Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09

Size: px
Start display at page:

Download "Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09"

Transcription

1 Numerical Optimization 1

2 Working Horse in Computer Vision Variational Methods Shape Analysis Machine Learning Markov Random Fields Geometry Common denominator: optimization problems 2

3 Overview of Methods Is the function smooth / non-smooth / semismooth? Are derivatives available? Is the problem convex / non-convex? The great watershed in optimization isn t between linearity and nonlinearity, but convexity and non-convexity, T. Rockafellar, 1993 Is the problem linear / nonlinear? Is the problem constrained / unconstrained? 3

4 Optimization problems Generic unconstrained minimization problem: where Vector space is the search space is a cost (or objective) function A solution is the minimizer of The value is the minimum Finding the global minimum of general functions is as hard as finding a needle in a haystack 4

5 Local vs. global l minimum i Local minimum Global minimum 5

6 Local vs. global in real life False summit 8,030 m Main summit 8,047 m Broad Peak (K3), 12 th highest mountain on Earth 6

7 Convex vs. non-convex functions A function defined on a convex set is called convex if for any and For convex function local minimum = global minimum Convex Non-convex 7

8 One-dimensional optimality conditions Point is the local minimizer of a -function if. Approximate a function around as a parabola using Taylor expansion guarantees the minimum at guarantees the parabola is convex 8

9 Gradient In multidimensional case, linearization of the function according to Taylor gives a multidimensional analogy of the derivative. The function, denoted as, is called the gradient of In one-dimensional case, it reduces to standard definition of derivative 9

10 Gradient In Euclidean space ( ), can be represented in standard basis in the following way: i-th place which gives 10

11 Hessian Linearization of the gradient gives a multidimensional analogy of the secondorder derivative. The function, denoted as is called the Hessian of Ludwig Otto Hesse ( ) In the standard basis, Hessian is a symmetric matrix of mixed second-order derivatives 11

12 Multi-dimensional optimality conditions Point is the local minimizer of a -function if. for all, i.e., the Hessian is a positive definite matrix (denoted ) Approximate a function around as a parabola using Taylor expansion guarantees the minimum at guarantees the parabola is convex 12

13 Optimization algorithms Descent direction Step size 13

14 Generic optimization algorithm Start with some Determine descent direction Choose step size such that Update iterate Until convergence Increment iteration counter Solution Descent direction Step size Stopping criterion 14

15 Stopping criteria Near local minimum, (or equivalently ) Stop when gradient norm becomes small Stop when step size becomes small Stop when relative objective change becomes small 15

16 Line search Optimal step size can be found by solving a one-dimensional optimization problem One-dimensional optimization algorithms for finding the optimal step size are generically called exact line search 16

17 Armijo rule The function sufficiently decreases if Armijo rule (Larry Armijo, 1966): start with and decrease it by multiplying by some until the function sufficiently decreases 17

18 Descent direction How to descend in the fastest way? Go in the direction in which the height lines are the densest Devil s Tower Topographic map 18

19 Steepest descent Directional derivative: how much changes in the direction (negative for a descent direction) Find a unit-length direction minimizing directional derivative 19

20 Steepest descent L 2 norm L 1 norm Normalized steepest descent Coordinate descent (coordinate axis in which descent is maximal) 20

21 Steepest descent algorithm Start with some Compute steepest t descent direction Choose step size using line search Until convergence Update iterate Increment iteration counter 21

22 Simple quadratic function Example Matlab Example 22

23 Condition number Condition number is the ratio of maximal and minimal eigenvalues of the Hessian, Problem with large condition number is called ill-conditioned Steepest descent convergence rate is slow for ill-conditioned problems 23

24 Generates a sequence Conjungate Gradient (CG-Method) Where the search directions have the property (This property p is known as conjugacy) New search direction is given by 24

25 Conjungate Gradient (CG-Method) Different choices of Fletcher - Reeves Polak Ribiere To ensure that d is a descend of Polak Ribiere... 25

26 Conjungate Gradient (CG-Method) Properties of the CG method: In the linear case: At most n steps for n variables Each iteration is very fast to compute Needs little memory to store -> large problems Global convergence is asured by line search Example 26

27 Preconditioning Perform steepest descent in a rescaled coordinate system, called preconditioning. Function: Gradient: Preconditioner should be chosen to improve the condition number of the Hessian in the proximity of the solution In system of coordinates, the Hessian at the solution is 27

28 Newton method as optimal preconditioner Best theoretically possible preconditioner, giving descent direction Ideal condition number Problem: the solution is unknown in advance Newton direction: use Hessian as a preconditioner at each iteration 28

29 Another derivation of the Newton method Approximate the function as a quadratic function using second-order Taylor expansion (quadratic function in ) Close to solution the function looks like a quadratic function; the Newton method converges fast 29

30 Newton method Start with some Compute Newton direction Choose step size using line search Until convergence Update iterate Increment iteration counter 30

31 Properties of Newton s method Fast convergence (at least locally) Quadratic convergence Not always very robust Each iterations amounts for solving a linear system Overall performance depends on how fast can the system be solved 31

32 Example Try again our simple quadratic example Needs one iteration to find the solution! 32

33 Frozen Hessian Observation: close to the optimum, the Hessian does not change significantly ifi Reduce the number of Hessian inversions by keeping the Hessian from previous iterations and update it once in a few iterations Such a method is called Newton with frozen Hessian 33

34 Cholesky factorization Decompose the Hessian where is a lower triangular matrix Solve the Newton system in two steps Andre Louis Cholesky ( ) Forward substitution Backward substitution Complexity:, better than straightforward matrix inversion 34

35 Truncated Newton Solve the Newton system approximately (it s a linear system) A few iterations of conjugate gradients or other algorithm for the solution of linear systems can be used Such a method is called truncated or inexact Newton 35

36 Levenberg: Levenberg-Marquardt Method Combine Gradient with Newton Steepest Descent Newton Method x x τ +1 = x τ τ + 1 = xτ λd H τ 1 τ d τ x 1 τ + 1 = xτ ( Hτ + βi) dτ β = 0 x τ + 1 = xτ << β Marquardt: x x 1 τ τ τ β d + 1 = Take into account H also for large β Better solution for error valley Problem, Gradient is bend towards quadratic H 1 τ d τ x 1 τ + 1 = x τ ( H τ + βdiag [ H ]) d τ 36

37 Levenberg-Marquardt Algorithm x 1 τ + 1 = xτ ( Hτ + βdiag( Hτ )) dτ Initalize β with small value e.g ) 1 +ז ) and E(x ז Calculate E(x 1 ז ז ) ז E(x ) 1 +ז If E(x Increase β (*10) and undo last If E(x 1 +ז )< E(x ז ) Decrease β (/10) If the error gets bigger, the quadratic approximation is not good more weight for gradient direction 37

38 Quasi-Newton Methods Idea is to approximate the Hessian by some positive definite matrix B and solve Most efficient method is the method of Broyden, Fletcher, Goldfarb and Shanno (BFGS) This method allows to iteratively update the inverse of B For large scale problems: Limited memory BFGS (Nocedal) 38

39 Non-convex optimization Using convex optimization methods with non-convex functions does not guarantee global convergence! There is no theoretical guaranteed global optimization, just heuristics Local minimum Global minimum Good initialization Multiresolution 39

40 Iterative majorization Construct a majorizing function satisfying Majorizing inequality: for all is convex or easier to optimize w.r.t. 40

41 Iterative majorization Start with some Find such that t Update iterate Until convergence Increment iteration counter Solution 41

42 Constrained optimization MINEFIELD CLOSED ZONE 42

43 Constrained optimization problems Generic constrained minimization problem where are inequality constraints are equality constraints A subset of the search space in which the constraints hold is called feasible set A point belonging to the feasible set is called a feasible solution A minimizer of the problem may be infeasible! 43

44 An example Equality constraint Inequality constraint Feasible set Inequality constraint t is active at point if, inactive otherwise A point is regular if the gradients of equality constraints and of active inequality constraints are linearly independent 44

45 Lagrange multipliers Main idea to solve constrained problems: arrange the objective and constraints t into a single function and minimize it as an unconstrained problem is called Lagrangian and are called Lagrange multipliers 45

46 KKT conditions If is a regular point and a local minimum, there exist Lagrange multipliers and such thatt for all and for all such that for active constraints and zero for inactive constraints Known as Karush-Kuhn-Tucker conditions Necessary but not sufficient! 46

47 KKT conditions Sufficient conditions: If the objective is convex, the inequality constraints are convex and the equality constraints are affine, and for all and for all such that for active constraints and zero for inactive constraints then is the solution of the constrained problem (global constrained minimizer) 47

48 Geometric interpretation Consider a simpler problem: Equality constraint The gradient of objective and constraint must line up at the solution 48

49 Penalty methods Define a penalty aggregate where and are parametric penalty functions For larger values of the parameter, the penalty on the constraint violation is stronger 49

50 Penalty methods Inequality penalty Equality penalty 50

51 Penalty methods Start with some and initial value of Find by solving an unconstrained optimization problem initialized with Set Until convergence Set Update Solution 51

52 Literature Bronstein, Bronstein, Kimmel, Numerical Geometry of Non-Rigid Shapes (Slides are taken from tosca.cs.technicon.ac.il/book) ) Nocedal, Wright, Numerical Optimization 52

Numerical optimization

Numerical optimization Numerical optimization Lecture 4 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 2 Longest Slowest Shortest Minimal Maximal

More information

Numerical optimization. Numerical optimization. Longest Shortest where Maximal Minimal. Fastest. Largest. Optimization problems

Numerical optimization. Numerical optimization. Longest Shortest where Maximal Minimal. Fastest. Largest. Optimization problems 1 Numerical optimization Alexander & Michael Bronstein, 2006-2009 Michael Bronstein, 2010 tosca.cs.technion.ac.il/book Numerical optimization 048921 Advanced topics in vision Processing and Analysis of

More information

Chapter 4. Unconstrained optimization

Chapter 4. Unconstrained optimization Chapter 4. Unconstrained optimization Version: 28-10-2012 Material: (for details see) Chapter 11 in [FKS] (pp.251-276) A reference e.g. L.11.2 refers to the corresponding Lemma in the book [FKS] PDF-file

More information

Numerical Optimization of Partial Differential Equations

Numerical Optimization of Partial Differential Equations Numerical Optimization of Partial Differential Equations Part I: basic optimization concepts in R n Bartosz Protas Department of Mathematics & Statistics McMaster University, Hamilton, Ontario, Canada

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-3: Unconstrained optimization II Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428

More information

Lecture V. Numerical Optimization

Lecture V. Numerical Optimization Lecture V Numerical Optimization Gianluca Violante New York University Quantitative Macroeconomics G. Violante, Numerical Optimization p. 1 /19 Isomorphism I We describe minimization problems: to maximize

More information

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods Optimality Conditions: Equality Constrained Case As another example of equality

More information

5 Handling Constraints

5 Handling Constraints 5 Handling Constraints Engineering design optimization problems are very rarely unconstrained. Moreover, the constraints that appear in these problems are typically nonlinear. This motivates our interest

More information

Nonlinear Optimization: What s important?

Nonlinear Optimization: What s important? Nonlinear Optimization: What s important? Julian Hall 10th May 2012 Convexity: convex problems A local minimizer is a global minimizer A solution of f (x) = 0 (stationary point) is a minimizer A global

More information

Unconstrained optimization

Unconstrained optimization Chapter 4 Unconstrained optimization An unconstrained optimization problem takes the form min x Rnf(x) (4.1) for a target functional (also called objective function) f : R n R. In this chapter and throughout

More information

Line Search Methods for Unconstrained Optimisation

Line Search Methods for Unconstrained Optimisation Line Search Methods for Unconstrained Optimisation Lecture 8, Numerical Linear Algebra and Optimisation Oxford University Computing Laboratory, MT 2007 Dr Raphael Hauser (hauser@comlab.ox.ac.uk) The Generic

More information

8 Numerical methods for unconstrained problems

8 Numerical methods for unconstrained problems 8 Numerical methods for unconstrained problems Optimization is one of the important fields in numerical computation, beside solving differential equations and linear systems. We can see that these fields

More information

Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23

Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23 Optimization: Nonlinear Optimization without Constraints Nonlinear Optimization without Constraints 1 / 23 Nonlinear optimization without constraints Unconstrained minimization min x f(x) where f(x) is

More information

Optimization Methods

Optimization Methods Optimization Methods Decision making Examples: determining which ingredients and in what quantities to add to a mixture being made so that it will meet specifications on its composition allocating available

More information

Scientific Computing: Optimization

Scientific Computing: Optimization Scientific Computing: Optimization Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Spring 2012 March 8th, 2011 A. Donev (Courant Institute) Lecture

More information

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods Quasi-Newton Methods General form of quasi-newton methods: x k+1 = x k α

More information

Optimization and Root Finding. Kurt Hornik

Optimization and Root Finding. Kurt Hornik Optimization and Root Finding Kurt Hornik Basics Root finding and unconstrained smooth optimization are closely related: Solving ƒ () = 0 can be accomplished via minimizing ƒ () 2 Slide 2 Basics Root finding

More information

Algorithms for Constrained Optimization

Algorithms for Constrained Optimization 1 / 42 Algorithms for Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University April 19, 2015 2 / 42 Outline 1. Convergence 2. Sequential quadratic

More information

Gradient Descent. Dr. Xiaowei Huang

Gradient Descent. Dr. Xiaowei Huang Gradient Descent Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/ Up to now, Three machine learning algorithms: decision tree learning k-nn linear regression only optimization objectives are discussed,

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

Nonlinear Optimization for Optimal Control

Nonlinear Optimization for Optimal Control Nonlinear Optimization for Optimal Control Pieter Abbeel UC Berkeley EECS Many slides and figures adapted from Stephen Boyd [optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 11 [optional]

More information

2. Quasi-Newton methods

2. Quasi-Newton methods L. Vandenberghe EE236C (Spring 2016) 2. Quasi-Newton methods variable metric methods quasi-newton methods BFGS update limited-memory quasi-newton methods 2-1 Newton method for unconstrained minimization

More information

Optimization Methods

Optimization Methods Optimization Methods Categorization of Optimization Problems Continuous Optimization Discrete Optimization Combinatorial Optimization Variational Optimization Common Optimization Concepts in Computer Vision

More information

Newton s Method. Ryan Tibshirani Convex Optimization /36-725

Newton s Method. Ryan Tibshirani Convex Optimization /36-725 Newton s Method Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, Properties and examples: f (y) = max x

More information

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science EAD 115 Numerical Solution of Engineering and Scientific Problems David M. Rocke Department of Applied Science Multidimensional Unconstrained Optimization Suppose we have a function f() of more than one

More information

Optimisation in Higher Dimensions

Optimisation in Higher Dimensions CHAPTER 6 Optimisation in Higher Dimensions Beyond optimisation in 1D, we will study two directions. First, the equivalent in nth dimension, x R n such that f(x ) f(x) for all x R n. Second, constrained

More information

Methods that avoid calculating the Hessian. Nonlinear Optimization; Steepest Descent, Quasi-Newton. Steepest Descent

Methods that avoid calculating the Hessian. Nonlinear Optimization; Steepest Descent, Quasi-Newton. Steepest Descent Nonlinear Optimization Steepest Descent and Niclas Börlin Department of Computing Science Umeå University niclas.borlin@cs.umu.se A disadvantage with the Newton method is that the Hessian has to be derived

More information

Constrained optimization

Constrained optimization Constrained optimization In general, the formulation of constrained optimization is as follows minj(w), subject to H i (w) = 0, i = 1,..., k. where J is the cost function and H i are the constraints. Lagrange

More information

Optimization II: Unconstrained Multivariable

Optimization II: Unconstrained Multivariable Optimization II: Unconstrained Multivariable CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Optimization II: Unconstrained Multivariable 1

More information

1 Numerical optimization

1 Numerical optimization Contents 1 Numerical optimization 5 1.1 Optimization of single-variable functions............ 5 1.1.1 Golden Section Search................... 6 1.1. Fibonacci Search...................... 8 1. Algorithms

More information

Optimization 2. CS5240 Theoretical Foundations in Multimedia. Leow Wee Kheng

Optimization 2. CS5240 Theoretical Foundations in Multimedia. Leow Wee Kheng Optimization 2 CS5240 Theoretical Foundations in Multimedia Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (NUS) Optimization 2 1 / 38

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming Kees Roos e-mail: C.Roos@ewi.tudelft.nl URL: http://www.isa.ewi.tudelft.nl/ roos LNMB Course De Uithof, Utrecht February 6 - May 8, A.D. 2006 Optimization Group 1 Outline for week

More information

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings Structural and Multidisciplinary Optimization P. Duysinx and P. Tossings 2018-2019 CONTACTS Pierre Duysinx Institut de Mécanique et du Génie Civil (B52/3) Phone number: 04/366.91.94 Email: P.Duysinx@uliege.be

More information

LINEAR AND NONLINEAR PROGRAMMING

LINEAR AND NONLINEAR PROGRAMMING LINEAR AND NONLINEAR PROGRAMMING Stephen G. Nash and Ariela Sofer George Mason University The McGraw-Hill Companies, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico

More information

ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints

ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints Instructor: Prof. Kevin Ross Scribe: Nitish John October 18, 2011 1 The Basic Goal The main idea is to transform a given constrained

More information

Numerical Optimization: Basic Concepts and Algorithms

Numerical Optimization: Basic Concepts and Algorithms May 27th 2015 Numerical Optimization: Basic Concepts and Algorithms R. Duvigneau R. Duvigneau - Numerical Optimization: Basic Concepts and Algorithms 1 Outline Some basic concepts in optimization Some

More information

OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review

OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review Department of Statistical Sciences and Operations Research Virginia Commonwealth University Oct 16, 2013 (Lecture 14) Nonlinear Optimization

More information

Determination of Feasible Directions by Successive Quadratic Programming and Zoutendijk Algorithms: A Comparative Study

Determination of Feasible Directions by Successive Quadratic Programming and Zoutendijk Algorithms: A Comparative Study International Journal of Mathematics And Its Applications Vol.2 No.4 (2014), pp.47-56. ISSN: 2347-1557(online) Determination of Feasible Directions by Successive Quadratic Programming and Zoutendijk Algorithms:

More information

Convex Optimization. Problem set 2. Due Monday April 26th

Convex Optimization. Problem set 2. Due Monday April 26th Convex Optimization Problem set 2 Due Monday April 26th 1 Gradient Decent without Line-search In this problem we will consider gradient descent with predetermined step sizes. That is, instead of determining

More information

Multidisciplinary System Design Optimization (MSDO)

Multidisciplinary System Design Optimization (MSDO) Multidisciplinary System Design Optimization (MSDO) Numerical Optimization II Lecture 8 Karen Willcox 1 Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Today s Topics Sequential

More information

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Optimization Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Unconstrained optimization Outline 1 Unconstrained optimization 2 Constrained

More information

Optimization Tutorial 1. Basic Gradient Descent

Optimization Tutorial 1. Basic Gradient Descent E0 270 Machine Learning Jan 16, 2015 Optimization Tutorial 1 Basic Gradient Descent Lecture by Harikrishna Narasimhan Note: This tutorial shall assume background in elementary calculus and linear algebra.

More information

ORIE 6326: Convex Optimization. Quasi-Newton Methods

ORIE 6326: Convex Optimization. Quasi-Newton Methods ORIE 6326: Convex Optimization Quasi-Newton Methods Professor Udell Operations Research and Information Engineering Cornell April 10, 2017 Slides on steepest descent and analysis of Newton s method adapted

More information

CS-E4830 Kernel Methods in Machine Learning

CS-E4830 Kernel Methods in Machine Learning CS-E4830 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 27. September, 2017 Juho Rousu 27. September, 2017 1 / 45 Convex optimization Convex optimisation This

More information

Numerical Optimization

Numerical Optimization Constrained Optimization Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on Constrained Optimization Constrained Optimization Problem: min h j (x) 0,

More information

ICS-E4030 Kernel Methods in Machine Learning

ICS-E4030 Kernel Methods in Machine Learning ICS-E4030 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 28. September, 2016 Juho Rousu 28. September, 2016 1 / 38 Convex optimization Convex optimisation This

More information

Lecture 3. Optimization Problems and Iterative Algorithms

Lecture 3. Optimization Problems and Iterative Algorithms Lecture 3 Optimization Problems and Iterative Algorithms January 13, 2016 This material was jointly developed with Angelia Nedić at UIUC for IE 598ns Outline Special Functions: Linear, Quadratic, Convex

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Support Vector Machines: Maximum Margin Classifiers

Support Vector Machines: Maximum Margin Classifiers Support Vector Machines: Maximum Margin Classifiers Machine Learning and Pattern Recognition: September 16, 2008 Piotr Mirowski Based on slides by Sumit Chopra and Fu-Jie Huang 1 Outline What is behind

More information

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares Robert Bridson October 29, 2008 1 Hessian Problems in Newton Last time we fixed one of plain Newton s problems by introducing line search

More information

Higher-Order Methods

Higher-Order Methods Higher-Order Methods Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. PCMI, July 2016 Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 1 / 25 Smooth

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Lecture 5, Continuous Optimisation Oxford University Computing Laboratory, HT 2006 Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk) The notion of complexity (per iteration)

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 12: Nonlinear optimization, continued Prof. John Gunnar Carlsson October 20, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I October 20,

More information

1 Numerical optimization

1 Numerical optimization Contents Numerical optimization 5. Optimization of single-variable functions.............................. 5.. Golden Section Search..................................... 6.. Fibonacci Search........................................

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 13 Overview of nonlinear programming. Ann-Brith Strömberg

MVE165/MMG631 Linear and integer optimization with applications Lecture 13 Overview of nonlinear programming. Ann-Brith Strömberg MVE165/MMG631 Overview of nonlinear programming Ann-Brith Strömberg 2015 05 21 Areas of applications, examples (Ch. 9.1) Structural optimization Design of aircraft, ships, bridges, etc Decide on the material

More information

Contents. Preface. 1 Introduction Optimization view on mathematical models NLP models, black-box versus explicit expression 3

Contents. Preface. 1 Introduction Optimization view on mathematical models NLP models, black-box versus explicit expression 3 Contents Preface ix 1 Introduction 1 1.1 Optimization view on mathematical models 1 1.2 NLP models, black-box versus explicit expression 3 2 Mathematical modeling, cases 7 2.1 Introduction 7 2.2 Enclosing

More information

Constrained optimization: direct methods (cont.)

Constrained optimization: direct methods (cont.) Constrained optimization: direct methods (cont.) Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi Direct methods Also known as methods of feasible directions Idea in a point x h, generate a

More information

5 Quasi-Newton Methods

5 Quasi-Newton Methods Unconstrained Convex Optimization 26 5 Quasi-Newton Methods If the Hessian is unavailable... Notation: H = Hessian matrix. B is the approximation of H. C is the approximation of H 1. Problem: Solve min

More information

MATHEMATICS FOR COMPUTER VISION WEEK 8 OPTIMISATION PART 2. Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year

MATHEMATICS FOR COMPUTER VISION WEEK 8 OPTIMISATION PART 2. Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year MATHEMATICS FOR COMPUTER VISION WEEK 8 OPTIMISATION PART 2 1 Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year 2013-14 OUTLINE OF WEEK 8 topics: quadratic optimisation, least squares,

More information

Optimization II: Unconstrained Multivariable

Optimization II: Unconstrained Multivariable Optimization II: Unconstrained Multivariable CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Optimization II: Unconstrained

More information

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44 Convex Optimization Newton s method ENSAE: Optimisation 1/44 Unconstrained minimization minimize f(x) f convex, twice continuously differentiable (hence dom f open) we assume optimal value p = inf x f(x)

More information

Optimization Methods for Circuit Design

Optimization Methods for Circuit Design Technische Universität München Department of Electrical Engineering and Information Technology Institute for Electronic Design Automation Optimization Methods for Circuit Design Compendium H. Graeb Version

More information

Written Examination

Written Examination Division of Scientific Computing Department of Information Technology Uppsala University Optimization Written Examination 202-2-20 Time: 4:00-9:00 Allowed Tools: Pocket Calculator, one A4 paper with notes

More information

Quasi-Newton Methods

Quasi-Newton Methods Newton s Method Pros and Cons Quasi-Newton Methods MA 348 Kurt Bryan Newton s method has some very nice properties: It s extremely fast, at least once it gets near the minimum, and with the simple modifications

More information

Part 4: Active-set methods for linearly constrained optimization. Nick Gould (RAL)

Part 4: Active-set methods for linearly constrained optimization. Nick Gould (RAL) Part 4: Active-set methods for linearly constrained optimization Nick Gould RAL fx subject to Ax b Part C course on continuoue optimization LINEARLY CONSTRAINED MINIMIZATION fx subject to Ax { } b where

More information

Machine Learning. Support Vector Machines. Manfred Huber

Machine Learning. Support Vector Machines. Manfred Huber Machine Learning Support Vector Machines Manfred Huber 2015 1 Support Vector Machines Both logistic regression and linear discriminant analysis learn a linear discriminant function to separate the data

More information

MA/OR/ST 706: Nonlinear Programming Midterm Exam Instructor: Dr. Kartik Sivaramakrishnan INSTRUCTIONS

MA/OR/ST 706: Nonlinear Programming Midterm Exam Instructor: Dr. Kartik Sivaramakrishnan INSTRUCTIONS MA/OR/ST 706: Nonlinear Programming Midterm Exam Instructor: Dr. Kartik Sivaramakrishnan INSTRUCTIONS 1. Please write your name and student number clearly on the front page of the exam. 2. The exam is

More information

More on Lagrange multipliers

More on Lagrange multipliers More on Lagrange multipliers CE 377K April 21, 2015 REVIEW The standard form for a nonlinear optimization problem is min x f (x) s.t. g 1 (x) 0. g l (x) 0 h 1 (x) = 0. h m (x) = 0 The objective function

More information

Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2

Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2 Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2 Coralia Cartis, University of Oxford INFOMM CDT: Modelling, Analysis and Computation of Continuous Real-World Problems Methods

More information

IPAM Summer School Optimization methods for machine learning. Jorge Nocedal

IPAM Summer School Optimization methods for machine learning. Jorge Nocedal IPAM Summer School 2012 Tutorial on Optimization methods for machine learning Jorge Nocedal Northwestern University Overview 1. We discuss some characteristics of optimization problems arising in deep

More information

Lecture 14: October 17

Lecture 14: October 17 1-725/36-725: Convex Optimization Fall 218 Lecture 14: October 17 Lecturer: Lecturer: Ryan Tibshirani Scribes: Pengsheng Guo, Xian Zhou Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

ECS550NFB Introduction to Numerical Methods using Matlab Day 2

ECS550NFB Introduction to Numerical Methods using Matlab Day 2 ECS550NFB Introduction to Numerical Methods using Matlab Day 2 Lukas Laffers lukas.laffers@umb.sk Department of Mathematics, University of Matej Bel June 9, 2015 Today Root-finding: find x that solves

More information

Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control

Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control 19/4/2012 Lecture content Problem formulation and sample examples (ch 13.1) Theoretical background Graphical

More information

Lecture 18: Optimization Programming

Lecture 18: Optimization Programming Fall, 2016 Outline Unconstrained Optimization 1 Unconstrained Optimization 2 Equality-constrained Optimization Inequality-constrained Optimization Mixture-constrained Optimization 3 Quadratic Programming

More information

Notes on Numerical Optimization

Notes on Numerical Optimization Notes on Numerical Optimization University of Chicago, 2014 Viva Patel October 18, 2014 1 Contents Contents 2 List of Algorithms 4 I Fundamentals of Optimization 5 1 Overview of Numerical Optimization

More information

Chapter 10 Conjugate Direction Methods

Chapter 10 Conjugate Direction Methods Chapter 10 Conjugate Direction Methods An Introduction to Optimization Spring, 2012 1 Wei-Ta Chu 2012/4/13 Introduction Conjugate direction methods can be viewed as being intermediate between the method

More information

MS&E 318 (CME 338) Large-Scale Numerical Optimization

MS&E 318 (CME 338) Large-Scale Numerical Optimization Stanford University, Management Science & Engineering (and ICME) MS&E 318 (CME 338) Large-Scale Numerical Optimization 1 Origins Instructor: Michael Saunders Spring 2015 Notes 9: Augmented Lagrangian Methods

More information

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014 Convex Optimization Dani Yogatama School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA February 12, 2014 Dani Yogatama (Carnegie Mellon University) Convex Optimization February 12,

More information

Linear Support Vector Machine. Classification. Linear SVM. Huiping Cao. Huiping Cao, Slide 1/26

Linear Support Vector Machine. Classification. Linear SVM. Huiping Cao. Huiping Cao, Slide 1/26 Huiping Cao, Slide 1/26 Classification Linear SVM Huiping Cao linear hyperplane (decision boundary) that will separate the data Huiping Cao, Slide 2/26 Support Vector Machines rt Vector Find a linear Machines

More information

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

More information

In view of (31), the second of these is equal to the identity I on E m, while this, in view of (30), implies that the first can be written

In view of (31), the second of these is equal to the identity I on E m, while this, in view of (30), implies that the first can be written 11.8 Inequality Constraints 341 Because by assumption x is a regular point and L x is positive definite on M, it follows that this matrix is nonsingular (see Exercise 11). Thus, by the Implicit Function

More information

Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers)

Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers) Support vector machines In a nutshell Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers) Solution only depends on a small subset of training

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

On Lagrange multipliers of trust region subproblems

On Lagrange multipliers of trust region subproblems On Lagrange multipliers of trust region subproblems Ladislav Lukšan, Ctirad Matonoha, Jan Vlček Institute of Computer Science AS CR, Prague Applied Linear Algebra April 28-30, 2008 Novi Sad, Serbia Outline

More information

Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module - 5 Lecture - 22 SVM: The Dual Formulation Good morning.

More information

Support Vector Machine

Support Vector Machine Andrea Passerini passerini@disi.unitn.it Machine Learning Support vector machines In a nutshell Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers)

More information

Numerical Optimization

Numerical Optimization Numerical Optimization Shan-Hung Wu shwu@cs.nthu.edu.tw Department of Computer Science, National Tsing Hua University, Taiwan Machine Learning Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning

More information

NonlinearOptimization

NonlinearOptimization 1/35 NonlinearOptimization Pavel Kordík Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague Jiří Kašpar, Pavel Tvrdík, 2011 Unconstrained nonlinear optimization,

More information

Unconstrained Multivariate Optimization

Unconstrained Multivariate Optimization Unconstrained Multivariate Optimization Multivariate optimization means optimization of a scalar function of a several variables: and has the general form: y = () min ( ) where () is a nonlinear scalar-valued

More information

AN EIGENVALUE STUDY ON THE SUFFICIENT DESCENT PROPERTY OF A MODIFIED POLAK-RIBIÈRE-POLYAK CONJUGATE GRADIENT METHOD S.

AN EIGENVALUE STUDY ON THE SUFFICIENT DESCENT PROPERTY OF A MODIFIED POLAK-RIBIÈRE-POLYAK CONJUGATE GRADIENT METHOD S. Bull. Iranian Math. Soc. Vol. 40 (2014), No. 1, pp. 235 242 Online ISSN: 1735-8515 AN EIGENVALUE STUDY ON THE SUFFICIENT DESCENT PROPERTY OF A MODIFIED POLAK-RIBIÈRE-POLYAK CONJUGATE GRADIENT METHOD S.

More information

Some Inexact Hybrid Proximal Augmented Lagrangian Algorithms

Some Inexact Hybrid Proximal Augmented Lagrangian Algorithms Some Inexact Hybrid Proximal Augmented Lagrangian Algorithms Carlos Humes Jr. a, Benar F. Svaiter b, Paulo J. S. Silva a, a Dept. of Computer Science, University of São Paulo, Brazil Email: {humes,rsilva}@ime.usp.br

More information

Selected Topics in Optimization. Some slides borrowed from

Selected Topics in Optimization. Some slides borrowed from Selected Topics in Optimization Some slides borrowed from http://www.stat.cmu.edu/~ryantibs/convexopt/ Overview Optimization problems are almost everywhere in statistics and machine learning. Input Model

More information

Image restoration. An example in astronomy

Image restoration. An example in astronomy Image restoration Convex approaches: penalties and constraints An example in astronomy Jean-François Giovannelli Groupe Signal Image Laboratoire de l Intégration du Matériau au Système Univ. Bordeaux CNRS

More information

Image restoration: numerical optimisation

Image restoration: numerical optimisation Image restoration: numerical optimisation Short and partial presentation Jean-François Giovannelli Groupe Signal Image Laboratoire de l Intégration du Matériau au Système Univ. Bordeaux CNRS BINP / 6 Context

More information

EECS260 Optimization Lecture notes

EECS260 Optimization Lecture notes EECS260 Optimization Lecture notes Based on Numerical Optimization (Nocedal & Wright, Springer, 2nd ed., 2006) Miguel Á. Carreira-Perpiñán EECS, University of California, Merced May 2, 2010 1 Introduction

More information

Algorithms for constrained local optimization

Algorithms for constrained local optimization Algorithms for constrained local optimization Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Algorithms for constrained local optimization p. Feasible direction methods Algorithms for constrained

More information

Numerical Optimization Prof. Shirish K. Shevade Department of Computer Science and Automation Indian Institute of Science, Bangalore

Numerical Optimization Prof. Shirish K. Shevade Department of Computer Science and Automation Indian Institute of Science, Bangalore Numerical Optimization Prof. Shirish K. Shevade Department of Computer Science and Automation Indian Institute of Science, Bangalore Lecture - 13 Steepest Descent Method Hello, welcome back to this series

More information

Sufficient Conditions for Finite-variable Constrained Minimization

Sufficient Conditions for Finite-variable Constrained Minimization Lecture 4 It is a small de tour but it is important to understand this before we move to calculus of variations. Sufficient Conditions for Finite-variable Constrained Minimization ME 256, Indian Institute

More information