MID-TERM EXAM ANSWERS. p t + δ t = Rp t 1 + η t (1.1)

Size: px
Start display at page:

Download "MID-TERM EXAM ANSWERS. p t + δ t = Rp t 1 + η t (1.1)"

Transcription

1 ECO 513 Fall 2005 C.Sims MID-TERM EXAM ANSWERS (1) Suppose a stock price p t and the stock dividend δ t satisfy these equations: p t + δ t = Rp t 1 + η t (1.1) δ t = γδ t 1 + φp t 1 + ε t, (1.2) where (ε t, η t ) conditional on {δ s, p s s < t} is distributed as N(0, Ω). (a) Suppose we know R, γ, φ and Ω and have data for p t, t = 1,..., T but no data on δ t at any date t. How could you use the Kalman filter and/or smoother to estimate the time path of dividends? Be specific, including discussion of how you would handle initial conditions. We can take the state vector to be s t = [p t, δ t ]. Then the two equations above become, in matrix notation, [ ] [ ] [ ] 1 1 R 0 ηt s 0 1 t = s φ γ t 1 +, ε t or Γ 0 s t = Γ 1 s t 1 + ξ t. This becomes a standard state equation if we premultiply by Γ 1 0, i.e. s t = As t 1 + ζ t, with A = Γ 1 0 Γ 1 Var(ζ t ) = Γ 1 0 Ω(Γ 1 0 ). The observation equation is then y t = Hs t with H = [1 0]. Application of the Kalman filter is now standard and would deliver a time series of estimates of the unobservable component of the state, δ t. These would be partial-sample estimates, however, and to obtain estimates reflecting information in the full sample we would need to run the Kalman smoother. The Kalman filter only describes how to update a distribution based on new information. We have to start with a distribution for s 0, the pre-sample state. One natural choice is the unconditional Date: November 18, c 2006 by Christopher A. Sims. This document may be reproduced for educational and research purposes, so long as the copies contain this notice and are retained for personal use or distributed free.

2 2 EXAM ANSWERS distribution implied by the model, assuming that the system admits a stationary distribution. For a dividend and stock price series, though, this might be unrealistic. Companies often grow steadily, or decline and go out of existence. So in this case it might be reasonable to postulate a very dispersed initial joint distribution for s 0, perhaps choosing the covariance matrix so it implies E[δ 0 P 0 ] = (R 1)P 0. There is no unique right answer to this initial conditions part of the question, though there are also many possible bad answers. (b) Suppose that for two dates in the middle of the sample there is no data at all, though at all other dates there is data on p t and not on δ t, as before. Explain how to estimate both the time path of δ t and the missing values of p t using the Kalman filter. Missing observations are easy to handle with the Kalman filter. These are just instances of observations in which H, the coefficient matrix in the observation matrix, happens to be zero. The Kalman filter has no trouble with H varying between the usual [1 0] form and a [0 0] form. At each step of the Kalman filter, a conditional mean of the state is formed, so these are estimates of the missing values of p t. And as in the previous part, for many purposes we would want to use smoothed estimates to get the most accurate possible estimate of the missing values of p t. (c) How could you form estimates of γ, φ, R and Ω using these data on p? The Kalman filter delivers the value of the pdf of the data for every set of values for the parameters listed. We could then maximize this likelihood value by using a hill-climbing algorithm that varies the parameters trying to find a likelihood peak. We could also use a prior over the parameters. Then we would multiply the likelihood value by the prior pdf at each parameter vector value to form the maximand for the hill-climbing routine. Finally, it would probably be best to form a posterior mean using some MCMC method rather than being satisfied with modal values of the posterior or likelihood. One way to do this relatively efficiently is to use the Kalman-filter-like backward recursion we discussed in class to sample from the distribution of the state vector for each parameter vector value. Then for each fixed state vector sequence the whole model becomes a pair of linear simultaneous equations. Because of the simultaneity, sampling

3 EXAM ANSWERS 3 from this posterior is not trivial. An answer that recognized this was a good one. (2) For each of these moving average models, in which in each case ε t is i.i.d. N(0, 1), determine whether the representation is fundamental, and if it is not display the fundamental representation and determine the variance of the innovation. (a) x t = ε t 1.1ε t ε t 2 This is obviously not fundamental, as its last coefficient exceeds the first. The two roots of the C(L) MA polynomial are (1 ± 3i).5/1.1, which both have absolute value 1/1.1 < 1. Since both have to be inverted to arrive at the fundamental MA operator, it is therefore L L2. = L L 2. The innovation has to be scaled up by and its variance is therefore = (b) x t = ε t 1.5ε t ε t 2 Here there are two stable roots of 4/3. So the representation is fundamental. (c) x t = ε t ε t ε t ε t 3 This polynomial can be factored as (1 1.21L 2 )(1 L). The second factor, having a root on the unit circle, is ok. The first has two roots, ±1/1.1), both of which have to be inverted. The result will be ( 1 1 ) 1.21 L2 (1 L) = 1 L.8263L L 3. The innovation variance then has to be scaled up by the factor = (d) x t = ε t 2.5ε t 1 + ε t 2 One root is.5, the other 2. The fundamental representation MA operator is 1 L +.25L 2 and the innovation variance has to be scaled up by 2 2 = 4.

4 4 EXAM ANSWERS (3) Suppose our model is y t = ε t + αε t 1, t = 1,..., T (3.1) ε t N(0, σ 2 ), i.i.d. for t = 0,..., T (3.2) ε t independent of {y t s, s > 0}, all t. (3.3) Our prior pdf for α is uniform on ( 1, 1) and for σ 2 it is the pdf e σ2 dσ 2 on the positive real line. (a) Show the expression for prior times likelihood for this setup, treating ε 0 along with α and σ 2 as unknown parameters. The pdf is ϕ(ε 0 ; σ 2 ) (.5) I ( 1,1) (α) exp( σ 2 ) t=1 ϕ(y t αε t 1 ; σ 2 ), where ϕ(x; ν 2 ) is the pdf of a normal distribution with variance ν 2 and I (a,b) (x) is the indicator function for x being in the interval (a, b). (b) A quick method for estimating this model that is sometiems proposed is to set ε 0 = 0, then estimate α and σ 2 by iterated OLS. This is possible because once we know ε t 1 we can construct ε t as y t αε t 1 for each t. So we can start with an initial guess of α, construct corresponding ε s, estimate (3.1) by OLS to get a new α, construct a new ε sequence, etc. until we get convergence. At the end we will have not only estimates of α and σ 2, but, using the usual OLS formulas, a posterior distribution for α, σ 2 constructed as if the artificially constructed sequence of ε t s were real data and this was indeed a standard linear regression model. The resulting posterior for α and σ 2 is Normal-inversegamma, a standard form it is easy to sample from. Explain how you could use this incorrect but perhaps not crazy posterior distribution for α and σ 2, together with the model s N(0, σ 2 ) distribution for ε 0, to generate an independence Metropolis- Hastings MCMC sample from the correct posterior distribution on α, σ 2 and ε 0. Let ( ) s 1 = T 1 u 2 t (ˆα) t=0

5 s 2 = EXAM ANSWERS 5 T u 2 t (ˆα) t=1 ˆα = T t=1 y t ˆε t 1 s 1 ˆε t = y t ˆαˆε t 1 t 1 ˆε 0 = 0. The last three equations state that ˆα is the OLS estimator for α in a regression of y t on ˆε t 1, while at the same time ˆε t is the residual when ˆα is used to form the residual. The iterations described above converge when the last three equations hold simultaneously. The independence M-H procedure goes as follows: Start with α, σ 2 values, possibly the converged estimates described above. Draw ε 0 from a N(0, σ 2 ) distribution. Draw a new σ 2 from the inverse-gamma distribution implied by the regression, i.e. an inverse gamma with scale parameter s 2 and degrees of freedom T 1. Draw a new α from the normal distribution implied by the regression equation as the conditional distribution of α σ 2, i.e. a N(ˆα, (s2/s1)/t). Then decide whether to keep or reject this draw by forming the ratio of the true likelihood displayed in ( ) to the false pdf φ(ε 0 ; σ 2 )σ 2(T 1) exp( s1/σ 2 )φ(ˆα, (s1/s2)/t). This ratio has to be compared to its value for the previous parameter values. If the ratio exceeds the previous value, the new draw is kept. If it is below the previous value, the new value is kept with probability equal to the ratio of the current ratio to the previous ratio, and if the new value is not kept the previous parameter values are repeated in the artificial sample.

ECO 513 Fall 2008 C.Sims KALMAN FILTER. s t = As t 1 + ε t Measurement equation : y t = Hs t + ν t. u t = r t. u 0 0 t 1 + y t = [ H I ] u t.

ECO 513 Fall 2008 C.Sims KALMAN FILTER. s t = As t 1 + ε t Measurement equation : y t = Hs t + ν t. u t = r t. u 0 0 t 1 + y t = [ H I ] u t. ECO 513 Fall 2008 C.Sims KALMAN FILTER Model in the form 1. THE KALMAN FILTER Plant equation : s t = As t 1 + ε t Measurement equation : y t = Hs t + ν t. Var(ε t ) = Ω, Var(ν t ) = Ξ. ε t ν t and (ε t,

More information

ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS

ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS 1. THE CLASS OF MODELS y t {y s, s < t} p(y t θ t, {y s, s < t}) θ t = θ(s t ) P[S t = i S t 1 = j] = h ij. 2. WHAT S HANDY ABOUT IT Evaluating the

More information

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω ECO 513 Spring 2015 TAKEHOME FINAL EXAM (1) Suppose the univariate stochastic process y is ARMA(2,2) of the following form: y t = 1.6974y t 1.9604y t 2 + ε t 1.6628ε t 1 +.9216ε t 2, (1) where ε is i.i.d.

More information

(I AL BL 2 )z t = (I CL)ζ t, where

(I AL BL 2 )z t = (I CL)ζ t, where ECO 513 Fall 2011 MIDTERM EXAM The exam lasts 90 minutes. Answer all three questions. (1 Consider this model: x t = 1.2x t 1.62x t 2 +.2y t 1.23y t 2 + ε t.7ε t 1.9ν t 1 (1 [ εt y t = 1.4y t 1.62y t 2

More information

Testing Restrictions and Comparing Models

Testing Restrictions and Comparing Models Econ. 513, Time Series Econometrics Fall 00 Chris Sims Testing Restrictions and Comparing Models 1. THE PROBLEM We consider here the problem of comparing two parametric models for the data X, defined by

More information

Eco517 Fall 2014 C. Sims MIDTERM EXAM

Eco517 Fall 2014 C. Sims MIDTERM EXAM Eco57 Fall 204 C. Sims MIDTERM EXAM You have 90 minutes for this exam and there are a total of 90 points. The points for each question are listed at the beginning of the question. Answer all questions.

More information

Eco517 Fall 2004 C. Sims MIDTERM EXAM

Eco517 Fall 2004 C. Sims MIDTERM EXAM Eco517 Fall 2004 C. Sims MIDTERM EXAM Answer all four questions. Each is worth 23 points. Do not devote disproportionate time to any one question unless you have answered all the others. (1) We are considering

More information

Eco517 Fall 2014 C. Sims FINAL EXAM

Eco517 Fall 2014 C. Sims FINAL EXAM Eco517 Fall 2014 C. Sims FINAL EXAM This is a three hour exam. You may refer to books, notes, or computer equipment during the exam. You may not communicate, either electronically or in any other way,

More information

Switching Regime Estimation

Switching Regime Estimation Switching Regime Estimation Series de Tiempo BIrkbeck March 2013 Martin Sola (FE) Markov Switching models 01/13 1 / 52 The economy (the time series) often behaves very different in periods such as booms

More information

Model comparison. Christopher A. Sims Princeton University October 18, 2016

Model comparison. Christopher A. Sims Princeton University October 18, 2016 ECO 513 Fall 2008 Model comparison Christopher A. Sims Princeton University sims@princeton.edu October 18, 2016 c 2016 by Christopher A. Sims. This document may be reproduced for educational and research

More information

Eco517 Fall 2013 C. Sims MCMC. October 8, 2013

Eco517 Fall 2013 C. Sims MCMC. October 8, 2013 Eco517 Fall 2013 C. Sims MCMC October 8, 2013 c 2013 by Christopher A. Sims. This document may be reproduced for educational and research purposes, so long as the copies contain this notice and are retained

More information

CONJUGATE DUMMY OBSERVATION PRIORS FOR VAR S

CONJUGATE DUMMY OBSERVATION PRIORS FOR VAR S ECO 513 Fall 25 C. Sims CONJUGATE DUMMY OBSERVATION PRIORS FOR VAR S 1. THE GENERAL IDEA As is documented elsewhere Sims (revised 1996, 2), there is a strong tendency for estimated time series models,

More information

MAXIMUM LIKELIHOOD, SET ESTIMATION, MODEL CRITICISM

MAXIMUM LIKELIHOOD, SET ESTIMATION, MODEL CRITICISM Eco517 Fall 2004 C. Sims MAXIMUM LIKELIHOOD, SET ESTIMATION, MODEL CRITICISM 1. SOMETHING WE SHOULD ALREADY HAVE MENTIONED A t n (µ, Σ) distribution converges, as n, to a N(µ, Σ). Consider the univariate

More information

Lecture 16: State Space Model and Kalman Filter Bus 41910, Time Series Analysis, Mr. R. Tsay

Lecture 16: State Space Model and Kalman Filter Bus 41910, Time Series Analysis, Mr. R. Tsay Lecture 6: State Space Model and Kalman Filter Bus 490, Time Series Analysis, Mr R Tsay A state space model consists of two equations: S t+ F S t + Ge t+, () Z t HS t + ɛ t (2) where S t is a state vector

More information

A Bayesian perspective on GMM and IV

A Bayesian perspective on GMM and IV A Bayesian perspective on GMM and IV Christopher A. Sims Princeton University sims@princeton.edu November 26, 2013 What is a Bayesian perspective? A Bayesian perspective on scientific reporting views all

More information

MODEL COMPARISON CHRISTOPHER A. SIMS PRINCETON UNIVERSITY

MODEL COMPARISON CHRISTOPHER A. SIMS PRINCETON UNIVERSITY ECO 513 Fall 2008 MODEL COMPARISON CHRISTOPHER A. SIMS PRINCETON UNIVERSITY SIMS@PRINCETON.EDU 1. MODEL COMPARISON AS ESTIMATING A DISCRETE PARAMETER Data Y, models 1 and 2, parameter vectors θ 1, θ 2.

More information

Bayesian linear regression

Bayesian linear regression Bayesian linear regression Linear regression is the basis of most statistical modeling. The model is Y i = X T i β + ε i, where Y i is the continuous response X i = (X i1,..., X ip ) T is the corresponding

More information

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Financial Econometrics / 49

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Financial Econometrics / 49 State-space Model Eduardo Rossi University of Pavia November 2013 Rossi State-space Model Financial Econometrics - 2013 1 / 49 Outline 1 Introduction 2 The Kalman filter 3 Forecast errors 4 State smoothing

More information

Regression. ECO 312 Fall 2013 Chris Sims. January 12, 2014

Regression. ECO 312 Fall 2013 Chris Sims. January 12, 2014 ECO 312 Fall 2013 Chris Sims Regression January 12, 2014 c 2014 by Christopher A. Sims. This document is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License What

More information

Sequential Bayesian Updating

Sequential Bayesian Updating BS2 Statistical Inference, Lectures 14 and 15, Hilary Term 2009 May 28, 2009 We consider data arriving sequentially X 1,..., X n,... and wish to update inference on an unknown parameter θ online. In a

More information

F denotes cumulative density. denotes probability density function; (.)

F denotes cumulative density. denotes probability density function; (.) BAYESIAN ANALYSIS: FOREWORDS Notation. System means the real thing and a model is an assumed mathematical form for the system.. he probability model class M contains the set of the all admissible models

More information

Bayesian Econometrics

Bayesian Econometrics Bayesian Econometrics Christopher A. Sims Princeton University sims@princeton.edu September 20, 2016 Outline I. The difference between Bayesian and non-bayesian inference. II. Confidence sets and confidence

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Recall: To compute the expectation E ( h(y ) ) we use the approximation E(h(Y )) 1 n n h(y ) t=1 with Y (1),..., Y (n) h(y). Thus our aim is to sample Y (1),..., Y (n) from f(y).

More information

7 Day 3: Time Varying Parameter Models

7 Day 3: Time Varying Parameter Models 7 Day 3: Time Varying Parameter Models References: 1. Durbin, J. and S.-J. Koopman (2001). Time Series Analysis by State Space Methods. Oxford University Press, Oxford 2. Koopman, S.-J., N. Shephard, and

More information

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari MS&E 226: Small Data Lecture 11: Maximum likelihood (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 18 The likelihood function 2 / 18 Estimating the parameter This lecture develops the methodology behind

More information

The Metropolis-Hastings Algorithm. June 8, 2012

The Metropolis-Hastings Algorithm. June 8, 2012 The Metropolis-Hastings Algorithm June 8, 22 The Plan. Understand what a simulated distribution is 2. Understand why the Metropolis-Hastings algorithm works 3. Learn how to apply the Metropolis-Hastings

More information

Statistics Homework #4

Statistics Homework #4 Statistics 910 1 Homework #4 Chapter 6, Shumway and Stoffer These are outlines of the solutions. If you would like to fill in other details, please come see me during office hours. 6.1 State-space representation

More information

Dynamic Factor Models and Factor Augmented Vector Autoregressions. Lawrence J. Christiano

Dynamic Factor Models and Factor Augmented Vector Autoregressions. Lawrence J. Christiano Dynamic Factor Models and Factor Augmented Vector Autoregressions Lawrence J Christiano Dynamic Factor Models and Factor Augmented Vector Autoregressions Problem: the time series dimension of data is relatively

More information

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 EPSY 905: Intro to Bayesian and MCMC Today s Class An

More information

ABC methods for phase-type distributions with applications in insurance risk problems

ABC methods for phase-type distributions with applications in insurance risk problems ABC methods for phase-type with applications problems Concepcion Ausin, Department of Statistics, Universidad Carlos III de Madrid Joint work with: Pedro Galeano, Universidad Carlos III de Madrid Simon

More information

Timevarying VARs. Wouter J. Den Haan London School of Economics. c Wouter J. Den Haan

Timevarying VARs. Wouter J. Den Haan London School of Economics. c Wouter J. Den Haan Timevarying VARs Wouter J. Den Haan London School of Economics c Wouter J. Den Haan Time-Varying VARs Gibbs-Sampler general idea probit regression application (Inverted Wishart distribution Drawing from

More information

(a) (3 points) Construct a 95% confidence interval for β 2 in Equation 1.

(a) (3 points) Construct a 95% confidence interval for β 2 in Equation 1. Problem 1 (21 points) An economist runs the regression y i = β 0 + x 1i β 1 + x 2i β 2 + x 3i β 3 + ε i (1) The results are summarized in the following table: Equation 1. Variable Coefficient Std. Error

More information

GARCH Models Estimation and Inference

GARCH Models Estimation and Inference GARCH Models Estimation and Inference Eduardo Rossi University of Pavia December 013 Rossi GARCH Financial Econometrics - 013 1 / 1 Likelihood function The procedure most often used in estimating θ 0 in

More information

Estimation and Inference on Dynamic Panel Data Models with Stochastic Volatility

Estimation and Inference on Dynamic Panel Data Models with Stochastic Volatility Estimation and Inference on Dynamic Panel Data Models with Stochastic Volatility Wen Xu Department of Economics & Oxford-Man Institute University of Oxford (Preliminary, Comments Welcome) Theme y it =

More information

POLICY GAMES. u t = θ 0 θ 1 π t + ε t. (1) β t (u 2 t + ωπ 2 t ). (3)

POLICY GAMES. u t = θ 0 θ 1 π t + ε t. (1) β t (u 2 t + ωπ 2 t ). (3) Eco5, Part II Spring C. Sims POLICY GAMES The policy authority believes 1. THE SAN JOSE MODEL u t = θ θ 1 π t + ε t. (1) In fact, though, u t = ū α (π t E t 1 π t ) + ξ t. () They minimize. POLICYMAKERS

More information

Inference with few assumptions: Wasserman s example

Inference with few assumptions: Wasserman s example Inference with few assumptions: Wasserman s example Christopher A. Sims Princeton University sims@princeton.edu October 27, 2007 Types of assumption-free inference A simple procedure or set of statistics

More information

POLICY GAMES. u t = θ 0 θ 1 π t + ε t. (1) β t (u 2 t + ωπ 2 t ). (3) π t = g t 1 + ν t. (4) g t = θ 1θ 0 ω + θ 2 1. (5)

POLICY GAMES. u t = θ 0 θ 1 π t + ε t. (1) β t (u 2 t + ωπ 2 t ). (3) π t = g t 1 + ν t. (4) g t = θ 1θ 0 ω + θ 2 1. (5) Eco504, Part II Spring 2004 C. Sims POLICY GAMES The policy authority believes In fact, though, 1. THE SAN JOSE MODEL u t = θ 0 θ 1 π t + ε t. (1) u t = ū α (π t E t 1 π t ) + ξ t. (2) They minimize 2.

More information

Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US

Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US Online appendix to On the stability of the excess sensitivity of aggregate consumption growth in the US Gerdie Everaert 1, Lorenzo Pozzi 2, and Ruben Schoonackers 3 1 Ghent University & SHERPPA 2 Erasmus

More information

Part I State space models

Part I State space models Part I State space models 1 Introduction to state space time series analysis James Durbin Department of Statistics, London School of Economics and Political Science Abstract The paper presents a broad

More information

GARCH Models Estimation and Inference. Eduardo Rossi University of Pavia

GARCH Models Estimation and Inference. Eduardo Rossi University of Pavia GARCH Models Estimation and Inference Eduardo Rossi University of Pavia Likelihood function The procedure most often used in estimating θ 0 in ARCH models involves the maximization of a likelihood function

More information

Bayesian Estimation of DSGE Models

Bayesian Estimation of DSGE Models Bayesian Estimation of DSGE Models Stéphane Adjemian Université du Maine, GAINS & CEPREMAP stephane.adjemian@univ-lemans.fr http://www.dynare.org/stepan June 28, 2011 June 28, 2011 Université du Maine,

More information

Autoregressive and Moving-Average Models

Autoregressive and Moving-Average Models Chapter 3 Autoregressive and Moving-Average Models 3.1 Introduction Let y be a random variable. We consider the elements of an observed time series {y 0,y 1,y2,...,y t } as being realizations of this randoms

More information

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Fin. Econometrics / 53

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Fin. Econometrics / 53 State-space Model Eduardo Rossi University of Pavia November 2014 Rossi State-space Model Fin. Econometrics - 2014 1 / 53 Outline 1 Motivation 2 Introduction 3 The Kalman filter 4 Forecast errors 5 State

More information

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu Anwesan Pal:

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes

Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes Lecturer: Drew Bagnell Scribe: Venkatraman Narayanan 1, M. Koval and P. Parashar 1 Applications of Gaussian

More information

Eco504, Part II Spring 2010 C. Sims PITFALLS OF LINEAR APPROXIMATION OF STOCHASTIC MODELS

Eco504, Part II Spring 2010 C. Sims PITFALLS OF LINEAR APPROXIMATION OF STOCHASTIC MODELS Eco504, Part II Spring 2010 C. Sims PITFALLS OF LINEAR APPROXIMATION OF STOCHASTIC MODELS 1. A LIST OF PITFALLS Linearized models are of course valid only locally. In stochastic economic models, this usually

More information

X t = a t + r t, (7.1)

X t = a t + r t, (7.1) Chapter 7 State Space Models 71 Introduction State Space models, developed over the past 10 20 years, are alternative models for time series They include both the ARIMA models of Chapters 3 6 and the Classical

More information

Short Questions (Do two out of three) 15 points each

Short Questions (Do two out of three) 15 points each Econometrics Short Questions Do two out of three) 5 points each ) Let y = Xβ + u and Z be a set of instruments for X When we estimate β with OLS we project y onto the space spanned by X along a path orthogonal

More information

Bayesian data analysis in practice: Three simple examples

Bayesian data analysis in practice: Three simple examples Bayesian data analysis in practice: Three simple examples Martin P. Tingley Introduction These notes cover three examples I presented at Climatea on 5 October 0. Matlab code is available by request to

More information

Making rating curves - the Bayesian approach

Making rating curves - the Bayesian approach Making rating curves - the Bayesian approach Rating curves what is wanted? A best estimate of the relationship between stage and discharge at a given place in a river. The relationship should be on the

More information

Time-Varying Parameters

Time-Varying Parameters Kalman Filter and state-space models: time-varying parameter models; models with unobservable variables; basic tool: Kalman filter; implementation is task-specific. y t = x t β t + e t (1) β t = µ + Fβ

More information

LECTURE 5. Introduction to Econometrics. Hypothesis testing

LECTURE 5. Introduction to Econometrics. Hypothesis testing LECTURE 5 Introduction to Econometrics Hypothesis testing October 18, 2016 1 / 26 ON TODAY S LECTURE We are going to discuss how hypotheses about coefficients can be tested in regression models We will

More information

... Econometric Methods for the Analysis of Dynamic General Equilibrium Models

... Econometric Methods for the Analysis of Dynamic General Equilibrium Models ... Econometric Methods for the Analysis of Dynamic General Equilibrium Models 1 Overview Multiple Equation Methods State space-observer form Three Examples of Versatility of state space-observer form:

More information

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence Bayesian Inference in GLMs Frequentists typically base inferences on MLEs, asymptotic confidence limits, and log-likelihood ratio tests Bayesians base inferences on the posterior distribution of the unknowns

More information

GARCH Models Estimation and Inference

GARCH Models Estimation and Inference Università di Pavia GARCH Models Estimation and Inference Eduardo Rossi Likelihood function The procedure most often used in estimating θ 0 in ARCH models involves the maximization of a likelihood function

More information

The BLP Method of Demand Curve Estimation in Industrial Organization

The BLP Method of Demand Curve Estimation in Industrial Organization The BLP Method of Demand Curve Estimation in Industrial Organization 9 March 2006 Eric Rasmusen 1 IDEAS USED 1. Instrumental variables. We use instruments to correct for the endogeneity of prices, the

More information

Vector Auto-Regressive Models

Vector Auto-Regressive Models Vector Auto-Regressive Models Laurent Ferrara 1 1 University of Paris Nanterre M2 Oct. 2018 Overview of the presentation 1. Vector Auto-Regressions Definition Estimation Testing 2. Impulse responses functions

More information

VAR Models and Applications

VAR Models and Applications VAR Models and Applications Laurent Ferrara 1 1 University of Paris West M2 EIPMC Oct. 2016 Overview of the presentation 1. Vector Auto-Regressions Definition Estimation Testing 2. Impulse responses functions

More information

Part 8: GLMs and Hierarchical LMs and GLMs

Part 8: GLMs and Hierarchical LMs and GLMs Part 8: GLMs and Hierarchical LMs and GLMs 1 Example: Song sparrow reproductive success Arcese et al., (1992) provide data on a sample from a population of 52 female song sparrows studied over the course

More information

Lecture 2: Univariate Time Series

Lecture 2: Univariate Time Series Lecture 2: Univariate Time Series Analysis: Conditional and Unconditional Densities, Stationarity, ARMA Processes Prof. Massimo Guidolin 20192 Financial Econometrics Spring/Winter 2017 Overview Motivation:

More information

Lecture 4: Dynamic models

Lecture 4: Dynamic models linear s Lecture 4: s Hedibert Freitas Lopes The University of Chicago Booth School of Business 5807 South Woodlawn Avenue, Chicago, IL 60637 http://faculty.chicagobooth.edu/hedibert.lopes hlopes@chicagobooth.edu

More information

Overfitting, Bias / Variance Analysis

Overfitting, Bias / Variance Analysis Overfitting, Bias / Variance Analysis Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 8, 207 / 40 Outline Administration 2 Review of last lecture 3 Basic

More information

Statistical Inference and Methods

Statistical Inference and Methods Department of Mathematics Imperial College London d.stephens@imperial.ac.uk http://stats.ma.ic.ac.uk/ das01/ 31st January 2006 Part VI Session 6: Filtering and Time to Event Data Session 6: Filtering and

More information

Problem Set 2 Solution Sketches Time Series Analysis Spring 2010

Problem Set 2 Solution Sketches Time Series Analysis Spring 2010 Problem Set 2 Solution Sketches Time Series Analysis Spring 2010 Forecasting 1. Let X and Y be two random variables such that E(X 2 ) < and E(Y 2 )

More information

SMOOTHIES: A Toolbox for the Exact Nonlinear and Non-Gaussian Kalman Smoother *

SMOOTHIES: A Toolbox for the Exact Nonlinear and Non-Gaussian Kalman Smoother * SMOOTHIES: A Toolbox for the Exact Nonlinear and Non-Gaussian Kalman Smoother * Joris de Wind September 2017 Abstract In this paper, I present a new toolbox that implements the exact nonlinear and non-

More information

STA 294: Stochastic Processes & Bayesian Nonparametrics

STA 294: Stochastic Processes & Bayesian Nonparametrics MARKOV CHAINS AND CONVERGENCE CONCEPTS Markov chains are among the simplest stochastic processes, just one step beyond iid sequences of random variables. Traditionally they ve been used in modelling a

More information

Massachusetts Institute of Technology Department of Economics Time Series Lecture 6: Additional Results for VAR s

Massachusetts Institute of Technology Department of Economics Time Series Lecture 6: Additional Results for VAR s Massachusetts Institute of Technology Department of Economics Time Series 14.384 Guido Kuersteiner Lecture 6: Additional Results for VAR s 6.1. Confidence Intervals for Impulse Response Functions There

More information

Bayesian Semiparametric GARCH Models

Bayesian Semiparametric GARCH Models Bayesian Semiparametric GARCH Models Xibin (Bill) Zhang and Maxwell L. King Department of Econometrics and Business Statistics Faculty of Business and Economics xibin.zhang@monash.edu Quantitative Methods

More information

Econ 623 Econometrics II Topic 2: Stationary Time Series

Econ 623 Econometrics II Topic 2: Stationary Time Series 1 Introduction Econ 623 Econometrics II Topic 2: Stationary Time Series In the regression model we can model the error term as an autoregression AR(1) process. That is, we can use the past value of the

More information

Bayesian non-parametric model to longitudinally predict churn

Bayesian non-parametric model to longitudinally predict churn Bayesian non-parametric model to longitudinally predict churn Bruno Scarpa Università di Padova Conference of European Statistics Stakeholders Methodologists, Producers and Users of European Statistics

More information

Bayesian Semiparametric GARCH Models

Bayesian Semiparametric GARCH Models Bayesian Semiparametric GARCH Models Xibin (Bill) Zhang and Maxwell L. King Department of Econometrics and Business Statistics Faculty of Business and Economics xibin.zhang@monash.edu Quantitative Methods

More information

Gaussian kernel GARCH models

Gaussian kernel GARCH models Gaussian kernel GARCH models Xibin (Bill) Zhang and Maxwell L. King Department of Econometrics and Business Statistics Faculty of Business and Economics 7 June 2013 Motivation A regression model is often

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#20 (Monday November 12) Gaussian Processes

Statistical Techniques in Robotics (16-831, F12) Lecture#20 (Monday November 12) Gaussian Processes Statistical Techniques in Robotics (6-83, F) Lecture# (Monday November ) Gaussian Processes Lecturer: Drew Bagnell Scribe: Venkatraman Narayanan Applications of Gaussian Processes (a) Inverse Kinematics

More information

State Space and Hidden Markov Models

State Space and Hidden Markov Models State Space and Hidden Markov Models Kunsch H.R. State Space and Hidden Markov Models. ETH- Zurich Zurich; Aliaksandr Hubin Oslo 2014 Contents 1. Introduction 2. Markov Chains 3. Hidden Markov and State

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods By Oleg Makhnin 1 Introduction a b c M = d e f g h i 0 f(x)dx 1.1 Motivation 1.1.1 Just here Supresses numbering 1.1.2 After this 1.2 Literature 2 Method 2.1 New math As

More information

Notes 11: OLS Theorems ECO 231W - Undergraduate Econometrics

Notes 11: OLS Theorems ECO 231W - Undergraduate Econometrics Notes 11: OLS Theorems ECO 231W - Undergraduate Econometrics Prof. Carolina Caetano For a while we talked about the regression method. Then we talked about the linear model. There were many details, but

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 12: Gaussian Belief Propagation, State Space Models and Kalman Filters Guest Kalman Filter Lecture by

More information

KALMAN FILTER AND MEASURE THEORY EXERCISE

KALMAN FILTER AND MEASURE THEORY EXERCISE ECO 513 Fall 005 KALMAN FILTER AND MEASURE THEORY EXERCISE (1) We model three producer price index time series, indexes for Crude Materials for Further Processing, Intermediate Materials and Parts, and

More information

Advances and Applications in Perfect Sampling

Advances and Applications in Perfect Sampling and Applications in Perfect Sampling Ph.D. Dissertation Defense Ulrike Schneider advisor: Jem Corcoran May 8, 2003 Department of Applied Mathematics University of Colorado Outline Introduction (1) MCMC

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Prediction Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict the

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Metropolis-Hastings Algorithm

Metropolis-Hastings Algorithm Strength of the Gibbs sampler Metropolis-Hastings Algorithm Easy algorithm to think about. Exploits the factorization properties of the joint probability distribution. No difficult choices to be made to

More information

Data Assimilation Research Testbed Tutorial

Data Assimilation Research Testbed Tutorial Data Assimilation Research Testbed Tutorial Section 2: How should observations of a state variable impact an unobserved state variable? Multivariate assimilation. Single observed variable, single unobserved

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Dr. Gabriele Bleser Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche

More information

An Introduction to Bayesian Linear Regression

An Introduction to Bayesian Linear Regression An Introduction to Bayesian Linear Regression APPM 5720: Bayesian Computation Fall 2018 A SIMPLE LINEAR MODEL Suppose that we observe explanatory variables x 1, x 2,..., x n and dependent variables y 1,

More information

Robust Prediction of Large Spatio-Temporal Datasets

Robust Prediction of Large Spatio-Temporal Datasets Robust Prediction of Large Spatio-Temporal Datasets Yang Chen Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the

More information

Algebra of Random Variables: Optimal Average and Optimal Scaling Minimising

Algebra of Random Variables: Optimal Average and Optimal Scaling Minimising Review: Optimal Average/Scaling is equivalent to Minimise χ Two 1-parameter models: Estimating < > : Scaling a pattern: Two equivalent methods: Algebra of Random Variables: Optimal Average and Optimal

More information

Linear Models in Machine Learning

Linear Models in Machine Learning CS540 Intro to AI Linear Models in Machine Learning Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu We briefly go over two linear models frequently used in machine learning: linear regression for, well, regression,

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Univariate Normal Distribution; GLM with the Univariate Normal; Least Squares Estimation

Univariate Normal Distribution; GLM with the Univariate Normal; Least Squares Estimation Univariate Normal Distribution; GLM with the Univariate Normal; Least Squares Estimation PRE 905: Multivariate Analysis Spring 2014 Lecture 4 Today s Class The building blocks: The basics of mathematical

More information

Time Series Prediction by Kalman Smoother with Cross-Validated Noise Density

Time Series Prediction by Kalman Smoother with Cross-Validated Noise Density Time Series Prediction by Kalman Smoother with Cross-Validated Noise Density Simo Särkkä E-mail: simo.sarkka@hut.fi Aki Vehtari E-mail: aki.vehtari@hut.fi Jouko Lampinen E-mail: jouko.lampinen@hut.fi Abstract

More information

Volatility. Gerald P. Dwyer. February Clemson University

Volatility. Gerald P. Dwyer. February Clemson University Volatility Gerald P. Dwyer Clemson University February 2016 Outline 1 Volatility Characteristics of Time Series Heteroskedasticity Simpler Estimation Strategies Exponentially Weighted Moving Average Use

More information

CTDL-Positive Stable Frailty Model

CTDL-Positive Stable Frailty Model CTDL-Positive Stable Frailty Model M. Blagojevic 1, G. MacKenzie 2 1 Department of Mathematics, Keele University, Staffordshire ST5 5BG,UK and 2 Centre of Biostatistics, University of Limerick, Ireland

More information

Reminder of some Markov Chain properties:

Reminder of some Markov Chain properties: Reminder of some Markov Chain properties: 1. a transition from one state to another occurs probabilistically 2. only state that matters is where you currently are (i.e. given present, future is independent

More information

Lecture Notes in Quantitative Biology

Lecture Notes in Quantitative Biology Lecture Notes in Quantitative Biology Numerical Methods L30a L30b Chapter 22.1 Revised 29 November 1996 ReCap Numerical methods Definition Examples p-values--h o true p-values--h A true modal frequency

More information

Modeling conditional distributions with mixture models: Applications in finance and financial decision-making

Modeling conditional distributions with mixture models: Applications in finance and financial decision-making Modeling conditional distributions with mixture models: Applications in finance and financial decision-making John Geweke University of Iowa, USA Journal of Applied Econometrics Invited Lecture Università

More information

Multivariate Normal & Wishart

Multivariate Normal & Wishart Multivariate Normal & Wishart Hoff Chapter 7 October 21, 2010 Reading Comprehesion Example Twenty-two children are given a reading comprehsion test before and after receiving a particular instruction method.

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information