator is allowed - all exercises carry the same marks - exam is strictly individual Question 1. Suppose you want to estimate the percentage of

More information

Random variables (discrete)

Random variables (discrete) Random variables (discrete) Saad Mneimneh 1 Introducing random variables A random variable is a mapping from the sample space to the real line. We usually denote the random variable by X, and a value that

More information

Introduction to Computational Finance and Financial Econometrics Probability Review - Part 2

Introduction to Computational Finance and Financial Econometrics Probability Review - Part 2 You can t see this text! Introduction to Computational Finance and Financial Econometrics Probability Review - Part 2 Eric Zivot Spring 2015 Eric Zivot (Copyright 2015) Probability Review - Part 2 1 /

More information

STAT 418: Probability and Stochastic Processes

STAT 418: Probability and Stochastic Processes STAT 418: Probability and Stochastic Processes Spring 2016; Homework Assignments Latest updated on April 29, 2016 HW1 (Due on Jan. 21) Chapter 1 Problems 1, 8, 9, 10, 11, 18, 19, 26, 28, 30 Theoretical

More information

A Probability Review

A Probability Review A Probability Review Outline: A probability review Shorthand notation: RV stands for random variable EE 527, Detection and Estimation Theory, # 0b 1 A Probability Review Reading: Go over handouts 2 5 in

More information

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text.

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text. TEST #3 STA 5326 December 4, 214 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. (You will have access to

More information

Random vectors X 1 X 2. Recall that a random vector X = is made up of, say, k. X k. random variables.

Random vectors X 1 X 2. Recall that a random vector X = is made up of, say, k. X k. random variables. Random vectors Recall that a random vector X = X X 2 is made up of, say, k random variables X k A random vector has a joint distribution, eg a density f(x), that gives probabilities P(X A) = f(x)dx Just

More information

Lecture 1. ABC of Probability

Lecture 1. ABC of Probability Math 408 - Mathematical Statistics Lecture 1. ABC of Probability January 16, 2013 Konstantin Zuev (USC) Math 408, Lecture 1 January 16, 2013 1 / 9 Agenda Sample Spaces Realizations, Events Axioms of Probability

More information

Recitation 2: Probability

Recitation 2: Probability Recitation 2: Probability Colin White, Kenny Marino January 23, 2018 Outline Facts about sets Definitions and facts about probability Random Variables and Joint Distributions Characteristics of distributions

More information

Lecture 16 : Independence, Covariance and Correlation of Discrete Random Variables

Lecture 16 : Independence, Covariance and Correlation of Discrete Random Variables Lecture 6 : Independence, Covariance and Correlation of Discrete Random Variables 0/ 3 Definition Two discrete random variables X and Y defined on the same sample space are said to be independent if for

More information

UC Berkeley Department of Electrical Engineering and Computer Science Department of Statistics. EECS 281A / STAT 241A Statistical Learning Theory

UC Berkeley Department of Electrical Engineering and Computer Science Department of Statistics. EECS 281A / STAT 241A Statistical Learning Theory UC Berkeley Department of Electrical Engineering and Computer Science Department of Statistics EECS 281A / STAT 241A Statistical Learning Theory Solutions to Problem Set 1 Fall 2011 Issued: Thurs, September

More information

Chapter 2: Random Variables

Chapter 2: Random Variables ECE54: Stochastic Signals and Systems Fall 28 Lecture 2 - September 3, 28 Dr. Salim El Rouayheb Scribe: Peiwen Tian, Lu Liu, Ghadir Ayache Chapter 2: Random Variables Example. Tossing a fair coin twice:

More information

Basics on Probability. Jingrui He 09/11/2007

Basics on Probability. Jingrui He 09/11/2007 Basics on Probability Jingrui He 09/11/2007 Coin Flips You flip a coin Head with probability 0.5 You flip 100 coins How many heads would you expect Coin Flips cont. You flip a coin Head with probability

More information

Lecture 1: Basics of Probability

Lecture 1: Basics of Probability Lecture 1: Basics of Probability (Luise-Vitetta, Chapter 8) Why probability in data science? Data acquisition is noisy Sampling/quantization external factors: If you record your voice saying machine learning

More information

Joint Gaussian Graphical Model Review Series I

Joint Gaussian Graphical Model Review Series I Joint Gaussian Graphical Model Review Series I Probability Foundations Beilun Wang Advisor: Yanjun Qi 1 Department of Computer Science, University of Virginia http://jointggm.org/ June 23rd, 2017 Beilun

More information

ECE 673-Random signal analysis I Final

ECE 673-Random signal analysis I Final ECE 673-Random signal analysis I Final Q ( point) Comment on the following statement "If cov(x ; X 2 ) 0; then the best predictor (without limitation on the type of predictor) of the random variable X

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections Chapter 3 - continued 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions

More information

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Definitions Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables Joint Probability Density Let X and Y be two random variables. Their joint distribution function is F ( XY x, y) P X x Y y. F XY ( ) 1, < x

More information

Stat 704 Data Analysis I Probability Review

Stat 704 Data Analysis I Probability Review 1 / 39 Stat 704 Data Analysis I Probability Review Dr. Yen-Yi Ho Department of Statistics, University of South Carolina A.3 Random Variables 2 / 39 def n: A random variable is defined as a function that

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 3 October 29, 2012 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline Reminder: Probability density function Cumulative

More information

Lecture Note 1: Probability Theory and Statistics

Lecture Note 1: Probability Theory and Statistics Univ. of Michigan - NAME 568/EECS 568/ROB 530 Winter 2018 Lecture Note 1: Probability Theory and Statistics Lecturer: Maani Ghaffari Jadidi Date: April 6, 2018 For this and all future notes, if you would

More information