Algebra of Random Variables: Optimal Average and Optimal Scaling Minimising

Size: px
Start display at page:

Download "Algebra of Random Variables: Optimal Average and Optimal Scaling Minimising"

Transcription

1 Review: Optimal Average/Scaling is equivalent to Minimise χ Two 1-parameter models: Estimating < > : Scaling a pattern: Two equivalent methods: Algebra of Random Variables: Optimal Average and Optimal Scaling ˆ = i i /σ i 1/σ i σ ( ˆ ) = i 1 1/σ i µ i = µ µ i = A P i ˆ A = i i P i /σ i P i /σ i σ ˆ A ( ) = i 1 P i /σ i Minimising χ gives same result: χ Δχ χ χ min σ ( ˆα ) = = α ˆα σ ( ˆα ) χ α α = ˆα +... Δχ = 1 χ min α ˆ ± σ( α ˆ ) α

2 Chi-squared = Badness of Fit χ i µ i (α) ~ χ M σ i = data values i =1... σ i =1- σ error bar µ i (α) = model predicted data value α k = parameters of the model k =1... M = number of data points M = number of fitted parameters M = degrees of freedom

3 χ The Dancing χ Landscape Fit M parameters to data points. χ (,σ,α ) α ˆ ± σ( α ˆ ) µ i ( α) σ i Best - fit parameters ˆ α minimise χ. χ χ min Δχ Δχ = 1 Δα χ min α true ˆ α α σ ( ˆα ) = χ α α= ˆα α ˆα χ min Δχ χ ~ G( α true,σ ( ˆα) ) χ ( α true ) ~ χ χ ( ˆα ) ~ χ M ( α true ) χ min ~ χ M

4 Constructing χ from Gaussians Sum of squares of independent Gaussian random variables χ Chi - squared with degrees of freedom and Y are independent Gaussian random variables. ~ G(0,1) Y ~ G(0,1) ~ χ 1 Y ~ χ 1 Y + Y ~ χ and so on for each new degree of freedom: χ + χ M ~ χ +M

5 Review: χ distribution degrees of freedom f (x) = 1 Γ( /) / x( / 1) e x / Γ(1) =1 Γ(1/ ) = π Γ(n) = (n 1)! Γ(x +1) = x Γ(x) e.g. Γ(3 / ) = (1/ ) Γ(1/ ) = π / χ e x 1 : f (x) = π x χ : f (x) = 1 e x / 1/ χ = σ ( χ ) =

6 Data points with no error bars L data points: = Cov( j ) = σ δ ij Sample mean: 1 unbiased: =. Var i But σ i are unknown. How can we estimate σ? Variance: σ Try: ( ) ( ) s 1 Is s = σ? i ( ) o. s < σ We can correct for this bias. ( ) = σ

7 Sample Variance S : Unbiased for σ S A ( ) Pick A so that S = A ( ) = σ ( ) = [( ) ( )] = ( ) ( ) ( ) + ( ) = σ ( ) Cov(, ) + σ ( ) = σ σ + σ = 1 1 σ = 1 σ S = A ( 1) σ Pick A = 1 1 ote : Cov(, ) = σ S 1 1 ( )

8 Evaluation of Cov(, ) Cov(, ) ( ) ( ) ote : = = Shift coords to put = 0 : Cov(, ) = ( 0) ( 0) = 1 = 1 k k k k = 1 σ δ ik = σ k Slope = 1/ Cov(, j ) σ δ i j

9 Sample Variance S : Unbiased for σ S 1 ( ) 1 1 Why -1, not 1? Because "chases" the dancing data points, removing 1 "degree-of-freedom" from the dance. S ~ σ 1 χ 1 S = σ 1 χ 1 = σ ( 1 1 ) = σ Var S 1 [ ] = σ σ( S ) = S = σ 1 1 1/ Var[ χ 1 ] ( 1) = σ 4 1 = fractional accuracy

10 Degrees of Freedom (DoF) data points: = Cov(, j ) = σ i δ ij ~ χ. degrees of freedom. σ i If unknown, use ˆnstead: ˆ σ i If =1 data point: ˆ= 1 1 σ 1 1 ˆ σ 1 ~ χ 1. 1 degrees of freedom. ~ χ 1. 1 degree of freedom Fit M parameters to data points: ( ) = 0. 0 degrees of freedom. µ i α ~ χ M. M degrees of freedom. σ i ˆ Each fitted parameter removes 1 degree of freedom from the residuals: ˆ

11 ( S ) 1/ is biased for σ The sample variance S is unbiased for σ. Is ( S ) 1/ unbiased for σ? o. The square root introduces a bias: (S ) 1/ σ σ S S < σ, even though σ = σ.

12 Example: Correct the Bias in (S ) 1/ Define y(x) = x b, Derivatives: y'(x) = b x b 1, Evaluate the bias: ( S ) b = y S = y σ ( ) + y" ( S ) ( ) + y" ( σ ) = σ b + " ( S ) 1/ = σ $ 1 # y"(x) = b(b 1) x b Var ( S ) +... σ (b ) b(b 1)σ σ = σ " b b(b 1) $ 1+ # % ' & 1 4( 1) +... % " ' = σ 4 5 % $ '+... & # 4 4 & Bias - corrected : S 4 4 S 4 5 ( ) 1/

13 Robust estimation methods Robust => less sensitive to bad data. Example: using median rather than mean: Sample Mean minimizes the Sample Variance: S 1 1 ( µ) = 0 µ for µ = ( µ ) µ MAD 1 µ = 0 µ mean median M Median M minimizes the Mean Absolute Deviation : ( ) for µ = M Median

14 Mean vs Median The median is less sensitive to outliers than the mean. Mean Median The median is unbiased, but not a minimum-variance estimator. ote how the standard deviations of the median and of the mean vary with sample size. Median Mean

15 Proof that the Median minimises the MAD H(x) MAD 1 µ = 1 ( µ ) H ( µ ) d MAD d µ = %& H ( µ ) + ( µ ) H$ ( µ ) ' ( = H µ +1, x > 0 0, x = 0 1, x < 0 ( ) = ( > µ) ( < µ) = 0 if µ = median( ) d H d x = δ(x) +1 = 0 1 since H (x) = 0 whenever x 0

16 Find the Median without Sorting M M A useful algorithm ( Is it faster than sorting? ) : Since i M = 0, first make a guess at M. M Then estimate a new M = and iterate to convergence. M 1 M,

17 Median Filter and Sigma-Clip Median filter: window of points centred at time t medfilt( t ) is the median of the points. Sigma-clip: Window Fit all points by minimising χ Set threshold K and check for outliers at ± K σ or more Repeat fit omitting largest outlier Iterate until set of rejected points converges. Reject Reject

18 Various Badness-of-Fit Statistics Sample Variance mean S 1 ( µ i ) 1 Chi-squared optimal average χ i µ i ˆ σ i Mean Absolute Deviation MAD 1 median µ i M Sum Absolute ormalised Errors: SAE µ i σ i ε η ε η Badness functions: Sigma-clip ± K σ

19 S = Sample Variance MAD = Mean Absolute Deviation Badness of Fit: S ( µ ) ( 1)S = ε i ε i µ i 3 good points 1 bad Badness of Fit: MAD( µ ) Median MAD 3 good points 1 bad with ε i without with without µ µ

20 χ = Sum of Squared ormalised Errors SAE = Sum Absolute ormalised Errors Badness of Fit: χ ( µ ) χ η i η i µ i σ i 3 good points 1 bad ˆ Badness of Fit: SAE( µ ) SAE 3 good points 1 bad with without η i µ µ

21 χ = Sum of Squared ormalised Errors A clipped Badness of Fit Statistic Badness of Fit: χ ( µ ) 3 good points 1 bad ˆ χ η i η i µ i σ i Badness of Fit: BoF( µ ) BoF 1 exp η i with without { } ote local minimum µ µ

Algebra of Random Variables: Optimal Average and Optimal Scaling Minimising

Algebra of Random Variables: Optimal Average and Optimal Scaling Minimising Review: Optimal Average/Scaling is equivalent to Minimise χ Two 1-parameter models: Estimating < > : Scaling a pattern: Two equivalent methods: Algebra of Random Variables: Optimal Average and Optimal

More information

Introduction to Econometrics. Heteroskedasticity

Introduction to Econometrics. Heteroskedasticity Introduction to Econometrics Introduction Heteroskedasticity When the variance of the errors changes across segments of the population, where the segments are determined by different values for the explanatory

More information

Intermediate Econometrics

Intermediate Econometrics Intermediate Econometrics Heteroskedasticity Text: Wooldridge, 8 July 17, 2011 Heteroskedasticity Assumption of homoskedasticity, Var(u i x i1,..., x ik ) = E(u 2 i x i1,..., x ik ) = σ 2. That is, the

More information

Confidence Intervals, Testing and ANOVA Summary

Confidence Intervals, Testing and ANOVA Summary Confidence Intervals, Testing and ANOVA Summary 1 One Sample Tests 1.1 One Sample z test: Mean (σ known) Let X 1,, X n a r.s. from N(µ, σ) or n > 30. Let The test statistic is H 0 : µ = µ 0. z = x µ 0

More information

y ˆ i = ˆ " T u i ( i th fitted value or i th fit)

y ˆ i = ˆ  T u i ( i th fitted value or i th fit) 1 2 INFERENCE FOR MULTIPLE LINEAR REGRESSION Recall Terminology: p predictors x 1, x 2,, x p Some might be indicator variables for categorical variables) k-1 non-constant terms u 1, u 2,, u k-1 Each u

More information

Statistical Methods for Astronomy

Statistical Methods for Astronomy Statistical Methods for Astronomy Probability (Lecture 1) Statistics (Lecture 2) Why do we need statistics? Useful Statistics Definitions Error Analysis Probability distributions Error Propagation Binomial

More information

Economics 240A, Section 3: Short and Long Regression (Ch. 17) and the Multivariate Normal Distribution (Ch. 18)

Economics 240A, Section 3: Short and Long Regression (Ch. 17) and the Multivariate Normal Distribution (Ch. 18) Economics 240A, Section 3: Short and Long Regression (Ch. 17) and the Multivariate Normal Distribution (Ch. 18) MichaelR.Roberts Department of Economics and Department of Statistics University of California

More information

OSU Economics 444: Elementary Econometrics. Ch.10 Heteroskedasticity

OSU Economics 444: Elementary Econometrics. Ch.10 Heteroskedasticity OSU Economics 444: Elementary Econometrics Ch.0 Heteroskedasticity (Pure) heteroskedasticity is caused by the error term of a correctly speciþed equation: Var(² i )=σ 2 i, i =, 2,,n, i.e., the variance

More information

Chapter 4. Probability and Statistics. Probability and Statistics

Chapter 4. Probability and Statistics. Probability and Statistics Chapter 4 Probability and Statistics Figliola and Beasley, (999) Probability and Statistics Engineering measurements taken repeatedly under seemingly ideal conditions will normally show variability. Measurement

More information

Chapter 8 Heteroskedasticity

Chapter 8 Heteroskedasticity Chapter 8 Walter R. Paczkowski Rutgers University Page 1 Chapter Contents 8.1 The Nature of 8. Detecting 8.3 -Consistent Standard Errors 8.4 Generalized Least Squares: Known Form of Variance 8.5 Generalized

More information

" M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2

 M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2 Notation and Equations for Final Exam Symbol Definition X The variable we measure in a scientific study n The size of the sample N The size of the population M The mean of the sample µ The mean of the

More information

Answers to Problem Set #4

Answers to Problem Set #4 Answers to Problem Set #4 Problems. Suppose that, from a sample of 63 observations, the least squares estimates and the corresponding estimated variance covariance matrix are given by: bβ bβ 2 bβ 3 = 2

More information

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B Simple Linear Regression 35 Problems 1 Consider a set of data (x i, y i ), i =1, 2,,n, and the following two regression models: y i = β 0 + β 1 x i + ε, (i =1, 2,,n), Model A y i = γ 0 + γ 1 x i + γ 2

More information

Simple Linear Regression Analysis

Simple Linear Regression Analysis LINEAR REGRESSION ANALYSIS MODULE II Lecture - 6 Simple Linear Regression Analysis Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Prediction of values of study

More information

Parameter Estimation and Fitting to Data

Parameter Estimation and Fitting to Data Parameter Estimation and Fitting to Data Parameter estimation Maximum likelihood Least squares Goodness-of-fit Examples Elton S. Smith, Jefferson Lab 1 Parameter estimation Properties of estimators 3 An

More information

Lecture 4: Heteroskedasticity

Lecture 4: Heteroskedasticity Lecture 4: Heteroskedasticity Econometric Methods Warsaw School of Economics (4) Heteroskedasticity 1 / 24 Outline 1 What is heteroskedasticity? 2 Testing for heteroskedasticity White Goldfeld-Quandt Breusch-Pagan

More information

Generate a theoretical model, which provides a functional form for the data points. global warming, try theoretical model

Generate a theoretical model, which provides a functional form for the data points. global warming, try theoretical model CURVE FITTING Basic part of a wide range of physics - fit data to a model e.g. Global warming - CO 2 level in atmosphere what is estimated rate of increase in CO 2 per year? 166 Modelling of data Generate

More information

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari MS&E 226: Small Data Lecture 11: Maximum likelihood (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 18 The likelihood function 2 / 18 Estimating the parameter This lecture develops the methodology behind

More information

Simple Linear Regression for the Climate Data

Simple Linear Regression for the Climate Data Prediction Prediction Interval Temperature 0.2 0.0 0.2 0.4 0.6 0.8 320 340 360 380 CO 2 Simple Linear Regression for the Climate Data What do we do with the data? y i = Temperature of i th Year x i =CO

More information

Final Exam. Name: Solution:

Final Exam. Name: Solution: Final Exam. Name: Instructions. Answer all questions on the exam. Open books, open notes, but no electronic devices. The first 13 problems are worth 5 points each. The rest are worth 1 point each. HW1.

More information

[y i α βx i ] 2 (2) Q = i=1

[y i α βx i ] 2 (2) Q = i=1 Least squares fits This section has no probability in it. There are no random variables. We are given n points (x i, y i ) and want to find the equation of the line that best fits them. We take the equation

More information

Multiple Regression Analysis

Multiple Regression Analysis Multiple Regression Analysis y = 0 + 1 x 1 + x +... k x k + u 6. Heteroskedasticity What is Heteroskedasticity?! Recall the assumption of homoskedasticity implied that conditional on the explanatory variables,

More information

Measurement Error and Linear Regression of Astronomical Data. Brandon Kelly Penn State Summer School in Astrostatistics, June 2007

Measurement Error and Linear Regression of Astronomical Data. Brandon Kelly Penn State Summer School in Astrostatistics, June 2007 Measurement Error and Linear Regression of Astronomical Data Brandon Kelly Penn State Summer School in Astrostatistics, June 2007 Classical Regression Model Collect n data points, denote i th pair as (η

More information

Why is the field of statistics still an active one?

Why is the field of statistics still an active one? Why is the field of statistics still an active one? It s obvious that one needs statistics: to describe experimental data in a compact way, to compare datasets, to ask whether data are consistent with

More information

Drawing Inferences from Statistics Based on Multiyear Asset Returns

Drawing Inferences from Statistics Based on Multiyear Asset Returns Drawing Inferences from Statistics Based on Multiyear Asset Returns Matthew Richardson ames H. Stock FE 1989 1 Motivation Fama and French (1988, Poterba and Summer (1988 document significant negative correlations

More information

EE/CpE 345. Modeling and Simulation. Fall Class 10 November 18, 2002

EE/CpE 345. Modeling and Simulation. Fall Class 10 November 18, 2002 EE/CpE 345 Modeling and Simulation Class 0 November 8, 2002 Input Modeling Inputs(t) Actual System Outputs(t) Parameters? Simulated System Outputs(t) The input data is the driving force for the simulation

More information

Formal Statement of Simple Linear Regression Model

Formal Statement of Simple Linear Regression Model Formal Statement of Simple Linear Regression Model Y i = β 0 + β 1 X i + ɛ i Y i value of the response variable in the i th trial β 0 and β 1 are parameters X i is a known constant, the value of the predictor

More information

Föreläsning /31

Föreläsning /31 1/31 Föreläsning 10 090420 Chapter 13 Econometric Modeling: Model Speci cation and Diagnostic testing 2/31 Types of speci cation errors Consider the following models: Y i = β 1 + β 2 X i + β 3 X 2 i +

More information

Generalized Linear Models (1/29/13)

Generalized Linear Models (1/29/13) STA613/CBB540: Statistical methods in computational biology Generalized Linear Models (1/29/13) Lecturer: Barbara Engelhardt Scribe: Yangxiaolu Cao When processing discrete data, two commonly used probability

More information

Least squares: introduction to the network adjustment

Least squares: introduction to the network adjustment Least squares: introduction to the network adjustment Experimental evidence and consequences Observations of the same quantity that have been performed at the highest possible accuracy provide different

More information

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression.

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression. 10/3/011 Functional Connectivity Correlation and Regression Variance VAR = Standard deviation Standard deviation SD = Unbiased SD = 1 10/3/011 Standard error Confidence interval SE = CI = = t value for

More information

Review of Statistics

Review of Statistics Review of Statistics Topics Descriptive Statistics Mean, Variance Probability Union event, joint event Random Variables Discrete and Continuous Distributions, Moments Two Random Variables Covariance and

More information

Finite Sample Performance of A Minimum Distance Estimator Under Weak Instruments

Finite Sample Performance of A Minimum Distance Estimator Under Weak Instruments Finite Sample Performance of A Minimum Distance Estimator Under Weak Instruments Tak Wai Chau February 20, 2014 Abstract This paper investigates the nite sample performance of a minimum distance estimator

More information

Chapter 6: Linear Regression With Multiple Regressors

Chapter 6: Linear Regression With Multiple Regressors Chapter 6: Linear Regression With Multiple Regressors 1-1 Outline 1. Omitted variable bias 2. Causality and regression analysis 3. Multiple regression and OLS 4. Measures of fit 5. Sampling distribution

More information

Econometrics Honor s Exam Review Session. Spring 2012 Eunice Han

Econometrics Honor s Exam Review Session. Spring 2012 Eunice Han Econometrics Honor s Exam Review Session Spring 2012 Eunice Han Topics 1. OLS The Assumptions Omitted Variable Bias Conditional Mean Independence Hypothesis Testing and Confidence Intervals Homoskedasticity

More information

Computer projects for Mathematical Statistics, MA 486. Some practical hints for doing computer projects with MATLAB:

Computer projects for Mathematical Statistics, MA 486. Some practical hints for doing computer projects with MATLAB: Computer projects for Mathematical Statistics, MA 486. Some practical hints for doing computer projects with MATLAB: You can save your project to a text file (on a floppy disk or CD or on your web page),

More information

Experimental variogram of the residuals in the universal kriging (UK) model

Experimental variogram of the residuals in the universal kriging (UK) model Experimental variogram of the residuals in the universal kriging (UK) model Nicolas DESASSIS Didier RENARD Technical report R141210NDES MINES ParisTech Centre de Géosciences Equipe Géostatistique 35, rue

More information

EE/CpE 345. Modeling and Simulation. Fall Class 9

EE/CpE 345. Modeling and Simulation. Fall Class 9 EE/CpE 345 Modeling and Simulation Class 9 208 Input Modeling Inputs(t) Actual System Outputs(t) Parameters? Simulated System Outputs(t) The input data is the driving force for the simulation - the behavior

More information

IEOR 165 Lecture 7 1 Bias-Variance Tradeoff

IEOR 165 Lecture 7 1 Bias-Variance Tradeoff IEOR 165 Lecture 7 Bias-Variance Tradeoff 1 Bias-Variance Tradeoff Consider the case of parametric regression with β R, and suppose we would like to analyze the error of the estimate ˆβ in comparison to

More information

1. You have data on years of work experience, EXPER, its square, EXPER2, years of education, EDUC, and the log of hourly wages, LWAGE

1. You have data on years of work experience, EXPER, its square, EXPER2, years of education, EDUC, and the log of hourly wages, LWAGE 1. You have data on years of work experience, EXPER, its square, EXPER, years of education, EDUC, and the log of hourly wages, LWAGE You estimate the following regressions: (1) LWAGE =.00 + 0.05*EDUC +

More information

MID-TERM EXAM ANSWERS. p t + δ t = Rp t 1 + η t (1.1)

MID-TERM EXAM ANSWERS. p t + δ t = Rp t 1 + η t (1.1) ECO 513 Fall 2005 C.Sims MID-TERM EXAM ANSWERS (1) Suppose a stock price p t and the stock dividend δ t satisfy these equations: p t + δ t = Rp t 1 + η t (1.1) δ t = γδ t 1 + φp t 1 + ε t, (1.2) where

More information

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X.

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X. Estimating σ 2 We can do simple prediction of Y and estimation of the mean of Y at any value of X. To perform inferences about our regression line, we must estimate σ 2, the variance of the error term.

More information

Inferring from data. Theory of estimators

Inferring from data. Theory of estimators Inferring from data Theory of estimators 1 Estimators Estimator is any function of the data e(x) used to provide an estimate ( a measurement ) of an unknown parameter. Because estimators are functions

More information

Introductory Econometrics

Introductory Econometrics Introductory Econometrics Violation of basic assumptions Heteroskedasticity Barbara Pertold-Gebicka CERGE-EI 16 November 010 OLS assumptions 1. Disturbances are random variables drawn from a normal distribution.

More information

Regression Analysis Tutorial 34 LECTURE / DISCUSSION. Statistical Properties of OLS

Regression Analysis Tutorial 34 LECTURE / DISCUSSION. Statistical Properties of OLS Regression Analysis Tutorial 34 LETURE / DISUSSION Statistical Properties of OLS Regression Analysis Tutorial 35 Statistical Properties of OLS y = " + $x + g dependent included omitted variable explanatory

More information

Multiple Regression Analysis: Heteroskedasticity

Multiple Regression Analysis: Heteroskedasticity Multiple Regression Analysis: Heteroskedasticity y = β 0 + β 1 x 1 + β x +... β k x k + u Read chapter 8. EE45 -Chaiyuth Punyasavatsut 1 topics 8.1 Heteroskedasticity and OLS 8. Robust estimation 8.3 Testing

More information

Topic 4: Model Specifications

Topic 4: Model Specifications Topic 4: Model Specifications Advanced Econometrics (I) Dong Chen School of Economics, Peking University 1 Functional Forms 1.1 Redefining Variables Change the unit of measurement of the variables will

More information

LECTURE 10. Introduction to Econometrics. Multicollinearity & Heteroskedasticity

LECTURE 10. Introduction to Econometrics. Multicollinearity & Heteroskedasticity LECTURE 10 Introduction to Econometrics Multicollinearity & Heteroskedasticity November 22, 2016 1 / 23 ON PREVIOUS LECTURES We discussed the specification of a regression equation Specification consists

More information

Problem set 1: answers. April 6, 2018

Problem set 1: answers. April 6, 2018 Problem set 1: answers April 6, 2018 1 1 Introduction to answers This document provides the answers to problem set 1. If any further clarification is required I may produce some videos where I go through

More information

Lecture 3: Linear Models. Bruce Walsh lecture notes Uppsala EQG course version 28 Jan 2012

Lecture 3: Linear Models. Bruce Walsh lecture notes Uppsala EQG course version 28 Jan 2012 Lecture 3: Linear Models Bruce Walsh lecture notes Uppsala EQG course version 28 Jan 2012 1 Quick Review of the Major Points The general linear model can be written as y = X! + e y = vector of observed

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 430/514 Recall: A regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates)

More information

ISQS 5349 Final Exam, Spring 2017.

ISQS 5349 Final Exam, Spring 2017. ISQS 5349 Final Exam, Spring 7. Instructions: Put all answers on paper other than this exam. If you do not have paper, some will be provided to you. The exam is OPEN BOOKS, OPEN NOTES, but NO ELECTRONIC

More information

Binary Dependent Variables

Binary Dependent Variables Binary Dependent Variables In some cases the outcome of interest rather than one of the right hand side variables - is discrete rather than continuous Binary Dependent Variables In some cases the outcome

More information

Physics 509: Bootstrap and Robust Parameter Estimation

Physics 509: Bootstrap and Robust Parameter Estimation Physics 509: Bootstrap and Robust Parameter Estimation Scott Oser Lecture #20 Physics 509 1 Nonparametric parameter estimation Question: what error estimate should you assign to the slope and intercept

More information

ECON Introductory Econometrics. Lecture 6: OLS with Multiple Regressors

ECON Introductory Econometrics. Lecture 6: OLS with Multiple Regressors ECON4150 - Introductory Econometrics Lecture 6: OLS with Multiple Regressors Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 6 Lecture outline 2 Violation of first Least Squares assumption

More information

ECON 497: Lecture Notes 10 Page 1 of 1

ECON 497: Lecture Notes 10 Page 1 of 1 ECON 497: Lecture Notes 10 Page 1 of 1 Metropolitan State University ECON 497: Research and Forecasting Lecture Notes 10 Heteroskedasticity Studenmund Chapter 10 We'll start with a quote from Studenmund:

More information

Stochastic Gradient Descent

Stochastic Gradient Descent Stochastic Gradient Descent Machine Learning CSE546 Carlos Guestrin University of Washington October 9, 2013 1 Logistic Regression Logistic function (or Sigmoid): Learn P(Y X) directly Assume a particular

More information

Math 423/533: The Main Theoretical Topics

Math 423/533: The Main Theoretical Topics Math 423/533: The Main Theoretical Topics Notation sample size n, data index i number of predictors, p (p = 2 for simple linear regression) y i : response for individual i x i = (x i1,..., x ip ) (1 p)

More information

Applied Econometrics (QEM)

Applied Econometrics (QEM) Applied Econometrics (QEM) The Simple Linear Regression Model based on Prinicples of Econometrics Jakub Mućk Department of Quantitative Economics Jakub Mućk Applied Econometrics (QEM) Meeting #2 The Simple

More information

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics)

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Probability quantifies randomness and uncertainty How do I estimate the normalization and logarithmic slope of a X ray continuum, assuming

More information

4. DATA ASSIMILATION FUNDAMENTALS

4. DATA ASSIMILATION FUNDAMENTALS 4. DATA ASSIMILATION FUNDAMENTALS... [the atmosphere] "is a chaotic system in which errors introduced into the system can grow with time... As a consequence, data assimilation is a struggle between chaotic

More information

Bagging During Markov Chain Monte Carlo for Smoother Predictions

Bagging During Markov Chain Monte Carlo for Smoother Predictions Bagging During Markov Chain Monte Carlo for Smoother Predictions Herbert K. H. Lee University of California, Santa Cruz Abstract: Making good predictions from noisy data is a challenging problem. Methods

More information

EXAMINERS REPORT & SOLUTIONS STATISTICS 1 (MATH 11400) May-June 2009

EXAMINERS REPORT & SOLUTIONS STATISTICS 1 (MATH 11400) May-June 2009 EAMINERS REPORT & SOLUTIONS STATISTICS (MATH 400) May-June 2009 Examiners Report A. Most plots were well done. Some candidates muddled hinges and quartiles and gave the wrong one. Generally candidates

More information

Next is material on matrix rank. Please see the handout

Next is material on matrix rank. Please see the handout B90.330 / C.005 NOTES for Wednesday 0.APR.7 Suppose that the model is β + ε, but ε does not have the desired variance matrix. Say that ε is normal, but Var(ε) σ W. The form of W is W w 0 0 0 0 0 0 w 0

More information

Harmonization of Friction Measuring Devices Using Robust Regression Methods

Harmonization of Friction Measuring Devices Using Robust Regression Methods Harmonization of Friction Measuring Devices Using Robust Regression Methods Samer Katicha 09/09/2013 Center for Sustainable Transportation Infrastructure Outline o What is harmonization of devices? Measurement

More information

Expectation. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Expectation. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Expectation DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Aim Describe random variables with a few numbers: mean, variance,

More information

Steps in Regression Analysis

Steps in Regression Analysis MGMG 522 : Session #2 Learning to Use Regression Analysis & The Classical Model (Ch. 3 & 4) 2-1 Steps in Regression Analysis 1. Review the literature and develop the theoretical model 2. Specify the model:

More information

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr.

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr. Simulation Discrete-Event System Simulation Chapter 0 Output Analysis for a Single Model Purpose Objective: Estimate system performance via simulation If θ is the system performance, the precision of the

More information

Chapter 11. Output Analysis for a Single Model Prof. Dr. Mesut Güneş Ch. 11 Output Analysis for a Single Model

Chapter 11. Output Analysis for a Single Model Prof. Dr. Mesut Güneş Ch. 11 Output Analysis for a Single Model Chapter Output Analysis for a Single Model. Contents Types of Simulation Stochastic Nature of Output Data Measures of Performance Output Analysis for Terminating Simulations Output Analysis for Steady-state

More information

Simple and Multiple Linear Regression

Simple and Multiple Linear Regression Sta. 113 Chapter 12 and 13 of Devore March 12, 2010 Table of contents 1 Simple Linear Regression 2 Model Simple Linear Regression A simple linear regression model is given by Y = β 0 + β 1 x + ɛ where

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Asymptotics Asymptotics Multiple Linear Regression: Assumptions Assumption MLR. (Linearity in parameters) Assumption MLR. (Random Sampling from the population) We have a random

More information

Assignment 1. SEM 2: Structural Equation Modeling

Assignment 1. SEM 2: Structural Equation Modeling Assignment 1 SEM 2: Structural Equation Modeling 2 Please hand in a.pdf file containing your report and a.r containing your codes or screenshots of every Jasp analysis. The deadline of this assignment

More information

Vector Autoregressive Model. Vector Autoregressions II. Estimation of Vector Autoregressions II. Estimation of Vector Autoregressions I.

Vector Autoregressive Model. Vector Autoregressions II. Estimation of Vector Autoregressions II. Estimation of Vector Autoregressions I. Vector Autoregressive Model Vector Autoregressions II Empirical Macroeconomics - Lect 2 Dr. Ana Beatriz Galvao Queen Mary University of London January 2012 A VAR(p) model of the m 1 vector of time series

More information

Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study

Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study 1.4 0.0-6 7 8 9 10 11 12 13 14 15 16 17 18 19 age Model 1: A simple broken stick model with knot at 14 fit with

More information

Passing-Bablok Regression for Method Comparison

Passing-Bablok Regression for Method Comparison Chapter 313 Passing-Bablok Regression for Method Comparison Introduction Passing-Bablok regression for method comparison is a robust, nonparametric method for fitting a straight line to two-dimensional

More information

Gradient types. Gradient Analysis. Gradient Gradient. Community Community. Gradients and landscape. Species responses

Gradient types. Gradient Analysis. Gradient Gradient. Community Community. Gradients and landscape. Species responses Vegetation Analysis Gradient Analysis Slide 18 Vegetation Analysis Gradient Analysis Slide 19 Gradient Analysis Relation of species and environmental variables or gradients. Gradient Gradient Individualistic

More information

Sociology 6Z03 Review I

Sociology 6Z03 Review I Sociology 6Z03 Review I John Fox McMaster University Fall 2016 John Fox (McMaster University) Sociology 6Z03 Review I Fall 2016 1 / 19 Outline: Review I Introduction Displaying Distributions Describing

More information

Statistical methods. Mean value and standard deviations Standard statistical distributions Linear systems Matrix algebra

Statistical methods. Mean value and standard deviations Standard statistical distributions Linear systems Matrix algebra Statistical methods Mean value and standard deviations Standard statistical distributions Linear systems Matrix algebra Statistical methods Generating random numbers MATLAB has many built-in functions

More information

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH1725 (May-June 2009) INTRODUCTION TO STATISTICS. Time allowed: 2 hours

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH1725 (May-June 2009) INTRODUCTION TO STATISTICS. Time allowed: 2 hours 01 This question paper consists of 11 printed pages, each of which is identified by the reference. Only approved basic scientific calculators may be used. Statistical tables are provided at the end of

More information

A Few Special Distributions and Their Properties

A Few Special Distributions and Their Properties A Few Special Distributions and Their Properties Econ 690 Purdue University Justin L. Tobias (Purdue) Distributional Catalog 1 / 20 Special Distributions and Their Associated Properties 1 Uniform Distribution

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Kerby Shedden, Ph.D., 2010 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Share Alike 3.0 License: http://creativecommons.org/licenses/by-sa/3.0/

More information

Simple Linear Regression for the MPG Data

Simple Linear Regression for the MPG Data Simple Linear Regression for the MPG Data 2000 2500 3000 3500 15 20 25 30 35 40 45 Wgt MPG What do we do with the data? y i = MPG of i th car x i = Weight of i th car i =1,...,n n = Sample Size Exploratory

More information

Properties of the least squares estimates

Properties of the least squares estimates Properties of the least squares estimates 2019-01-18 Warmup Let a and b be scalar constants, and X be a scalar random variable. Fill in the blanks E ax + b) = Var ax + b) = Goal Recall that the least squares

More information

Expectation. DS GA 1002 Probability and Statistics for Data Science. Carlos Fernandez-Granda

Expectation. DS GA 1002 Probability and Statistics for Data Science.   Carlos Fernandez-Granda Expectation DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Aim Describe random variables with a few numbers: mean,

More information

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages:

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages: Glossary The ISI glossary of statistical terms provides definitions in a number of different languages: http://isi.cbs.nl/glossary/index.htm Adjusted r 2 Adjusted R squared measures the proportion of the

More information

ECO220Y Simple Regression: Testing the Slope

ECO220Y Simple Regression: Testing the Slope ECO220Y Simple Regression: Testing the Slope Readings: Chapter 18 (Sections 18.3-18.5) Winter 2012 Lecture 19 (Winter 2012) Simple Regression Lecture 19 1 / 32 Simple Regression Model y i = β 0 + β 1 x

More information

f (1 0.5)/n Z =

f (1 0.5)/n Z = Math 466/566 - Homework 4. We want to test a hypothesis involving a population proportion. The unknown population proportion is p. The null hypothesis is p = / and the alternative hypothesis is p > /.

More information

Homework #2 Due Monday, April 18, 2012

Homework #2 Due Monday, April 18, 2012 12.540 Homework #2 Due Monday, April 18, 2012 Matlab solution codes are given in HW02_2012.m This code uses cells and contains the solutions to all the questions. Question 1: Non-linear estimation problem

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 1 Random Vectors Let a 0 and y be n 1 vectors, and let A be an n n matrix. Here, a 0 and A are non-random, whereas y is

More information

STATISTICS 141 Final Review

STATISTICS 141 Final Review STATISTICS 141 Final Review Bin Zou bzou@ualberta.ca Department of Mathematical & Statistical Sciences University of Alberta Winter 2015 Bin Zou (bzou@ualberta.ca) STAT 141 Final Review Winter 2015 1 /

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

Lecture 14 Simple Linear Regression

Lecture 14 Simple Linear Regression Lecture 4 Simple Linear Regression Ordinary Least Squares (OLS) Consider the following simple linear regression model where, for each unit i, Y i is the dependent variable (response). X i is the independent

More information

The regression model with one fixed regressor cont d

The regression model with one fixed regressor cont d The regression model with one fixed regressor cont d 3150/4150 Lecture 4 Ragnar Nymoen 27 January 2012 The model with transformed variables Regression with transformed variables I References HGL Ch 2.8

More information

Topic 22 Analysis of Variance

Topic 22 Analysis of Variance Topic 22 Analysis of Variance Comparing Multiple Populations 1 / 14 Outline Overview One Way Analysis of Variance Sample Means Sums of Squares The F Statistic Confidence Intervals 2 / 14 Overview Two-sample

More information

Probability and Statistics Notes

Probability and Statistics Notes Probability and Statistics Notes Chapter Seven Jesse Crawford Department of Mathematics Tarleton State University Spring 2011 (Tarleton State University) Chapter Seven Notes Spring 2011 1 / 42 Outline

More information

2 Prediction and Analysis of Variance

2 Prediction and Analysis of Variance 2 Prediction and Analysis of Variance Reading: Chapters and 2 of Kennedy A Guide to Econometrics Achen, Christopher H. Interpreting and Using Regression (London: Sage, 982). Chapter 4 of Andy Field, Discovering

More information

Which model to use? How can we deal with these decisions automatically? Note flailing in data gaps and beyond ends for high M

Which model to use? How can we deal with these decisions automatically? Note flailing in data gaps and beyond ends for high M Which model to use? Microlens modellers face many dilemmas: Blending or no blending? Keep original error bars, or resacle them? Simple scale factor, or more elaborate model. Point source or extended source?

More information

K. Model Diagnostics. residuals ˆɛ ij = Y ij ˆµ i N = Y ij Ȳ i semi-studentized residuals ω ij = ˆɛ ij. studentized deleted residuals ɛ ij =

K. Model Diagnostics. residuals ˆɛ ij = Y ij ˆµ i N = Y ij Ȳ i semi-studentized residuals ω ij = ˆɛ ij. studentized deleted residuals ɛ ij = K. Model Diagnostics We ve already seen how to check model assumptions prior to fitting a one-way ANOVA. Diagnostics carried out after model fitting by using residuals are more informative for assessing

More information

9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006.

9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006. 9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture: Introduction to Time Series and Forecasting. P.J. Brockwell and R. A. Davis, Springer Texts

More information