4 Newton Method. Unconstrained Convex Optimization 21. H(x)p = f(x). Newton direction. Why? Recall second-order staylor series expansion:

Size: px
Start display at page:

Download "4 Newton Method. Unconstrained Convex Optimization 21. H(x)p = f(x). Newton direction. Why? Recall second-order staylor series expansion:"

Transcription

1 Unconstrained Convex Optimization 21 4 Newton Method H(x)p = f(x). Newton direction. Why? Recall second-order staylor series expansion: f(x + p) f(x)+p T f(x)+ 1 2 pt H(x)p ˆf(p) In general, ˆf(p) won t approximate f well at all, except in a neighborhood of the point x of the taylor series expansion. But if our step p is not too big, it is okay. If we try to minimize ˆf(p) with respect to p by setting the derivative equal to 0: f(x)+h(x)p = 0 we need to define p to be: H(x)p = f(x) The Newton direction is obtained by solving the linear system involving the Hessian matrix and the negative gradient. If f is actually a quadratic function, the second-order Taylor approximation is exact and x + p will be the global minimum. How well does the Newton Method work? Theorem: Suppose f C 2 (S) and there is a positive scalar λ such that H(x) H(y) λ x y for all points x, y in a neighborhood of x. Then if x (k) is sufficiently close to x and if H(x ) is positive definite, then there exists constant c such that: e (k+1) c e (k) 2 Let e (k) = x (k) x be the error at iteration k. Use Taylor series: 0 = f(x (k) e (k) )= f(x (k) ) H (k) e (k) +O( e (k) 2 ) Multiplying by (H (k) ) 1, we get: Because 0 = p (k) e (k) + O( e (k) 2 ) p (k) e (k) =(x (k) x (k+1) ) (x (k) x )= e (k+1)

2 Unconstrained Convex Optimization 22 So e (k+1) = O( e (k) 2 ). This rate of convergence is quadratic convergence, which means if we have an error of 10 1 t some iteration, two iterations later the error will be about 10 4 (if c 1). After four iterations, it will be about (machine precision!). When Newton s method works, it often converges very fast to very high accuracy! Example: Implement Newton method with backtracking linesearch, where c =0.1,ρ= 1 2. Test it on the function f(x) =(x x 2 2), starting x =(50, 50). f(x) =e x 1+3x e x 1 3x e x 1 0.1, starting x =(2.0, 1.0). How do we set initial length of α during linesearch? For Newton methodsthe initial step should be always set to be α 0 =1, to ensure the unit step lengths are taken whenever they satisfy the termination condition and allows the rapid rate-of-convergence of these methods. When does Newton s method work? Recall 1: H(x)p = f(x) involves solving the linear system of the Hessian matrix and the negative gradient. For convex functions, H(x) is p.s.d. Recall 2 (Matrix Basics): Singularity of a matrix: A matrix A is said to be nonsingular if it has an inverse, that is if there exists a matrix A 1 such that AA 1 = A 1 A = I.

3 Unconstrained Convex Optimization 23 The existence of A 1 is directly related to the determinat of A, denoted as det(a) = n j=1 ( 1)i+j a ij M ij for i =1, 2,,nwhere M ij is the determinant of the matrix obtained by deleting the row and column containing a ij. Matrix A is nonsingular if det(a) = 0. A p.d. matrix is non-singular. A p.s.d matrix can be singular or non-singular. A singular p.s.d. matrix has at least one eigenvalue =0. So when does Newton s Method work? If H(x) is positive definite (H(x) is non-singular) and not closes to singular. this linear system has a unique solution, and p T f(x) =p T H(x)p > 0 so p is a descent direction. If H(x) is close to singular ( H(x) can still be positive definite) We will have computational difficult to solve the linear system. If H(x) fails to be positive definite ( H(x) maybe singular) We may fail to have a solution to the linear system. We may take ascent directions. To run the Newton method successfully, we need the Hessian H(x) to be positive definite everywhere we need to evaluate it. Conclusion: Advantages of Newton method: When it can be run successfully, it will usually reliably and quickly converges to the solution with very good accuracy. Disadvantages of Newton method: It requires the computation and storage of H(x) at each iteration. It requires solving a linear system involving H(x). For a dense N N matrix, the most reliable methods of finding this Newton step takes O(N 3 ) per iteration.

4 Unconstrained Convex Optimization 24 It can fail if H(x) fails to be positive definite. Further reading - Newton Method with Modified Hessian. We can modify Newton whenever we are not sure that the direction it generates is descent. Use the Hessian whenever it is p.d. and not close to singular. Replace H(x) by Ĥ(x) =H(x)+E whenever H(x) is close to singularity or fails to be p.d. So that Ĥ(x) is symmetric p.d. Ĥ(x) is not too close to singular, i.e., its smallest eigenvalue is bounded below by a constant bigger than zero. Popular methods: Greenstadt s method: Modify eigenvalues. Levenberg-Marquardt method: Add a scaled identity matrix Modified Cholesky Stratigies: Perform Choleskey factorization of the Hessian and modify the diagonal elements

5 Unconstrained Convex Optimization 25 Newton method on quadratic function Newton method on exponential function Figure 4.1: Example of Newton method performances.

5 Quasi-Newton Methods

5 Quasi-Newton Methods Unconstrained Convex Optimization 26 5 Quasi-Newton Methods If the Hessian is unavailable... Notation: H = Hessian matrix. B is the approximation of H. C is the approximation of H 1. Problem: Solve min

More information

How do we recognize a solution?

How do we recognize a solution? AMSC 607 / CMSC 764 Advanced Numerical Optimization Fall 2010 UNIT 2: Unconstrained Optimization, Part 1 Dianne P. O Leary c 2008,2010 The plan: Unconstrained Optimization: Fundamentals How do we recognize

More information

E5295/5B5749 Convex optimization with engineering applications. Lecture 8. Smooth convex unconstrained and equality-constrained minimization

E5295/5B5749 Convex optimization with engineering applications. Lecture 8. Smooth convex unconstrained and equality-constrained minimization E5295/5B5749 Convex optimization with engineering applications Lecture 8 Smooth convex unconstrained and equality-constrained minimization A. Forsgren, KTH 1 Lecture 8 Convex optimization 2006/2007 Unconstrained

More information

1 Newton s Method. Suppose we want to solve: x R. At x = x, f (x) can be approximated by:

1 Newton s Method. Suppose we want to solve: x R. At x = x, f (x) can be approximated by: Newton s Method Suppose we want to solve: (P:) min f (x) At x = x, f (x) can be approximated by: n x R. f (x) h(x) := f ( x)+ f ( x) T (x x)+ (x x) t H ( x)(x x), 2 which is the quadratic Taylor expansion

More information

The Steepest Descent Algorithm for Unconstrained Optimization

The Steepest Descent Algorithm for Unconstrained Optimization The Steepest Descent Algorithm for Unconstrained Optimization Robert M. Freund February, 2014 c 2014 Massachusetts Institute of Technology. All rights reserved. 1 1 Steepest Descent Algorithm The problem

More information

Lecture Notes: Geometric Considerations in Unconstrained Optimization

Lecture Notes: Geometric Considerations in Unconstrained Optimization Lecture Notes: Geometric Considerations in Unconstrained Optimization James T. Allison February 15, 2006 The primary objectives of this lecture on unconstrained optimization are to: Establish connections

More information

14. Nonlinear equations

14. Nonlinear equations L. Vandenberghe ECE133A (Winter 2018) 14. Nonlinear equations Newton method for nonlinear equations damped Newton method for unconstrained minimization Newton method for nonlinear least squares 14-1 Set

More information

Motivation: We have already seen an example of a system of nonlinear equations when we studied Gaussian integration (p.8 of integration notes)

Motivation: We have already seen an example of a system of nonlinear equations when we studied Gaussian integration (p.8 of integration notes) AMSC/CMSC 460 Computational Methods, Fall 2007 UNIT 5: Nonlinear Equations Dianne P. O Leary c 2001, 2002, 2007 Solving Nonlinear Equations and Optimization Problems Read Chapter 8. Skip Section 8.1.1.

More information

Numerical Optimization

Numerical Optimization Numerical Optimization Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Spring 2010 Emo Todorov (UW) AMATH/CSE 579, Spring 2010 Lecture 9 1 / 8 Gradient descent

More information

Line Search Methods for Unconstrained Optimisation

Line Search Methods for Unconstrained Optimisation Line Search Methods for Unconstrained Optimisation Lecture 8, Numerical Linear Algebra and Optimisation Oxford University Computing Laboratory, MT 2007 Dr Raphael Hauser (hauser@comlab.ox.ac.uk) The Generic

More information

Math 273a: Optimization Netwon s methods

Math 273a: Optimization Netwon s methods Math 273a: Optimization Netwon s methods Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 some material taken from Chong-Zak, 4th Ed. Main features of Newton s method Uses both first derivatives

More information

Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23

Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23 Optimization: Nonlinear Optimization without Constraints Nonlinear Optimization without Constraints 1 / 23 Nonlinear optimization without constraints Unconstrained minimization min x f(x) where f(x) is

More information

Trajectory-based optimization

Trajectory-based optimization Trajectory-based optimization Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 2012 Emo Todorov (UW) AMATH/CSE 579, Winter 2012 Lecture 6 1 / 13 Using

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Lecture 5, Continuous Optimisation Oxford University Computing Laboratory, HT 2006 Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk) The notion of complexity (per iteration)

More information

Penalty and Barrier Methods. So we again build on our unconstrained algorithms, but in a different way.

Penalty and Barrier Methods. So we again build on our unconstrained algorithms, but in a different way. AMSC 607 / CMSC 878o Advanced Numerical Optimization Fall 2008 UNIT 3: Constrained Optimization PART 3: Penalty and Barrier Methods Dianne P. O Leary c 2008 Reference: N&S Chapter 16 Penalty and Barrier

More information

Optimization Methods. Lecture 19: Line Searches and Newton s Method

Optimization Methods. Lecture 19: Line Searches and Newton s Method 15.93 Optimization Methods Lecture 19: Line Searches and Newton s Method 1 Last Lecture Necessary Conditions for Optimality (identifies candidates) x local min f(x ) =, f(x ) PSD Slide 1 Sufficient Conditions

More information

Unconstrained minimization of smooth functions

Unconstrained minimization of smooth functions Unconstrained minimization of smooth functions We want to solve min x R N f(x), where f is convex. In this section, we will assume that f is differentiable (so its gradient exists at every point), and

More information

Optimization Tutorial 1. Basic Gradient Descent

Optimization Tutorial 1. Basic Gradient Descent E0 270 Machine Learning Jan 16, 2015 Optimization Tutorial 1 Basic Gradient Descent Lecture by Harikrishna Narasimhan Note: This tutorial shall assume background in elementary calculus and linear algebra.

More information

Examination paper for TMA4180 Optimization I

Examination paper for TMA4180 Optimization I Department of Mathematical Sciences Examination paper for TMA4180 Optimization I Academic contact during examination: Phone: Examination date: 26th May 2016 Examination time (from to): 09:00 13:00 Permitted

More information

Gradient Descent. Dr. Xiaowei Huang

Gradient Descent. Dr. Xiaowei Huang Gradient Descent Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/ Up to now, Three machine learning algorithms: decision tree learning k-nn linear regression only optimization objectives are discussed,

More information

Computational Optimization. Convexity and Unconstrained Optimization 1/29/08 and 2/1(revised)

Computational Optimization. Convexity and Unconstrained Optimization 1/29/08 and 2/1(revised) Computational Optimization Convexity and Unconstrained Optimization 1/9/08 and /1(revised) Convex Sets A set S is convex if the line segment joining any two points in the set is also in the set, i.e.,

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 2 3.2 Systems of Equations 3.3 Nonlinear and Constrained Optimization 1 Outline 3.2 Systems of Equations 3.3 Nonlinear and Constrained Optimization Summary 2 Outline 3.2

More information

Optimization 2. CS5240 Theoretical Foundations in Multimedia. Leow Wee Kheng

Optimization 2. CS5240 Theoretical Foundations in Multimedia. Leow Wee Kheng Optimization 2 CS5240 Theoretical Foundations in Multimedia Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (NUS) Optimization 2 1 / 38

More information

Math (P)refresher Lecture 8: Unconstrained Optimization

Math (P)refresher Lecture 8: Unconstrained Optimization Math (P)refresher Lecture 8: Unconstrained Optimization September 2006 Today s Topics : Quadratic Forms Definiteness of Quadratic Forms Maxima and Minima in R n First Order Conditions Second Order Conditions

More information

Part 4: Active-set methods for linearly constrained optimization. Nick Gould (RAL)

Part 4: Active-set methods for linearly constrained optimization. Nick Gould (RAL) Part 4: Active-set methods for linearly constrained optimization Nick Gould RAL fx subject to Ax b Part C course on continuoue optimization LINEARLY CONSTRAINED MINIMIZATION fx subject to Ax { } b where

More information

Quasi-Newton Methods

Quasi-Newton Methods Newton s Method Pros and Cons Quasi-Newton Methods MA 348 Kurt Bryan Newton s method has some very nice properties: It s extremely fast, at least once it gets near the minimum, and with the simple modifications

More information

1 Computing with constraints

1 Computing with constraints Notes for 2017-04-26 1 Computing with constraints Recall that our basic problem is minimize φ(x) s.t. x Ω where the feasible set Ω is defined by equality and inequality conditions Ω = {x R n : c i (x)

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables The Unconstrained Minimization Problem where In n dimensions the unconstrained problem is stated as f() x variables. minimize f()x x, is a scalar objective function of vector

More information

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares Robert Bridson October 29, 2008 1 Hessian Problems in Newton Last time we fixed one of plain Newton s problems by introducing line search

More information

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL)

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL) Part 3: Trust-region methods for unconstrained optimization Nick Gould (RAL) minimize x IR n f(x) MSc course on nonlinear optimization UNCONSTRAINED MINIMIZATION minimize x IR n f(x) where the objective

More information

5 Overview of algorithms for unconstrained optimization

5 Overview of algorithms for unconstrained optimization IOE 59: NLP, Winter 22 c Marina A. Epelman 9 5 Overview of algorithms for unconstrained optimization 5. General optimization algorithm Recall: we are attempting to solve the problem (P) min f(x) s.t. x

More information

Trust Regions. Charles J. Geyer. March 27, 2013

Trust Regions. Charles J. Geyer. March 27, 2013 Trust Regions Charles J. Geyer March 27, 2013 1 Trust Region Theory We follow Nocedal and Wright (1999, Chapter 4), using their notation. Fletcher (1987, Section 5.1) discusses the same algorithm, but

More information

Convex Optimization. Problem set 2. Due Monday April 26th

Convex Optimization. Problem set 2. Due Monday April 26th Convex Optimization Problem set 2 Due Monday April 26th 1 Gradient Decent without Line-search In this problem we will consider gradient descent with predetermined step sizes. That is, instead of determining

More information

Newton s Method. Ryan Tibshirani Convex Optimization /36-725

Newton s Method. Ryan Tibshirani Convex Optimization /36-725 Newton s Method Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, Properties and examples: f (y) = max x

More information

Conditional Gradient (Frank-Wolfe) Method

Conditional Gradient (Frank-Wolfe) Method Conditional Gradient (Frank-Wolfe) Method Lecturer: Aarti Singh Co-instructor: Pradeep Ravikumar Convex Optimization 10-725/36-725 1 Outline Today: Conditional gradient method Convergence analysis Properties

More information

Chapter 3. Determinants and Eigenvalues

Chapter 3. Determinants and Eigenvalues Chapter 3. Determinants and Eigenvalues 3.1. Determinants With each square matrix we can associate a real number called the determinant of the matrix. Determinants have important applications to the theory

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 3. Gradient Method

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 3. Gradient Method Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 3 Gradient Method Shiqian Ma, MAT-258A: Numerical Optimization 2 3.1. Gradient method Classical gradient method: to minimize a differentiable convex

More information

Nonlinear Optimization: What s important?

Nonlinear Optimization: What s important? Nonlinear Optimization: What s important? Julian Hall 10th May 2012 Convexity: convex problems A local minimizer is a global minimizer A solution of f (x) = 0 (stationary point) is a minimizer A global

More information

COMP 558 lecture 18 Nov. 15, 2010

COMP 558 lecture 18 Nov. 15, 2010 Least squares We have seen several least squares problems thus far, and we will see more in the upcoming lectures. For this reason it is good to have a more general picture of these problems and how to

More information

Introduction to gradient descent

Introduction to gradient descent 6-1: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction to gradient descent Derivation and intuitions Hessian 6-2: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction Our

More information

Higher-Order Methods

Higher-Order Methods Higher-Order Methods Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. PCMI, July 2016 Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 1 / 25 Smooth

More information

ECE 680 Modern Automatic Control. Gradient and Newton s Methods A Review

ECE 680 Modern Automatic Control. Gradient and Newton s Methods A Review ECE 680Modern Automatic Control p. 1/1 ECE 680 Modern Automatic Control Gradient and Newton s Methods A Review Stan Żak October 25, 2011 ECE 680Modern Automatic Control p. 2/1 Review of the Gradient Properties

More information

Nonlinear Optimization for Optimal Control

Nonlinear Optimization for Optimal Control Nonlinear Optimization for Optimal Control Pieter Abbeel UC Berkeley EECS Many slides and figures adapted from Stephen Boyd [optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 11 [optional]

More information

Newton s Method. Javier Peña Convex Optimization /36-725

Newton s Method. Javier Peña Convex Optimization /36-725 Newton s Method Javier Peña Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, f ( (y) = max y T x f(x) ) x Properties and

More information

March 8, 2010 MATH 408 FINAL EXAM SAMPLE

March 8, 2010 MATH 408 FINAL EXAM SAMPLE March 8, 200 MATH 408 FINAL EXAM SAMPLE EXAM OUTLINE The final exam for this course takes place in the regular course classroom (MEB 238) on Monday, March 2, 8:30-0:20 am. You may bring two-sided 8 page

More information

SF2822 Applied Nonlinear Optimization. Preparatory question. Lecture 9: Sequential quadratic programming. Anders Forsgren

SF2822 Applied Nonlinear Optimization. Preparatory question. Lecture 9: Sequential quadratic programming. Anders Forsgren SF2822 Applied Nonlinear Optimization Lecture 9: Sequential quadratic programming Anders Forsgren SF2822 Applied Nonlinear Optimization, KTH / 24 Lecture 9, 207/208 Preparatory question. Try to solve theory

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-3: Unconstrained optimization II Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428

More information

MAT 1332: CALCULUS FOR LIFE SCIENCES. Contents. 1. Review: Linear Algebra II Vectors and matrices Definition. 1.2.

MAT 1332: CALCULUS FOR LIFE SCIENCES. Contents. 1. Review: Linear Algebra II Vectors and matrices Definition. 1.2. MAT 1332: CALCULUS FOR LIFE SCIENCES JING LI Contents 1 Review: Linear Algebra II Vectors and matrices 1 11 Definition 1 12 Operations 1 2 Linear Algebra III Inverses and Determinants 1 21 Inverse Matrices

More information

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725 Numerical Linear Algebra Primer Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: proximal gradient descent Consider the problem min g(x) + h(x) with g, h convex, g differentiable, and h simple

More information

Line Search Algorithms

Line Search Algorithms Lab 1 Line Search Algorithms Investigate various Line-Search algorithms for numerical opti- Lab Objective: mization. Overview of Line Search Algorithms Imagine you are out hiking on a mountain, and you

More information

Matrix Derivatives and Descent Optimization Methods

Matrix Derivatives and Descent Optimization Methods Matrix Derivatives and Descent Optimization Methods 1 Qiang Ning Department of Electrical and Computer Engineering Beckman Institute for Advanced Science and Techonology University of Illinois at Urbana-Champaign

More information

1 Solutions to selected problems

1 Solutions to selected problems Solutions to selected problems Section., #a,c,d. a. p x = n for i = n : 0 p x = xp x + i end b. z = x, y = x for i = : n y = y + x i z = zy end c. y = (t x ), p t = a for i = : n y = y(t x i ) p t = p

More information

Numerical Methods I Solving Nonlinear Equations

Numerical Methods I Solving Nonlinear Equations Numerical Methods I Solving Nonlinear Equations Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 16th, 2014 A. Donev (Courant Institute)

More information

2.1 Matrices. 3 5 Solve for the variables in the following matrix equation.

2.1 Matrices. 3 5 Solve for the variables in the following matrix equation. 2.1 Matrices Reminder: A matrix with m rows and n columns has size m x n. (This is also sometimes referred to as the order of the matrix.) The entry in the ith row and jth column of a matrix A is denoted

More information

PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.1/22

PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.1/22 PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP Michal Kočvara Institute of Information Theory and Automation Academy of Sciences of the Czech Republic and Czech Technical University

More information

Lecture 14: October 17

Lecture 14: October 17 1-725/36-725: Convex Optimization Fall 218 Lecture 14: October 17 Lecturer: Lecturer: Ryan Tibshirani Scribes: Pengsheng Guo, Xian Zhou Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Selected Topics in Optimization. Some slides borrowed from

Selected Topics in Optimization. Some slides borrowed from Selected Topics in Optimization Some slides borrowed from http://www.stat.cmu.edu/~ryantibs/convexopt/ Overview Optimization problems are almost everywhere in statistics and machine learning. Input Model

More information

5 Handling Constraints

5 Handling Constraints 5 Handling Constraints Engineering design optimization problems are very rarely unconstrained. Moreover, the constraints that appear in these problems are typically nonlinear. This motivates our interest

More information

ECE580 Partial Solution to Problem Set 3

ECE580 Partial Solution to Problem Set 3 ECE580 Fall 2015 Solution to Problem Set 3 October 23, 2015 1 ECE580 Partial Solution to Problem Set 3 These problems are from the textbook by Chong and Zak, 4th edition, which is the textbook for the

More information

Unconstrained optimization

Unconstrained optimization Chapter 4 Unconstrained optimization An unconstrained optimization problem takes the form min x Rnf(x) (4.1) for a target functional (also called objective function) f : R n R. In this chapter and throughout

More information

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09 Numerical Optimization 1 Working Horse in Computer Vision Variational Methods Shape Analysis Machine Learning Markov Random Fields Geometry Common denominator: optimization problems 2 Overview of Methods

More information

Part 2: Linesearch methods for unconstrained optimization. Nick Gould (RAL)

Part 2: Linesearch methods for unconstrained optimization. Nick Gould (RAL) Part 2: Linesearch methods for unconstrained optimization Nick Gould (RAL) minimize x IR n f(x) MSc course on nonlinear optimization UNCONSTRAINED MINIMIZATION minimize x IR n f(x) where the objective

More information

Quadratic Programming

Quadratic Programming Quadratic Programming Outline Linearly constrained minimization Linear equality constraints Linear inequality constraints Quadratic objective function 2 SideBar: Matrix Spaces Four fundamental subspaces

More information

Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2

Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2 Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2 Coralia Cartis, University of Oxford INFOMM CDT: Modelling, Analysis and Computation of Continuous Real-World Problems Methods

More information

, b = 0. (2) 1 2 The eigenvectors of A corresponding to the eigenvalues λ 1 = 1, λ 2 = 3 are

, b = 0. (2) 1 2 The eigenvectors of A corresponding to the eigenvalues λ 1 = 1, λ 2 = 3 are Quadratic forms We consider the quadratic function f : R 2 R defined by f(x) = 2 xt Ax b T x with x = (x, x 2 ) T, () where A R 2 2 is symmetric and b R 2. We will see that, depending on the eigenvalues

More information

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ISSUED 24 FEBRUARY 2018 1 Gaussian elimination Let A be an (m n)-matrix Consider the following row operations on A (1) Swap the positions any

More information

ECE133A Applied Numerical Computing Additional Lecture Notes

ECE133A Applied Numerical Computing Additional Lecture Notes Winter Quarter 2018 ECE133A Applied Numerical Computing Additional Lecture Notes L. Vandenberghe ii Contents 1 LU factorization 1 1.1 Definition................................. 1 1.2 Nonsingular sets

More information

An Iterative Descent Method

An Iterative Descent Method Conjugate Gradient: An Iterative Descent Method The Plan Review Iterative Descent Conjugate Gradient Review : Iterative Descent Iterative Descent is an unconstrained optimization process x (k+1) = x (k)

More information

Optimization Methods. Lecture 18: Optimality Conditions and. Gradient Methods. for Unconstrained Optimization

Optimization Methods. Lecture 18: Optimality Conditions and. Gradient Methods. for Unconstrained Optimization 5.93 Optimization Methods Lecture 8: Optimality Conditions and Gradient Methods for Unconstrained Optimization Outline. Necessary and sucient optimality conditions Slide. Gradient m e t h o d s 3. The

More information

MATH 4211/6211 Optimization Basics of Optimization Problems

MATH 4211/6211 Optimization Basics of Optimization Problems MATH 4211/6211 Optimization Basics of Optimization Problems Xiaojing Ye Department of Mathematics & Statistics Georgia State University Xiaojing Ye, Math & Stat, Georgia State University 0 A standard minimization

More information

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization Numerical Linear Algebra Primer Ryan Tibshirani Convex Optimization 10-725 Consider Last time: proximal Newton method min x g(x) + h(x) where g, h convex, g twice differentiable, and h simple. Proximal

More information

Lecture Note 1: Background

Lecture Note 1: Background ECE5463: Introduction to Robotics Lecture Note 1: Background Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 1 (ECE5463 Sp18)

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning First-Order Methods, L1-Regularization, Coordinate Descent Winter 2016 Some images from this lecture are taken from Google Image Search. Admin Room: We ll count final numbers

More information

Written Examination

Written Examination Division of Scientific Computing Department of Information Technology Uppsala University Optimization Written Examination 202-2-20 Time: 4:00-9:00 Allowed Tools: Pocket Calculator, one A4 paper with notes

More information

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

More information

Lecture 7: CS395T Numerical Optimization for Graphics and AI Trust Region Methods

Lecture 7: CS395T Numerical Optimization for Graphics and AI Trust Region Methods Lecture 7: CS395T Numerical Optimization for Graphics and AI Trust Region Methods Qixing Huang The University of Texas at Austin huangqx@cs.utexas.edu 1 Disclaimer This note is adapted from Section 4 of

More information

This manuscript is for review purposes only.

This manuscript is for review purposes only. 1 2 3 4 5 6 7 8 9 10 11 12 THE USE OF QUADRATIC REGULARIZATION WITH A CUBIC DESCENT CONDITION FOR UNCONSTRAINED OPTIMIZATION E. G. BIRGIN AND J. M. MARTíNEZ Abstract. Cubic-regularization and trust-region

More information

AM 205: lecture 18. Last time: optimization methods Today: conditions for optimality

AM 205: lecture 18. Last time: optimization methods Today: conditions for optimality AM 205: lecture 18 Last time: optimization methods Today: conditions for optimality Existence of Global Minimum For example: f (x, y) = x 2 + y 2 is coercive on R 2 (global min. at (0, 0)) f (x) = x 3

More information

FIXED POINT ITERATIONS

FIXED POINT ITERATIONS FIXED POINT ITERATIONS MARKUS GRASMAIR 1. Fixed Point Iteration for Non-linear Equations Our goal is the solution of an equation (1) F (x) = 0, where F : R n R n is a continuous vector valued mapping in

More information

10.34 Numerical Methods Applied to Chemical Engineering Fall Quiz #1 Review

10.34 Numerical Methods Applied to Chemical Engineering Fall Quiz #1 Review 10.34 Numerical Methods Applied to Chemical Engineering Fall 2015 Quiz #1 Review Study guide based on notes developed by J.A. Paulson, modified by K. Severson Linear Algebra We ve covered three major topics

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

ECE580 Fall 2015 Solution to Midterm Exam 1 October 23, Please leave fractions as fractions, but simplify them, etc.

ECE580 Fall 2015 Solution to Midterm Exam 1 October 23, Please leave fractions as fractions, but simplify them, etc. ECE580 Fall 2015 Solution to Midterm Exam 1 October 23, 2015 1 Name: Solution Score: /100 This exam is closed-book. You must show ALL of your work for full credit. Please read the questions carefully.

More information

Optimization. Yuh-Jye Lee. March 21, Data Science and Machine Intelligence Lab National Chiao Tung University 1 / 29

Optimization. Yuh-Jye Lee. March 21, Data Science and Machine Intelligence Lab National Chiao Tung University 1 / 29 Optimization Yuh-Jye Lee Data Science and Machine Intelligence Lab National Chiao Tung University March 21, 2017 1 / 29 You Have Learned (Unconstrained) Optimization in Your High School Let f (x) = ax

More information

Chapter 4. Unconstrained optimization

Chapter 4. Unconstrained optimization Chapter 4. Unconstrained optimization Version: 28-10-2012 Material: (for details see) Chapter 11 in [FKS] (pp.251-276) A reference e.g. L.11.2 refers to the corresponding Lemma in the book [FKS] PDF-file

More information

Non-polynomial Least-squares fitting

Non-polynomial Least-squares fitting Applied Math 205 Last time: piecewise polynomial interpolation, least-squares fitting Today: underdetermined least squares, nonlinear least squares Homework 1 (and subsequent homeworks) have several parts

More information

Trust Region Methods. Lecturer: Pradeep Ravikumar Co-instructor: Aarti Singh. Convex Optimization /36-725

Trust Region Methods. Lecturer: Pradeep Ravikumar Co-instructor: Aarti Singh. Convex Optimization /36-725 Trust Region Methods Lecturer: Pradeep Ravikumar Co-instructor: Aarti Singh Convex Optimization 10-725/36-725 Trust Region Methods min p m k (p) f(x k + p) s.t. p 2 R k Iteratively solve approximations

More information

CHAPTER 11. A Revision. 1. The Computers and Numbers therein

CHAPTER 11. A Revision. 1. The Computers and Numbers therein CHAPTER A Revision. The Computers and Numbers therein Traditional computer science begins with a finite alphabet. By stringing elements of the alphabet one after another, one obtains strings. A set of

More information

Numerical Optimization Prof. Shirish K. Shevade Department of Computer Science and Automation Indian Institute of Science, Bangalore

Numerical Optimization Prof. Shirish K. Shevade Department of Computer Science and Automation Indian Institute of Science, Bangalore Numerical Optimization Prof. Shirish K. Shevade Department of Computer Science and Automation Indian Institute of Science, Bangalore Lecture - 13 Steepest Descent Method Hello, welcome back to this series

More information

University of Houston, Department of Mathematics Numerical Analysis, Fall 2005

University of Houston, Department of Mathematics Numerical Analysis, Fall 2005 3 Numerical Solution of Nonlinear Equations and Systems 3.1 Fixed point iteration Reamrk 3.1 Problem Given a function F : lr n lr n, compute x lr n such that ( ) F(x ) = 0. In this chapter, we consider

More information

Linear and Nonlinear Optimization

Linear and Nonlinear Optimization Linear and Nonlinear Optimization German University in Cairo October 10, 2016 Outline Introduction Gradient descent method Gauss-Newton method Levenberg-Marquardt method Case study: Straight lines have

More information

Nonlinear Optimization

Nonlinear Optimization Nonlinear Optimization (Com S 477/577 Notes) Yan-Bin Jia Nov 7, 2017 1 Introduction Given a single function f that depends on one or more independent variable, we want to find the values of those variables

More information

Unconstrained Optimization

Unconstrained Optimization 1 / 36 Unconstrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University February 2, 2015 2 / 36 3 / 36 4 / 36 5 / 36 1. preliminaries 1.1 local approximation

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming Kees Roos e-mail: C.Roos@ewi.tudelft.nl URL: http://www.isa.ewi.tudelft.nl/ roos LNMB Course De Uithof, Utrecht February 6 - May 8, A.D. 2006 Optimization Group 1 Outline for week

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science EAD 115 Numerical Solution of Engineering and Scientific Problems David M. Rocke Department of Applied Science Multidimensional Unconstrained Optimization Suppose we have a function f() of more than one

More information

k is a product of elementary matrices.

k is a product of elementary matrices. Mathematics, Spring Lecture (Wilson) Final Eam May, ANSWERS Problem (5 points) (a) There are three kinds of elementary row operations and associated elementary matrices. Describe what each kind of operation

More information

Computational Methods. Least Squares Approximation/Optimization

Computational Methods. Least Squares Approximation/Optimization Computational Methods Least Squares Approximation/Optimization Manfred Huber 2011 1 Least Squares Least squares methods are aimed at finding approximate solutions when no precise solution exists Find the

More information

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method.

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method. Optimization Unconstrained optimization One-dimensional Multi-dimensional Newton s method Basic Newton Gauss- Newton Quasi- Newton Descent methods Gradient descent Conjugate gradient Constrained optimization

More information

1. Method 1: bisection. The bisection methods starts from two points a 0 and b 0 such that

1. Method 1: bisection. The bisection methods starts from two points a 0 and b 0 such that Chapter 4 Nonlinear equations 4.1 Root finding Consider the problem of solving any nonlinear relation g(x) = h(x) in the real variable x. We rephrase this problem as one of finding the zero (root) of a

More information