PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.1/22

Size: px
Start display at page:

Download "PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.1/22"

Transcription

1 PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP Michal Kočvara Institute of Information Theory and Automation Academy of Sciences of the Czech Republic and Czech Technical University kocvara@utia.cas.cz PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.1/22

2 PBM Method for convex NLP R. Polyak 87 Ben-Tal, Zibulevsky 92, 97 Breitfeld, Shanno 94 Combination of: (exterior) Penalty meth., (interior) Barrier meth., Method of Multipliers (CP) min {f(x) : g i(x) 0, i = 1,..., m} x R n ϕ(t) b 1 ϕ (t) b PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.2/22

3 PBM in semidefinite programming Problem: where 1. f : R n R is C 2 min {f(x) : A(x) 0} x Rn 2. A : R n S d is generally nonconvex matrix opretaror PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.3/22

4 PBM in semidefinite programming Problem: where 1. f : R n R is C 2 min {f(x) : A(x) 0} x Rn 2. A : R n S d is generally nonconvex matrix opretaror Question: How can the matrix constraint A(x) 0 be treated by Penalty-Barrier approach? Idea: Find an augmented Lagrangian as follows: F(x, U, p) = f(x) + U, Φ p (A(x)) Sd PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.3/22

5 Construction of the penalty function Φ p Given: scalar valued penalty function ϕ matrix A = S ΛS, where Λ = diag (λ 1, λ 2,..., λ d ) Define A Φ p S T pϕ ( λ1 p ) 0 pϕ ( λ2 p ) pϕ ( λd p ) S any positive eigenvalue of A is penalized by ϕ PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.4/22

6 PBM algorithm for semidefinite problems We have A(x) 0 Φ p (A(x)) 0 and the corresponding augmented Lagrangian: PBM algorithm: F(x, U, p) := f(x) + U, Φ p (A(x)) Sd (i) Find x k+1 satisfying x F(x, U k, p k ) ε k (ii) U k+1 = D A Φ p (A(x); U k ) (iii) p k+1 < p k PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.5/22

7 PENNON for nonconvex problems Idea: replace Newton by Levenberg-Marquardt Given x, compute the gradient g and Hessian H at x. Compute the minimal eigenvalue λ min of H. If λ min < 10 3, set Compute the search direction Ĥ(α) = H + ( λ min + α)i d(α) = Ĥ(α) 1 g Line-search in direction d( α). Step-length s. Set x new = x + sd(α) PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.6/22

8 PBM for nonconvex problems Ĥ(α) = H + ( λ min + α)i d(α) = Ĥ(α) 1 g x new = x + sd(α) Simple version: α [ λ min, 2λ min ]; no convergence proof, works very well in praxis Sophisticated version: Full Trust-Region method; convergence proof, often slower in praxis PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.7/22

9 Computing β Choose initial β > 0. Perform Cholesky factorization of H + βi. If it fails, go to Step (i); otherwise go to Step (iii). (i) Set β 2 β. (ii) Perform Cholesky factorization of H + βi. If it fails, go to Step (i); otherwise stop and return β = β. (iii) Set β β/2. (iv) Perform Cholesky factorization of H + βi. If it fails stop and return β = 2 β; otherwise go to Step (iii). On output, β [ λ min, 2λ min ] PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.8/22

10 PENNON for NSDP: theory Based on Breitfeld-Shanno, 1993; generalized by M. Stingl, Assume: 1. f, A C 2 2. x Ω nonempty, bounded 3. Constraint Qualification Then an index set K so that: x k ˆx, k K U k Û, k K (ˆx, Û) satisfies first-order optimality conditions PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.9/22

11 The reciprocal barrier function in SDP Find a penalty function ϕ which allows direct computation of Φ, its gradient and Hessian: Φ(A) = (A I) 1 I (ϕ := 1 t 1 1) Then Φ(A(x)) = (A I) 1 A(A I) 1 x i x i PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.10/22

12 The reciprocal barrier function in SDP Find a penalty function ϕ which allows direct computation of Φ, its gradient and Hessian: Then Φ(A) = (A I) 1 I (ϕ := 1 t 1 1) 2 x i x j Φ(A(x)) = 1 A(x) 1 A(x) (A(x) I) (A(x) I) (A(x) I) 1 x i x j + (A(x) I) 1 2 A(x) x i x j (A(x) I) 1 1 A(x) 1 A(x) + (A(x) I) (A(x) I) (A(x) I) 1 x j x i PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.10/22

13 Construction of the penalty function Complexity of Hessian assembling - linear SDP: O(d 3 n + d 2 n 2 ) for dense matrices O(n 2 K 2 ) for sparse matrices (K... max. number of nonzeros in A i, i = 1,..., n) Compare to O(d 4 + d 3 n + d 2 n 2 ) in the general case { min b T x : A(x) 0 } x R n A : R n S d PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.11/22

14 BMI problems The same technique as for nonconvex NLP can be used for nonconvex SDP problems, in particular for optimization problems with bilinear matrix inequalities: s.t. min x R n c, x x i [a, b] i = 1,..., n n n n A 0 + x i A i + x i x j K ij 0 i=1 i=1 j=1 PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.12/22

15 BMI problems Feasibility BMI problem: min x R n,λ λ s.t. x i [a, b] i = 1,..., n n n n A 0 + x i A i + x i x j K ij λi 0 i=1 i=1 j=i PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.13/22

16 BMI problems Feasibility BMI problem: min x R n,λ λ + ρ x 2 s.t. x i [a, b] i = 1,..., n n n n A 0 + x i A i + x i x j K ij λi 0 i=1 i=1 j=i PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.13/22

17 GEVP optimization problems Special kind of BMI: generalized eigenvalue problem. Find, w.r.t. variable x, the maximal eigenvalue of GEVP optimization problem: A(x)ω = λb(x)ω. min x R n,λ λ s.t. A(x) λb(x) 0 This is a quasiconvex problem: there exists a unique global minimum PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.14/22

18 Quasiconvex functions Definition: A function f : R n R is called quasiconvex if its domain and all level sets {x domf f(x) α} are convex. PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.15/22

PENNON A Generalized Augmented Lagrangian Method for Convex NLP and SDP p.1/39

PENNON A Generalized Augmented Lagrangian Method for Convex NLP and SDP p.1/39 PENNON A Generalized Augmented Lagrangian Method for Convex NLP and SDP Michal Kočvara Institute of Information Theory and Automation Academy of Sciences of the Czech Republic and Czech Technical University

More information

PENNON A Code for Convex Nonlinear and Semidefinite Programming

PENNON A Code for Convex Nonlinear and Semidefinite Programming PENNON A Code for Convex Nonlinear and Semidefinite Programming Michal Kočvara Michael Stingl Abstract We introduce a computer program PENNON for the solution of problems of convex Nonlinear and Semidefinite

More information

Solving linear and non-linear SDP by PENNON

Solving linear and non-linear SDP by PENNON Solving linear and non-linear SDP by PENNON Michal Kočvara School of Mathematics, The University of Birmingham University of Warwick, February 2010 Outline Why nonlinear SDP? PENNON the new generation

More information

PENNON: Software for linear and nonlinear matrix inequalities

PENNON: Software for linear and nonlinear matrix inequalities PENNON: Software for linear and nonlinear matrix inequalities Michal Kočvara 1 and Michael Stingl 2 1 School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK and Institute of Information

More information

Introducing PENLAB a MATLAB code for NLP-SDP

Introducing PENLAB a MATLAB code for NLP-SDP Introducing PENLAB a MATLAB code for NLP-SDP Michal Kočvara School of Mathematics, The University of Birmingham jointly with Jan Fiala Numerical Algorithms Group Michael Stingl University of Erlangen-Nürnberg

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 9 Non-linear programming In case of LP, the goal

More information

Solving Nonconvex SDP Problems of Structural Optimization with Stability Control

Solving Nonconvex SDP Problems of Structural Optimization with Stability Control Copyright information to be inserted by the Publishers Solving Nonconvex SDP Problems of Structural Optimization with Stability Control MICHAL KOČVARA Institute of Information Theory and Automation, Pod

More information

1 Computing with constraints

1 Computing with constraints Notes for 2017-04-26 1 Computing with constraints Recall that our basic problem is minimize φ(x) s.t. x Ω where the feasible set Ω is defined by equality and inequality conditions Ω = {x R n : c i (x)

More information

Reduced-order output feedback control design with specsdp, a code for linear / nonlinear SDP problems

Reduced-order output feedback control design with specsdp, a code for linear / nonlinear SDP problems Reduced-order output feedback control design with specsdp, a code for linear / nonlinear SDP problems J.B. Thevenet and P. Apkarian and D. Noll ONERA-CERT, Control System department, 2 Av. Edouard Belin,

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

On the solution of large-scale SDP problems by the modified barrier method using iterative solvers

On the solution of large-scale SDP problems by the modified barrier method using iterative solvers Mathematical Programming manuscript No. (will be inserted by the editor) Michal Kočvara Michael Stingl On the solution of large-scale SDP problems by the modified barrier method using iterative solvers

More information

Penalty and Barrier Methods. So we again build on our unconstrained algorithms, but in a different way.

Penalty and Barrier Methods. So we again build on our unconstrained algorithms, but in a different way. AMSC 607 / CMSC 878o Advanced Numerical Optimization Fall 2008 UNIT 3: Constrained Optimization PART 3: Penalty and Barrier Methods Dianne P. O Leary c 2008 Reference: N&S Chapter 16 Penalty and Barrier

More information

Solving large Semidefinite Programs - Part 1 and 2

Solving large Semidefinite Programs - Part 1 and 2 Solving large Semidefinite Programs - Part 1 and 2 Franz Rendl http://www.math.uni-klu.ac.at Alpen-Adria-Universität Klagenfurt Austria F. Rendl, Singapore workshop 2006 p.1/34 Overview Limits of Interior

More information

On the solution of large-scale SDP problems by the modified barrier method using iterative solvers

On the solution of large-scale SDP problems by the modified barrier method using iterative solvers Mathematical Programming manuscript No. (will be inserted by the editor) Michal Kočvara Michael Stingl On the solution of large-scale SDP problems by the modified barrier method using iterative solvers

More information

Projection methods to solve SDP

Projection methods to solve SDP Projection methods to solve SDP Franz Rendl http://www.math.uni-klu.ac.at Alpen-Adria-Universität Klagenfurt Austria F. Rendl, Oberwolfach Seminar, May 2010 p.1/32 Overview Augmented Primal-Dual Method

More information

Convex Optimization Boyd & Vandenberghe. 5. Duality

Convex Optimization Boyd & Vandenberghe. 5. Duality 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Lecture 3. Optimization Problems and Iterative Algorithms

Lecture 3. Optimization Problems and Iterative Algorithms Lecture 3 Optimization Problems and Iterative Algorithms January 13, 2016 This material was jointly developed with Angelia Nedić at UIUC for IE 598ns Outline Special Functions: Linear, Quadratic, Convex

More information

Lagrangian Duality Theory

Lagrangian Duality Theory Lagrangian Duality Theory Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Chapter 14.1-4 1 Recall Primal and Dual

More information

Effective reformulations of the truss topology design problem

Effective reformulations of the truss topology design problem Effective reformulations of the truss topology design problem Michal Kočvara and Jiří V. Outrata Abstract We present a new formulation of the truss topology problem that results in unique design and unique

More information

On the solution of large-scale SDP problems by the modified barrier method using iterative solvers

On the solution of large-scale SDP problems by the modified barrier method using iterative solvers Mathematical Programming manuscript No. (will be inserted by the editor) Michal Kočvara Michael Stingl On the solution of large-scale SDP problems by the modified barrier method using iterative solvers

More information

5 Handling Constraints

5 Handling Constraints 5 Handling Constraints Engineering design optimization problems are very rarely unconstrained. Moreover, the constraints that appear in these problems are typically nonlinear. This motivates our interest

More information

4 Newton Method. Unconstrained Convex Optimization 21. H(x)p = f(x). Newton direction. Why? Recall second-order staylor series expansion:

4 Newton Method. Unconstrained Convex Optimization 21. H(x)p = f(x). Newton direction. Why? Recall second-order staylor series expansion: Unconstrained Convex Optimization 21 4 Newton Method H(x)p = f(x). Newton direction. Why? Recall second-order staylor series expansion: f(x + p) f(x)+p T f(x)+ 1 2 pt H(x)p ˆf(p) In general, ˆf(p) won

More information

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Duality Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Lagrangian Consider the optimization problem in standard form

More information

Lecture: Duality.

Lecture: Duality. Lecture: Duality http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/35 Lagrange dual problem weak and strong

More information

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006 Quiz Discussion IE417: Nonlinear Programming: Lecture 12 Jeff Linderoth Department of Industrial and Systems Engineering Lehigh University 16th March 2006 Motivation Why do we care? We are interested in

More information

ECE580 Fall 2015 Solution to Midterm Exam 1 October 23, Please leave fractions as fractions, but simplify them, etc.

ECE580 Fall 2015 Solution to Midterm Exam 1 October 23, Please leave fractions as fractions, but simplify them, etc. ECE580 Fall 2015 Solution to Midterm Exam 1 October 23, 2015 1 Name: Solution Score: /100 This exam is closed-book. You must show ALL of your work for full credit. Please read the questions carefully.

More information

Gradient Descent. Dr. Xiaowei Huang

Gradient Descent. Dr. Xiaowei Huang Gradient Descent Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/ Up to now, Three machine learning algorithms: decision tree learning k-nn linear regression only optimization objectives are discussed,

More information

15. Conic optimization

15. Conic optimization L. Vandenberghe EE236C (Spring 216) 15. Conic optimization conic linear program examples modeling duality 15-1 Generalized (conic) inequalities Conic inequality: a constraint x K where K is a convex cone

More information

Numerical Optimization

Numerical Optimization Constrained Optimization Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on Constrained Optimization Constrained Optimization Problem: min h j (x) 0,

More information

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Lagrange Duality Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Lagrangian Dual function Dual

More information

ECE580 Exam 1 October 4, Please do not write on the back of the exam pages. Extra paper is available from the instructor.

ECE580 Exam 1 October 4, Please do not write on the back of the exam pages. Extra paper is available from the instructor. ECE580 Exam 1 October 4, 2012 1 Name: Solution Score: /100 You must show ALL of your work for full credit. This exam is closed-book. Calculators may NOT be used. Please leave fractions as fractions, etc.

More information

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09 Numerical Optimization 1 Working Horse in Computer Vision Variational Methods Shape Analysis Machine Learning Markov Random Fields Geometry Common denominator: optimization problems 2 Overview of Methods

More information

Optimization and Root Finding. Kurt Hornik

Optimization and Root Finding. Kurt Hornik Optimization and Root Finding Kurt Hornik Basics Root finding and unconstrained smooth optimization are closely related: Solving ƒ () = 0 can be accomplished via minimizing ƒ () 2 Slide 2 Basics Root finding

More information

ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints

ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints Instructor: Prof. Kevin Ross Scribe: Nitish John October 18, 2011 1 The Basic Goal The main idea is to transform a given constrained

More information

INTERIOR-POINT METHODS FOR NONCONVEX NONLINEAR PROGRAMMING: CONVERGENCE ANALYSIS AND COMPUTATIONAL PERFORMANCE

INTERIOR-POINT METHODS FOR NONCONVEX NONLINEAR PROGRAMMING: CONVERGENCE ANALYSIS AND COMPUTATIONAL PERFORMANCE INTERIOR-POINT METHODS FOR NONCONVEX NONLINEAR PROGRAMMING: CONVERGENCE ANALYSIS AND COMPUTATIONAL PERFORMANCE HANDE Y. BENSON, ARUN SEN, AND DAVID F. SHANNO Abstract. In this paper, we present global

More information

10 Numerical methods for constrained problems

10 Numerical methods for constrained problems 10 Numerical methods for constrained problems min s.t. f(x) h(x) = 0 (l), g(x) 0 (m), x X The algorithms can be roughly divided the following way: ˆ primal methods: find descent direction keeping inside

More information

Penalty and Barrier Methods General classical constrained minimization problem minimize f(x) subject to g(x) 0 h(x) =0 Penalty methods are motivated by the desire to use unconstrained optimization techniques

More information

Computational Optimization. Augmented Lagrangian NW 17.3

Computational Optimization. Augmented Lagrangian NW 17.3 Computational Optimization Augmented Lagrangian NW 17.3 Upcoming Schedule No class April 18 Friday, April 25, in class presentations. Projects due unless you present April 25 (free extension until Monday

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

CONSTRAINED NONLINEAR PROGRAMMING

CONSTRAINED NONLINEAR PROGRAMMING 149 CONSTRAINED NONLINEAR PROGRAMMING We now turn to methods for general constrained nonlinear programming. These may be broadly classified into two categories: 1. TRANSFORMATION METHODS: In this approach

More information

III. Applications in convex optimization

III. Applications in convex optimization III. Applications in convex optimization nonsymmetric interior-point methods partial separability and decomposition partial separability first order methods interior-point methods Conic linear optimization

More information

2.3 Linear Programming

2.3 Linear Programming 2.3 Linear Programming Linear Programming (LP) is the term used to define a wide range of optimization problems in which the objective function is linear in the unknown variables and the constraints are

More information

NON LINEAR SPECTRAL SDP METHOD FOR BMI-CONSTRAINED PROBLEMS : APPLICATIONS TO CONTROL DESIGN

NON LINEAR SPECTRAL SDP METHOD FOR BMI-CONSTRAINED PROBLEMS : APPLICATIONS TO CONTROL DESIGN NON LINEAR SPECTRAL SDP METHOD FOR BMI-CONSTRAINED PROBLEMS : APPLICATIONS TO CONTROL DESIGN Jean-Baptiste Thevenet ONERA-CERT, 2 av. Edouard Belin, 31055 Toulouse, France and UPS-MIP (Mathmatiques pour

More information

Algorithms for constrained local optimization

Algorithms for constrained local optimization Algorithms for constrained local optimization Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Algorithms for constrained local optimization p. Feasible direction methods Algorithms for constrained

More information

Solving polynomial static output feedback problems with PENBMI

Solving polynomial static output feedback problems with PENBMI Solving polynomial static output feedback problems with PENBMI Didier Henrion, Johan Löfberg, Michal Kočvara, Michael Stingl Abstract An algebraic formulation is proposed for the static output feedback

More information

Outline. Scientific Computing: An Introductory Survey. Optimization. Optimization Problems. Examples: Optimization Problems

Outline. Scientific Computing: An Introductory Survey. Optimization. Optimization Problems. Examples: Optimization Problems Outline Scientific Computing: An Introductory Survey Chapter 6 Optimization 1 Prof. Michael. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

CS-E4830 Kernel Methods in Machine Learning

CS-E4830 Kernel Methods in Machine Learning CS-E4830 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 27. September, 2017 Juho Rousu 27. September, 2017 1 / 45 Convex optimization Convex optimisation This

More information

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming E5295/5B5749 Convex optimization with engineering applications Lecture 5 Convex programming and semidefinite programming A. Forsgren, KTH 1 Lecture 5 Convex optimization 2006/2007 Convex quadratic program

More information

Solving MPECs Implicit Programming and NLP Methods

Solving MPECs Implicit Programming and NLP Methods Solving MPECs Implicit Programming and NLP Methods Michal Kočvara Academy of Sciences of the Czech Republic September 2005 1 Mathematical Programs with Equilibrium Constraints Mechanical motivation Mechanical

More information

Interior Point Methods for Convex Quadratic and Convex Nonlinear Programming

Interior Point Methods for Convex Quadratic and Convex Nonlinear Programming School of Mathematics T H E U N I V E R S I T Y O H F E D I N B U R G Interior Point Methods for Convex Quadratic and Convex Nonlinear Programming Jacek Gondzio Email: J.Gondzio@ed.ac.uk URL: http://www.maths.ed.ac.uk/~gondzio

More information

LINEAR AND NONLINEAR PROGRAMMING

LINEAR AND NONLINEAR PROGRAMMING LINEAR AND NONLINEAR PROGRAMMING Stephen G. Nash and Ariela Sofer George Mason University The McGraw-Hill Companies, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming Kees Roos e-mail: C.Roos@ewi.tudelft.nl URL: http://www.isa.ewi.tudelft.nl/ roos LNMB Course De Uithof, Utrecht February 6 - May 8, A.D. 2006 Optimization Group 1 Outline for week

More information

Effective reformulations of the truss topology design problem

Effective reformulations of the truss topology design problem Effective reformulations of the truss topology design problem Michal Kočvara and Jiří V. Outrata Abstract We present a new formulation of the truss topology problem that results in unique design and unique

More information

Lift me up but not too high Fast algorithms to solve SDP s with block-diagonal constraints

Lift me up but not too high Fast algorithms to solve SDP s with block-diagonal constraints Lift me up but not too high Fast algorithms to solve SDP s with block-diagonal constraints Nicolas Boumal Université catholique de Louvain (Belgium) IDeAS seminar, May 13 th, 2014, Princeton The Riemannian

More information

5.6 Penalty method and augmented Lagrangian method

5.6 Penalty method and augmented Lagrangian method 5.6 Penalty method and augmented Lagrangian method Consider a generic NLP problem min f (x) s.t. c i (x) 0 i I c i (x) = 0 i E (1) x R n where f and the c i s are of class C 1 or C 2, and I and E are the

More information

Lectures 9 and 10: Constrained optimization problems and their optimality conditions

Lectures 9 and 10: Constrained optimization problems and their optimality conditions Lectures 9 and 10: Constrained optimization problems and their optimality conditions Coralia Cartis, Mathematical Institute, University of Oxford C6.2/B2: Continuous Optimization Lectures 9 and 10: Constrained

More information

Multi-stage convex relaxation approach for low-rank structured PSD matrix recovery

Multi-stage convex relaxation approach for low-rank structured PSD matrix recovery Multi-stage convex relaxation approach for low-rank structured PSD matrix recovery Department of Mathematics & Risk Management Institute National University of Singapore (Based on a joint work with Shujun

More information

CONVERGENCE ANALYSIS OF AN INTERIOR-POINT METHOD FOR NONCONVEX NONLINEAR PROGRAMMING

CONVERGENCE ANALYSIS OF AN INTERIOR-POINT METHOD FOR NONCONVEX NONLINEAR PROGRAMMING CONVERGENCE ANALYSIS OF AN INTERIOR-POINT METHOD FOR NONCONVEX NONLINEAR PROGRAMMING HANDE Y. BENSON, ARUN SEN, AND DAVID F. SHANNO Abstract. In this paper, we present global and local convergence results

More information

Module 04 Optimization Problems KKT Conditions & Solvers

Module 04 Optimization Problems KKT Conditions & Solvers Module 04 Optimization Problems KKT Conditions & Solvers Ahmad F. Taha EE 5243: Introduction to Cyber-Physical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html September

More information

On Conic QPCCs, Conic QCQPs and Completely Positive Programs

On Conic QPCCs, Conic QCQPs and Completely Positive Programs Noname manuscript No. (will be inserted by the editor) On Conic QPCCs, Conic QCQPs and Completely Positive Programs Lijie Bai John E.Mitchell Jong-Shi Pang July 28, 2015 Received: date / Accepted: date

More information

Geometric problems. Chapter Projection on a set. The distance of a point x 0 R n to a closed set C R n, in the norm, is defined as

Geometric problems. Chapter Projection on a set. The distance of a point x 0 R n to a closed set C R n, in the norm, is defined as Chapter 8 Geometric problems 8.1 Projection on a set The distance of a point x 0 R n to a closed set C R n, in the norm, is defined as dist(x 0,C) = inf{ x 0 x x C}. The infimum here is always achieved.

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

Miscellaneous Nonlinear Programming Exercises

Miscellaneous Nonlinear Programming Exercises Miscellaneous Nonlinear Programming Exercises Henry Wolkowicz 2 08 21 University of Waterloo Department of Combinatorics & Optimization Waterloo, Ontario N2L 3G1, Canada Contents 1 Numerical Analysis Background

More information

Research Reports on Mathematical and Computing Sciences

Research Reports on Mathematical and Computing Sciences ISSN 1342-2804 Research Reports on Mathematical and Computing Sciences Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity Hayato Waki,

More information

Multidisciplinary System Design Optimization (MSDO)

Multidisciplinary System Design Optimization (MSDO) Multidisciplinary System Design Optimization (MSDO) Numerical Optimization II Lecture 8 Karen Willcox 1 Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Today s Topics Sequential

More information

Contents. Preface. 1 Introduction Optimization view on mathematical models NLP models, black-box versus explicit expression 3

Contents. Preface. 1 Introduction Optimization view on mathematical models NLP models, black-box versus explicit expression 3 Contents Preface ix 1 Introduction 1 1.1 Optimization view on mathematical models 1 1.2 NLP models, black-box versus explicit expression 3 2 Mathematical modeling, cases 7 2.1 Introduction 7 2.2 Enclosing

More information

Introduction to Machine Learning Lecture 7. Mehryar Mohri Courant Institute and Google Research

Introduction to Machine Learning Lecture 7. Mehryar Mohri Courant Institute and Google Research Introduction to Machine Learning Lecture 7 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Convex Optimization Differentiation Definition: let f : X R N R be a differentiable function,

More information

SUCCESSIVE LINEARIZATION METHODS FOR NONLINEAR SEMIDEFINITE PROGRAMS 1. Preprint 252 August 2003

SUCCESSIVE LINEARIZATION METHODS FOR NONLINEAR SEMIDEFINITE PROGRAMS 1. Preprint 252 August 2003 SUCCESSIVE LINEARIZATION METHODS FOR NONLINEAR SEMIDEFINITE PROGRAMS 1 Christian Kanzow 2, Christian Nagel 2 and Masao Fukushima 3 Preprint 252 August 2003 2 University of Würzburg Institute of Applied

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-3: Unconstrained optimization II Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428

More information

Convex Optimization Theory. Chapter 5 Exercises and Solutions: Extended Version

Convex Optimization Theory. Chapter 5 Exercises and Solutions: Extended Version Convex Optimization Theory Chapter 5 Exercises and Solutions: Extended Version Dimitri P. Bertsekas Massachusetts Institute of Technology Athena Scientific, Belmont, Massachusetts http://www.athenasc.com

More information

Exact Augmented Lagrangian Functions for Nonlinear Semidefinite Programming

Exact Augmented Lagrangian Functions for Nonlinear Semidefinite Programming Exact Augmented Lagrangian Functions for Nonlinear Semidefinite Programming Ellen H. Fukuda Bruno F. Lourenço June 0, 018 Abstract In this paper, we study augmented Lagrangian functions for nonlinear semidefinite

More information

A trust-region method for box-constrained nonlinear semidefinite programs

A trust-region method for box-constrained nonlinear semidefinite programs A trust-region method for box-constrained nonlinear semidefinite programs Akihiko Komatsu 1 and Makoto Yamashita 2 Submitted: November 17, 2014. Abstract: We propose a trust-region method for nonlinear

More information

8 Barrier Methods for Constrained Optimization

8 Barrier Methods for Constrained Optimization IOE 519: NL, Winter 2012 c Marina A. Epelman 55 8 Barrier Methods for Constrained Optimization In this subsection, we will restrict our attention to instances of constrained problem () that have inequality

More information

Lecture 1. 1 Conic programming. MA 796S: Convex Optimization and Interior Point Methods October 8, Consider the conic program. min.

Lecture 1. 1 Conic programming. MA 796S: Convex Optimization and Interior Point Methods October 8, Consider the conic program. min. MA 796S: Convex Optimization and Interior Point Methods October 8, 2007 Lecture 1 Lecturer: Kartik Sivaramakrishnan Scribe: Kartik Sivaramakrishnan 1 Conic programming Consider the conic program min s.t.

More information

Primal-Dual Exterior Point Method for Convex Optimization

Primal-Dual Exterior Point Method for Convex Optimization Primal-Dual Exterior Point Method for Convex Optimization Roman A. Polyak Department of SEOR and Mathematical Sciences Department, George Mason University, 4400 University Dr, Fairfax VA 22030 rpolyak@gmu.edu

More information

Introduction to Nonlinear Stochastic Programming

Introduction to Nonlinear Stochastic Programming School of Mathematics T H E U N I V E R S I T Y O H F R G E D I N B U Introduction to Nonlinear Stochastic Programming Jacek Gondzio Email: J.Gondzio@ed.ac.uk URL: http://www.maths.ed.ac.uk/~gondzio SPS

More information

A Unified Analysis of Nonconvex Optimization Duality and Penalty Methods with General Augmenting Functions

A Unified Analysis of Nonconvex Optimization Duality and Penalty Methods with General Augmenting Functions A Unified Analysis of Nonconvex Optimization Duality and Penalty Methods with General Augmenting Functions Angelia Nedić and Asuman Ozdaglar April 16, 2006 Abstract In this paper, we study a unifying framework

More information

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010 I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec - Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0

More information

Intro to Nonlinear Optimization

Intro to Nonlinear Optimization Intro to Nonlinear Optimization We now rela the proportionality and additivity assumptions of LP What are the challenges of nonlinear programs NLP s? Objectives and constraints can use any function: ma

More information

Methods that avoid calculating the Hessian. Nonlinear Optimization; Steepest Descent, Quasi-Newton. Steepest Descent

Methods that avoid calculating the Hessian. Nonlinear Optimization; Steepest Descent, Quasi-Newton. Steepest Descent Nonlinear Optimization Steepest Descent and Niclas Börlin Department of Computing Science Umeå University niclas.borlin@cs.umu.se A disadvantage with the Newton method is that the Hessian has to be derived

More information

An Augmented Lagrangian Approach for Sparse Principal Component Analysis

An Augmented Lagrangian Approach for Sparse Principal Component Analysis An Augmented Lagrangian Approach for Sparse Principal Component Analysis Zhaosong Lu Yong Zhang July 12, 2009 Abstract Principal component analysis (PCA) is a widely used technique for data analysis and

More information

Primal-dual relationship between Levenberg-Marquardt and central trajectories for linearly constrained convex optimization

Primal-dual relationship between Levenberg-Marquardt and central trajectories for linearly constrained convex optimization Primal-dual relationship between Levenberg-Marquardt and central trajectories for linearly constrained convex optimization Roger Behling a, Clovis Gonzaga b and Gabriel Haeser c March 21, 2013 a Department

More information

ICS-E4030 Kernel Methods in Machine Learning

ICS-E4030 Kernel Methods in Machine Learning ICS-E4030 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 28. September, 2016 Juho Rousu 28. September, 2016 1 / 38 Convex optimization Convex optimisation This

More information

Constrained Optimization Theory

Constrained Optimization Theory Constrained Optimization Theory Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. IMA, August 2016 Stephen Wright (UW-Madison) Constrained Optimization Theory IMA, August

More information

INTERIOR-POINT METHODS ROBERT J. VANDERBEI JOINT WORK WITH H. YURTTAN BENSON REAL-WORLD EXAMPLES BY J.O. COLEMAN, NAVAL RESEARCH LAB

INTERIOR-POINT METHODS ROBERT J. VANDERBEI JOINT WORK WITH H. YURTTAN BENSON REAL-WORLD EXAMPLES BY J.O. COLEMAN, NAVAL RESEARCH LAB 1 INTERIOR-POINT METHODS FOR SECOND-ORDER-CONE AND SEMIDEFINITE PROGRAMMING ROBERT J. VANDERBEI JOINT WORK WITH H. YURTTAN BENSON REAL-WORLD EXAMPLES BY J.O. COLEMAN, NAVAL RESEARCH LAB Outline 2 Introduction

More information

Suppose that the approximate solutions of Eq. (1) satisfy the condition (3). Then (1) if η = 0 in the algorithm Trust Region, then lim inf.

Suppose that the approximate solutions of Eq. (1) satisfy the condition (3). Then (1) if η = 0 in the algorithm Trust Region, then lim inf. Maria Cameron 1. Trust Region Methods At every iteration the trust region methods generate a model m k (p), choose a trust region, and solve the constraint optimization problem of finding the minimum of

More information

Algorithms for nonlinear programming problems II

Algorithms for nonlinear programming problems II Algorithms for nonlinear programming problems II Martin Branda Charles University in Prague Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics Computational Aspects

More information

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 2003 2003.09.02.10 6. The Positivstellensatz Basic semialgebraic sets Semialgebraic sets Tarski-Seidenberg and quantifier elimination Feasibility

More information

On the Local Quadratic Convergence of the Primal-Dual Augmented Lagrangian Method

On the Local Quadratic Convergence of the Primal-Dual Augmented Lagrangian Method Optimization Methods and Software Vol. 00, No. 00, Month 200x, 1 11 On the Local Quadratic Convergence of the Primal-Dual Augmented Lagrangian Method ROMAN A. POLYAK Department of SEOR and Mathematical

More information

4. Algebra and Duality

4. Algebra and Duality 4-1 Algebra and Duality P. Parrilo and S. Lall, CDC 2003 2003.12.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone

More information

Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23

Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23 Optimization: Nonlinear Optimization without Constraints Nonlinear Optimization without Constraints 1 / 23 Nonlinear optimization without constraints Unconstrained minimization min x f(x) where f(x) is

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EECS 227A Nonlinear and Convex Optimization. Solutions 5 Fall 2009

UC Berkeley Department of Electrical Engineering and Computer Science. EECS 227A Nonlinear and Convex Optimization. Solutions 5 Fall 2009 UC Berkeley Department of Electrical Engineering and Computer Science EECS 227A Nonlinear and Convex Optimization Solutions 5 Fall 2009 Reading: Boyd and Vandenberghe, Chapter 5 Solution 5.1 Note that

More information

Numerical optimization

Numerical optimization Numerical optimization Lecture 4 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 2 Longest Slowest Shortest Minimal Maximal

More information

EE/AA 578, Univ of Washington, Fall Duality

EE/AA 578, Univ of Washington, Fall Duality 7. Duality EE/AA 578, Univ of Washington, Fall 2016 Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization

Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization Instructor: Farid Alizadeh Author: Ai Kagawa 12/12/2012

More information

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009 LMI MODELLING 4. CONVEX LMI MODELLING Didier HENRION LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ Universidad de Valladolid, SP March 2009 Minors A minor of a matrix F is the determinant of a submatrix

More information

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness.

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness. CS/ECE/ISyE 524 Introduction to Optimization Spring 2016 17 14. Duality ˆ Upper and lower bounds ˆ General duality ˆ Constraint qualifications ˆ Counterexample ˆ Complementary slackness ˆ Examples ˆ Sensitivity

More information

Trust Region Problems with Linear Inequality Constraints: Exact SDP Relaxation, Global Optimality and Robust Optimization

Trust Region Problems with Linear Inequality Constraints: Exact SDP Relaxation, Global Optimality and Robust Optimization Trust Region Problems with Linear Inequality Constraints: Exact SDP Relaxation, Global Optimality and Robust Optimization V. Jeyakumar and G. Y. Li Revised Version: September 11, 2013 Abstract The trust-region

More information