Lecture 21: Antiderivatives. Definition and computation

Size: px
Start display at page:

Download "Lecture 21: Antiderivatives. Definition and computation"

Transcription

1 Lecture 21: Antiderivatives. Definition and computation Victoria LEBED, MA1S11A: Calculus with Applications for Scientists November 28, 2017

2 1 The notion of antiderivative Today we are starting the last chapter of our course: Integral calculus. We shall firstlearn whatare itsbasicobjects,and how todeal withthem. Later we shallsee whythey are usefulin science. It is often important for applications to solve the problem reverse to differentiation: find a function if we know only its derivative. Example. You see the instantaneous velocity on the speedometer all the time, and wonder how faryou progressed over the given periodof time. Mathematically,from x (t)you wanttodeduce x(t 1 ) x(t 2 ). Definition. A functionfiscalledan antiderivative of afunctionfif df(x) dx = f(x). Ifsuch anfexists, thefunctionfis calledintegrable.

3 1 The notion of antiderivative Definition. A functionfiscalledan antiderivative of afunctionfif df(x) dx = f(x). Recall a fact we have learned about derivatives: Theorem. f (x) = g (x)on (a,b) f(x) = g(x)+con (a,b) for some c R. It can be reformulated in terms of antiderivatives: Theorem 1. F 1 and F 2 are twoantiderivativesof f on (a,b) F 1 (x) = F 2 (x)+c on (a,b) for some C R. In words, theantiderivativeof a functionon aninterval, ifexists, iswell defined up to a constant. Iffis definedon a disjointunionof intervals, then separateconstants should be taken for these intervals.

4 1 The notion of antiderivative Iffis definedon a disjointunionof intervals, then separateconstants should be taken for these intervals. Example. We have computed the following derivative: (ln x ) = 1 on (,0) (0,+ ). x It means thatln x is anantiderivativeof 1 x. Butthen the function { ln x + 3 π, x < 0, F(x) = ln x e, x > 0 is anotherantiderivativeof 1 x.

5 1 The notion of antiderivative There is an alternative integral notation for saying that F is an antiderivatives of f: f(x)dx = F(x)+C. The expression f(x)dx is calledthe indefinite integral. By definition,( f(x)dx) = f(x). The constants C should behandled withcare. Forinstance, xdx = x2 +C = xdxdx = x Cx+D. Also, you should leave the arbitraryconstant tillthe very end of the computation, to avoid something like this: ( ) x x 2 2 +C = 2xdx = 2 xdx = 2 2 +C = x 2 +2C, whichyields C = 2C, soc = 0.

6 2 Computing antiderivatives In simplest situations, antiderivatives are computed by recognising derivatives, since integration and differentiation are inverse operations: differentiation formula integration formula (x r ) = rx r 1 rx r 1 dx = x r +C sin x = cosx cosxdx = sinx+c cos x = sinx sinxdx = cosx+c tan x = 1 cos 2 x cot x = 1 sin 2 x 1 x 2 arcsin x = 1 arctan x = 1 (log a x) = 1 xlna (a x ) = a x lna dx dx 1+x 2 dx cos 2 x = tanx+c dx sin 2 x = cotx+c dx = arcsinx+c 1 x 2 1+x 2 = arctanx+c xlna = log a x+c a x lnadx = a x +C For this reason, it is important to learn the derivatives of basic functions.

7 2 Computing antiderivatives For not-in-the-differentiation-table functions, integration is far from obvious. What is,say,the antiderivativeof f(x) = 1 sin(x)? According to the brick-and-mortar approach, in order to learn how to integrate, it is crucial to understand relations between integration and gluing operations for functions. The following results are translations of the corresponding properties of derivatives. Theorem 2. Suppose that the functions f(x) and g(x) are integrable, and c Risaconstant. Then cf(x)dx = c f(x)dx, [f(x)+g(x)]dx = f(x)dx+ g(x)dx, [f(x) g(x)]dx = f(x)dx g(x)dx. The statements can bewrittenin amore explicitform, e.g., f(x)dx = F(x)+C = cf(x)dx = cf(x)+c.

8 3 u-substitution Further, from the chain rule for derivatives, we deduce the following important integration rule: Theorem 3(u-substitution). Suppose that F(x) is an antiderivative of f(x). Thenthe functionf(g(x))g (x)isintegrable, and [f(g(x))g (x)]dx = F(g(x))+C. Proof. Applying the chain rule, we obtain (F(g(x))) = F (g(x))g (x) = f(g(x))g (x). Example 1. Let us evaluate the integral (x 2 +1) 50 2xdx. Letg(x) = x Noticingthat(x 2 +1) = 2x,wecanwritetheintegralas (x 2 +1) 50 2xdx = g(x) 50 g (x)dx = g(x)51 +C = (x2 +1) 51 +C

9 3 u-substitution Example 2. Let us evaluate the integral cosx sin 2 x dx. Denotingg(x) = sinx, we get cosx sin 2 x dx = 1 g(x) 2g (x)dx = 1 g(x) +C = 1 sinx +C. Always verifyyour computationsby differentiation: ( 1 ) = ( 1 sinx sin 2 x ) sin x = 1 cosx sin 2 cosx = x sin 2 x. Example 3. Let us evaluate the integral Denotingg(x) = x, we get cos x x dx. cos x dx = cosg(x) 2g (x)dx = 2sing(x)+C = 2sin x+c. x

4. Theory of the Integral

4. Theory of the Integral 4. Theory of the Integral 4.1 Antidifferentiation 4.2 The Definite Integral 4.3 Riemann Sums 4.4 The Fundamental Theorem of Calculus 4.5 Fundamental Integration Rules 4.6 U-Substitutions 4.1 Antidifferentiation

More information

The Substitution Rule

The Substitution Rule The Sbstittion Rle Kiryl Tsishchanka THEOREM The Fndamental Theorem Of Calcls, Part II): If f is continos on [a,b], then where F is any antiderivative of f, that is F f. b a ] b fx)dx Fb) Fa) Fx) a NOTATION:

More information

Change of Variables: Indefinite Integrals

Change of Variables: Indefinite Integrals Change of Variables: Indefinite Integrals Mathematics 11: Lecture 39 Dan Sloughter Furman University November 29, 2007 Dan Sloughter (Furman University) Change of Variables: Indefinite Integrals November

More information

Lecture 22: Integration by parts and u-substitution

Lecture 22: Integration by parts and u-substitution Lecture 22: Integration by parts and u-substitution Victoria LEBED, lebed@maths.tcd.ie MA1S11A: Calculus with Applications for Scientists December 1, 2017 1 Integration vs differentiation From our first

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Fall 2017, WEEK 14 JoungDong Kim Week 14 Section 5.4, 5.5, 6.1, Indefinite Integrals and the Net Change Theorem, The Substitution Rule, Areas Between Curves. Section

More information

1 Lecture 39: The substitution rule.

1 Lecture 39: The substitution rule. Lecture 39: The substitution rule. Recall the chain rule and restate as the substitution rule. u-substitution, bookkeeping for integrals. Definite integrals, changing limits. Symmetry-integrating even

More information

Lecture 4: Integrals and applications

Lecture 4: Integrals and applications Lecture 4: Integrals and applications Lejla Batina Institute for Computing and Information Sciences Digital Security Version: autumn 2013 Lejla Batina Version: autumn 2013 Calculus en Kansrekenen 1 / 18

More information

1.1 Definition of a Limit. 1.2 Computing Basic Limits. 1.3 Continuity. 1.4 Squeeze Theorem

1.1 Definition of a Limit. 1.2 Computing Basic Limits. 1.3 Continuity. 1.4 Squeeze Theorem 1. Limits 1.1 Definition of a Limit 1.2 Computing Basic Limits 1.3 Continuity 1.4 Squeeze Theorem 1.1 Definition of a Limit The limit is the central object of calculus. It is a tool from which other fundamental

More information

Lecture 5: Integrals and Applications

Lecture 5: Integrals and Applications Lecture 5: Integrals and Applications Lejla Batina Institute for Computing and Information Sciences Digital Security Version: spring 2012 Lejla Batina Version: spring 2012 Wiskunde 1 1 / 21 Outline The

More information

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 4.4 Using the Fundamental Theorem As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces the problem of evaluating a

More information

Math 111 lecture for Friday, Week 10

Math 111 lecture for Friday, Week 10 Math lecture for Friday, Week Finding antiderivatives mean reversing the operation of taking derivatives. Today we ll consider reversing the chain rule and the product rule. Substitution technique. Recall

More information

5.5. The Substitution Rule

5.5. The Substitution Rule INTEGRALS 5 INTEGRALS 5.5 The Substitution Rule In this section, we will learn: To substitute a new variable in place of an existing expression in a function, making integration easier. INTRODUCTION Due

More information

Study 4.10 #465, 471, , 487, , , 515, 517, 521, 523

Study 4.10 #465, 471, , 487, , , 515, 517, 521, 523 Goals: 1. Understand that antiderivatives are the functions from which the present derivative was found. 2. The process of finding an antiderivative or indefinite integral requires the reverse process

More information

Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures College of Science MATHS 101: Calculus I (University of Bahrain) 1 / 28 Indefinite Integral Given a function f, if F is a function such that

More information

Chapter 3. Integration. 3.1 Indefinite Integration

Chapter 3. Integration. 3.1 Indefinite Integration Chapter 3 Integration 3. Indefinite Integration Integration is the reverse of differentiation. Consider a function f(x) and suppose that there exists another function F (x) such that df f(x). (3.) For

More information

Applications of Differentiation

Applications of Differentiation Applications of Differentiation Definitions. A function f has an absolute maximum (or global maximum) at c if for all x in the domain D of f, f(c) f(x). The number f(c) is called the maximum value of f

More information

Your signature: (1) (Pre-calculus Review Set Problems 80 and 124.)

Your signature: (1) (Pre-calculus Review Set Problems 80 and 124.) (1) (Pre-calculus Review Set Problems 80 an 14.) (a) Determine if each of the following statements is True or False. If it is true, explain why. If it is false, give a counterexample. (i) If a an b are

More information

Integration. Antiderivatives and Indefinite Integration 3/9/2015. Copyright Cengage Learning. All rights reserved.

Integration. Antiderivatives and Indefinite Integration 3/9/2015. Copyright Cengage Learning. All rights reserved. Integration Copyright Cengage Learning. All rights reserved. Antiderivatives and Indefinite Integration Copyright Cengage Learning. All rights reserved. 1 Objectives Write the general solution of a differential

More information

Integration by Parts. MAT 126, Week 2, Thursday class. Xuntao Hu

Integration by Parts. MAT 126, Week 2, Thursday class. Xuntao Hu MAT 126, Week 2, Thursday class Xuntao Hu Recall that the substitution rule is a combination of the FTC and the chain rule. We can also combine the FTC and the product rule: d dx [f (x)g(x)] = f (x)g (x)

More information

Applied Calculus I. Lecture 29

Applied Calculus I. Lecture 29 Applied Calculus I Lecture 29 Integrals of trigonometric functions We shall continue learning substitutions by considering integrals involving trigonometric functions. Integrals of trigonometric functions

More information

Integration by Substitution

Integration by Substitution Integration by Substitution Dr. Philippe B. Laval Kennesaw State University Abstract This handout contains material on a very important integration method called integration by substitution. Substitution

More information

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts Week #7: Substitutions and by Parts, Area Between Curves Goals: The Method of Substitution Areas Integration by Parts 1 Week 7 The Indefinite Integral The Fundamental Theorem of Calculus, b a f(x) dx =

More information

Calculus I Announcements

Calculus I Announcements Slide 1 Calculus I Announcements Read sections 4.2,4.3,4.4,4.1 and 5.3 Do the homework from sections 4.2,4.3,4.4,4.1 and 5.3 Exam 3 is Thursday, November 12th See inside for a possible exam question. Slide

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Announcements Topics: - sections 7.1 (differential equations), 7.2 (antiderivatives), and 7.3 (the definite integral +area) * Read these sections and study solved examples in your textbook! Homework: -

More information

Lecture : The Indefinite Integral MTH 124

Lecture : The Indefinite Integral MTH 124 Up to this point we have investigated the definite integral of a function over an interval. In particular we have done the following. Approximated integrals using left and right Riemann sums. Defined the

More information

C3 Revision Questions. (using questions from January 2006, January 2007, January 2008 and January 2009)

C3 Revision Questions. (using questions from January 2006, January 2007, January 2008 and January 2009) C3 Revision Questions (using questions from January 2006, January 2007, January 2008 and January 2009) 1 2 1. f(x) = 1 3 x 2 + 3, x 2. 2 ( x 2) (a) 2 x x 1 Show that f(x) =, x 2. 2 ( x 2) (4) (b) Show

More information

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems 2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems Mathematics 3 Lecture 14 Dartmouth College February 03, 2010 Derivatives of the Exponential and Logarithmic Functions

More information

REVERSE CHAIN RULE CALCULUS 7. Dr Adrian Jannetta MIMA CMath FRAS INU0115/515 (MATHS 2) Reverse Chain Rule 1/12 Adrian Jannetta

REVERSE CHAIN RULE CALCULUS 7. Dr Adrian Jannetta MIMA CMath FRAS INU0115/515 (MATHS 2) Reverse Chain Rule 1/12 Adrian Jannetta REVERSE CHAIN RULE CALCULUS 7 INU05/55 (MATHS 2) Dr Adrian Jannetta MIMA CMath FRAS Reverse Chain Rule /2 Adrian Jannetta Reversing the chain rule In differentiation the chain rule is used to get the derivative

More information

Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures College of Science MATHS : Calculus I (University of Bahrain) Integrals / 7 The Substitution Method Idea: To replace a relatively

More information

Chapter 13: Integral Calculus. SSMth2: Basic Calculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M.

Chapter 13: Integral Calculus. SSMth2: Basic Calculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M. Chapter 13: Integral Calculus SSMth2: Basic Calculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M. Mendoza Chapter 13: Integral Calculus Lecture 13.1: The Integrals Lecture

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Announcements Topics: - sections 7.3 (the definite integral +area), 7.4 (FTC), 7.5 (additional techniques of integration) * Read these sections and study solved examples in your textbook! Homework: - review

More information

UNIT 3: DERIVATIVES STUDY GUIDE

UNIT 3: DERIVATIVES STUDY GUIDE Calculus I UNIT 3: Derivatives REVIEW Name: Date: UNIT 3: DERIVATIVES STUDY GUIDE Section 1: Section 2: Limit Definition (Derivative as the Slope of the Tangent Line) Calculating Rates of Change (Average

More information

f(x) g(x) = [f (x)g(x) dx + f(x)g (x)dx

f(x) g(x) = [f (x)g(x) dx + f(x)g (x)dx Chapter 7 is concerned with all the integrals that can t be evaluated with simple antidifferentiation. Chart of Integrals on Page 463 7.1 Integration by Parts Like with the Chain Rule substitutions with

More information

Example. Evaluate. 3x 2 4 x dx.

Example. Evaluate. 3x 2 4 x dx. 3x 2 4 x 3 + 4 dx. Solution: We need a new technique to integrate this function. Notice that if we let u x 3 + 4, and we compute the differential du of u, we get: du 3x 2 dx Going back to our integral,

More information

Unit #10 : Graphs of Antiderivatives; Substitution Integrals

Unit #10 : Graphs of Antiderivatives; Substitution Integrals Unit #10 : Graphs of Antiderivatives; Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F(x) The guess-and-check method for anti-differentiation. The substitution

More information

Chapter 5: Integrals

Chapter 5: Integrals Chapter 5: Integrals Section 5.3 The Fundamental Theorem of Calculus Sec. 5.3: The Fundamental Theorem of Calculus Fundamental Theorem of Calculus: Sec. 5.3: The Fundamental Theorem of Calculus Fundamental

More information

CHM320: MATH REVIEW. I. Ordinary Derivative:

CHM320: MATH REVIEW. I. Ordinary Derivative: CHM30: MATH REVIEW I. Ordinary Derivative: Figure : Secant line between two points on a function Ordinary derivatives describe how functions of a single variable change in response to variation of the

More information

Sec 4.1 Limits, Informally. When we calculated f (x), we first started with the difference quotient. f(x + h) f(x) h

Sec 4.1 Limits, Informally. When we calculated f (x), we first started with the difference quotient. f(x + h) f(x) h 1 Sec 4.1 Limits, Informally When we calculated f (x), we first started with the difference quotient f(x + h) f(x) h and made h small. In other words, f (x) is the number f(x+h) f(x) approaches as h gets

More information

Exam 3 review for Math 1190

Exam 3 review for Math 1190 Exam 3 review for Math 9 Be sure to be familiar with the following : Extreme Value Theorem Optimization The antiderivative u-substitution as a method for finding antiderivatives Reimann sums (e.g. L 6

More information

Exercises given in lecture on the day in parantheses.

Exercises given in lecture on the day in parantheses. A.Miller M22 Fall 23 Exercises given in lecture on the day in parantheses. The ɛ δ game. lim x a f(x) = L iff Hero has a winning strategy in the following game: Devil plays: ɛ > Hero plays: δ > Devil plays:

More information

OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph.

OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph. 4.1 The Area under a Graph OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph. 4.1 The Area Under a Graph Riemann Sums (continued): In the following

More information

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION MATH 7 R MIDTERM EXAM SOLUTION FALL 6 - MOON Name: Write your answer neatly and show steps. Except calculators, any electronic devices including laptops and cell phones are not allowed. () (5 pts) Find

More information

Ma 530 Power Series II

Ma 530 Power Series II Ma 530 Power Series II Please note that there is material on power series at Visual Calculus. Some of this material was used as part of the presentation of the topics that follow. Operations on Power Series

More information

Math 1431 Final Exam Review

Math 1431 Final Exam Review Math 1431 Final Exam Review Comprehensive exam. I recommend you study all past reviews and practice exams as well. Know all rules/formulas. Make a reservation for the final exam. If you miss it, go back

More information

b n x n + b n 1 x n b 1 x + b 0

b n x n + b n 1 x n b 1 x + b 0 Math Partial Fractions Stewart 7.4 Integrating basic rational functions. For a function f(x), we have examined several algebraic methods for finding its indefinite integral (antiderivative) F (x) = f(x)

More information

A = (a + 1) 2 = a 2 + 2a + 1

A = (a + 1) 2 = a 2 + 2a + 1 A = (a + 1) 2 = a 2 + 2a + 1 1 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b + 1 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b + 1 3 A = (

More information

Topics and Concepts. 1. Limits

Topics and Concepts. 1. Limits Topics and Concepts 1. Limits (a) Evaluating its (Know: it exists if and only if the it from the left is the same as the it from the right) (b) Infinite its (give rise to vertical asymptotes) (c) Limits

More information

Chapter 5 Integrals. 5.1 Areas and Distances

Chapter 5 Integrals. 5.1 Areas and Distances Chapter 5 Integrals 5.1 Areas and Distances We start with a problem how can we calculate the area under a given function ie, the area between the function and the x-axis? If the curve happens to be something

More information

Section 5.6. Integration By Parts. MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10

Section 5.6. Integration By Parts. MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10 Section 5.6 Integration By Parts MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10 Integration By Parts Manipulating the Product Rule d dx (f (x) g(x)) = f (x) g (x) + f (x) g(x)

More information

Analysis/Calculus Review Day 2

Analysis/Calculus Review Day 2 Analysis/Calculus Review Day 2 Arvind Saibaba arvindks@stanford.edu Institute of Computational and Mathematical Engineering Stanford University September 14, 2010 Limit Definition Let A R, f : A R and

More information

DRAFT - Math 102 Lecture Note - Dr. Said Algarni

DRAFT - Math 102 Lecture Note - Dr. Said Algarni Math02 - Term72 - Guides and Exercises - DRAFT 7 Techniques of Integration A summery for the most important integrals that we have learned so far: 7. Integration by Parts The Product Rule states that if

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Announcements Topics: - sections 7.4 (FTC), 7.5 (additional techniques of integration), 7.6 (applications of integration) * Read these sections and study solved examples in your textbook! Homework: - review

More information

Calculus I. George Voutsadakis 1. LSSU Math 151. Lake Superior State University. 1 Mathematics and Computer Science

Calculus I. George Voutsadakis 1. LSSU Math 151. Lake Superior State University. 1 Mathematics and Computer Science Calculus I George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 151 George Voutsadakis (LSSU) Calculus I November 2014 1 / 77 Outline 1 Applications of the Derivative

More information

Methods of Integration

Methods of Integration Methods of Integration Professor D. Olles January 8, 04 Substitution The derivative of a composition of functions can be found using the chain rule form d dx [f (g(x))] f (g(x)) g (x) Rewriting the derivative

More information

f(g(x)) g (x) dx = f(u) du.

f(g(x)) g (x) dx = f(u) du. 1. Techniques of Integration Section 8-IT 1.1. Basic integration formulas. Integration is more difficult than derivation. The derivative of every rational function or trigonometric function is another

More information

MATH 1271 Monday, 21 November 2018

MATH 1271 Monday, 21 November 2018 MATH 1271 Monday, 21 November 218 Today: Section 5.4 - Indefinite Integrals and the Theorem Homework: 5-17 odd, 21-45 odd, 51-63 odd, 67, 71 1/13 Def Total displacement is the integral of the velocity

More information

School of the Art Institute of Chicago. Calculus. Frank Timmes. flash.uchicago.edu/~fxt/class_pages/class_calc.

School of the Art Institute of Chicago. Calculus. Frank Timmes. flash.uchicago.edu/~fxt/class_pages/class_calc. School of the Art Institute of Chicago Calculus Frank Timmes ftimmes@artic.edu flash.uchicago.edu/~fxt/class_pages/class_calc.shtml Syllabus 1 Aug 29 Pre-calculus 2 Sept 05 Rates and areas 3 Sept 12 Trapezoids

More information

Summary: Primer on Integral Calculus:

Summary: Primer on Integral Calculus: Physics 2460 Electricity and Magnetism I, Fall 2006, Primer on Integration: Part I 1 Summary: Primer on Integral Calculus: Part I 1. Integrating over a single variable: Area under a curve Properties of

More information

Grade: The remainder of this page has been left blank for your workings. VERSION E. Midterm E: Page 1 of 12

Grade: The remainder of this page has been left blank for your workings. VERSION E. Midterm E: Page 1 of 12 First Name: Student-No: Last Name: Section: Grade: The remainder of this page has been left blank for your workings. Midterm E: Page of Indefinite Integrals. 9 marks Each part is worth 3 marks. Please

More information

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules Math 5 Integration Topic 3 Page MATH 5 TOPIC 3 INTEGRATION 3A. Integration of Common Functions Practice Problems 3B. Constant, Sum, and Difference Rules Practice Problems 3C. Substitution Practice Problems

More information

Derivative of a Function

Derivative of a Function Derivative of a Function (x+δx,f(x+δx)) f ' (x) = (x,f(x)) provided the limit exists Can be interpreted as the slope of the tangent line to the curve at any point (x, f(x)) on the curve. This generalizes

More information

Chapter 2: Differentiation

Chapter 2: Differentiation Chapter 2: Differentiation Spring 2018 Department of Mathematics Hong Kong Baptist University 1 / 82 2.1 Tangent Lines and Their Slopes This section deals with the problem of finding a straight line L

More information

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36 We saw in Example 5.4. that we sometimes need to apply integration by parts several times in the course of a single calculation. Example 5.4.4: For n let S n = x n cos x dx. Find an expression for S n

More information

Resources: http://www.calcchat.com/book/calculus-9e/ http://apcentral.collegeboard.com/apc/public/courses/teachers_corner/27.html http://www.calculus.org/ http://cow.math.temple.edu/ http://www.mathsisfun.com/calculus/

More information

Unit #10 : Graphs of Antiderivatives, Substitution Integrals

Unit #10 : Graphs of Antiderivatives, Substitution Integrals Unit #10 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F(x) The guess-and-check method for anti-differentiation. The substitution

More information

Integration by Substitution

Integration by Substitution November 22, 2013 Introduction 7x 2 cos(3x 3 )dx =? 2xe x2 +5 dx =? Chain rule The chain rule: d dx (f (g(x))) = f (g(x)) g (x). Use the chain rule to find f (x) and then write the corresponding anti-differentiation

More information

Math RE - Calculus II Antiderivatives and the Indefinite Integral Page 1 of 5

Math RE - Calculus II Antiderivatives and the Indefinite Integral Page 1 of 5 Math 201-203-RE - Calculus II Antiderivatives and the Indefinite Integral Page 1 of 5 What is the Antiderivative? In a derivative problem, a function f(x) is given and you find the derivative f (x) using

More information

Practice Problems: Integration by Parts

Practice Problems: Integration by Parts Practice Problems: Integration by Parts Answers. (a) Neither term will get simpler through differentiation, so let s try some choice for u and dv, and see how it works out (we can always go back and try

More information

Foundations of Calculus. November 18, 2014

Foundations of Calculus. November 18, 2014 Foundations of Calculus November 18, 2014 Contents 1 Conic Sections 3 11 A review of the coordinate system 3 12 Conic Sections 4 121 Circle 4 122 Parabola 5 123 Ellipse 5 124 Hyperbola 6 2 Review of Functions

More information

Math 181, Exam 1, Study Guide Problem 1 Solution. xe x2 dx = e x2 xdx. = e u 1 2 du = 1. e u du. = 1 2 eu + C. = 1 2 ex2 + C

Math 181, Exam 1, Study Guide Problem 1 Solution. xe x2 dx = e x2 xdx. = e u 1 2 du = 1. e u du. = 1 2 eu + C. = 1 2 ex2 + C Math 8, Exam, Study Guide Problem Solution. Evaluate xe x dx. Solution: We evaluate the integral using the u-substitution method. Let u x. Then du xdx du xdx and we get: xe x dx e x xdx e u du e u du eu

More information

Calculus & Analytic Geometry I

Calculus & Analytic Geometry I TQS 124 Autumn 2008 Quinn Calculus & Analytic Geometry I The Derivative: Analytic Viewpoint Derivative of a Constant Function. For c a constant, the derivative of f(x) = c equals f (x) = Derivative of

More information

Functions. Remark 1.2 The objective of our course Calculus is to study functions.

Functions. Remark 1.2 The objective of our course Calculus is to study functions. Functions 1.1 Functions and their Graphs Definition 1.1 A function f is a rule assigning a number to each of the numbers. The number assigned to the number x via the rule f is usually denoted by f(x).

More information

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y:

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y: 3 Algebraic Methods b The first appearance of the equation E Mc 2 in Einstein s handwritten notes. So far, the only general class of differential equations that we know how to solve are directly integrable

More information

Antiderivatives. DEFINITION: A function F is called an antiderivative of f on an (open) interval I if F (x) = f(x) for all x in I EXAMPLES:

Antiderivatives. DEFINITION: A function F is called an antiderivative of f on an (open) interval I if F (x) = f(x) for all x in I EXAMPLES: Antiderivatives 00 Kiryl Tsishchanka DEFINITION: A function F is called an antiderivative of f on an (open) interval I if F (x) = f(x) for all x in I EXAMPLES:. If f(x) = x, then F(x) = 3 x3, since ( )

More information

Math 162: Calculus IIA

Math 162: Calculus IIA Math 62: Calculus IIA Final Exam ANSWERS December 9, 26 Part A. (5 points) Evaluate the integral x 4 x 2 dx Substitute x 2 cos θ: x 8 cos dx θ ( 2 sin θ) dθ 4 x 2 2 sin θ 8 cos θ dθ 8 cos 2 θ cos θ dθ

More information

Grade: The remainder of this page has been left blank for your workings. VERSION D. Midterm D: Page 1 of 12

Grade: The remainder of this page has been left blank for your workings. VERSION D. Midterm D: Page 1 of 12 First Name: Student-No: Last Name: Section: Grade: The remainder of this page has been left blank for your workings. Midterm D: Page of 2 Indefinite Integrals. 9 marks Each part is worth marks. Please

More information

Course Notes for Calculus , Spring 2015

Course Notes for Calculus , Spring 2015 Course Notes for Calculus 110.109, Spring 2015 Nishanth Gudapati In the previous course (Calculus 110.108) we introduced the notion of integration and a few basic techniques of integration like substitution

More information

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u Section 3 4B Lecture The Chain Rule If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy du du dx or If y = f (u) then y = f (u) u The Chain Rule

More information

Substitution and change of variables Integration by parts

Substitution and change of variables Integration by parts Substitution and change of variables Integration by parts Math 1A October 11, 216 Announcements I have been back since Friday night but will be leaving for another short trip on Thursday. James will preside

More information

Integration by Parts

Integration by Parts Calculus 2 Lia Vas Integration by Parts Using integration by parts one transforms an integral of a product of two functions into a simpler integral. Divide the initial function into two parts called u

More information

Chapter 5: Integrals

Chapter 5: Integrals Chapter 5: Integrals Section 5.5 The Substitution Rule (u-substitution) Sec. 5.5: The Substitution Rule We know how to find the derivative of any combination of functions Sum rule Difference rule Constant

More information

Sections 4.9: Antiderivatives

Sections 4.9: Antiderivatives Sections 4.9: Antiderivatives For the last few sections, we have been developing the notion of the derivative and determining rules which allow us to differentiate all different types of functions. In

More information

Puzzle 1 Puzzle 2 Puzzle 3 Puzzle 4 Puzzle 5 /10 /10 /10 /10 /10

Puzzle 1 Puzzle 2 Puzzle 3 Puzzle 4 Puzzle 5 /10 /10 /10 /10 /10 MATH-65 Puzzle Collection 6 Nov 8 :pm-:pm Name:... 3 :pm Wumaier :pm Njus 5 :pm Wumaier 6 :pm Njus 7 :pm Wumaier 8 :pm Njus This puzzle collection is closed book and closed notes. NO calculators are allowed

More information

Integral. For example, consider the curve y = f(x) between x = 0 and x = 1, with f(x) = x. We ask:

Integral. For example, consider the curve y = f(x) between x = 0 and x = 1, with f(x) = x. We ask: Integral Integration is an important concept in mathematics, specifically in the field of calculus and, more broadly, mathematical analysis. Given a function ƒ of a real variable x and an interval [a,

More information

Math 3B: Lecture 11. Noah White. October 25, 2017

Math 3B: Lecture 11. Noah White. October 25, 2017 Math 3B: Lecture 11 Noah White October 25, 2017 Introduction Midterm 1 Introduction Midterm 1 Average is 73%. This is higher than I expected which is good. Introduction Midterm 1 Average is 73%. This is

More information

CHAIN RULE: DAY 2 WITH TRIG FUNCTIONS. Section 2.4A Calculus AP/Dual, Revised /30/2018 1:44 AM 2.4A: Chain Rule Day 2 1

CHAIN RULE: DAY 2 WITH TRIG FUNCTIONS. Section 2.4A Calculus AP/Dual, Revised /30/2018 1:44 AM 2.4A: Chain Rule Day 2 1 CHAIN RULE: DAY WITH TRIG FUNCTIONS Section.4A Calculus AP/Dual, Revised 018 viet.dang@humbleisd.net 7/30/018 1:44 AM.4A: Chain Rule Day 1 THE CHAIN RULE A. d dx f g x = f g x g x B. If f(x) is a differentiable

More information

Graphs of Antiderivatives, Substitution Integrals

Graphs of Antiderivatives, Substitution Integrals Unit #10 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F (x) The guess-and-check method for anti-differentiation. The substitution

More information

Chapter 7: Techniques of Integration

Chapter 7: Techniques of Integration Chapter 7: Techniques of Integration MATH 206-01: Calculus II Department of Mathematics University of Louisville last corrected September 14, 2013 1 / 43 Chapter 7: Techniques of Integration 7.1. Integration

More information

CALCULUS. Berkant Ustaoğlu CRYPTOLOUNGE.NET

CALCULUS. Berkant Ustaoğlu CRYPTOLOUNGE.NET CALCULUS Berkant Ustaoğlu CRYPTOLOUNGE.NET Secant 1 Definition Let f be defined over an interval I containing u. If x u and x I then f (x) f (u) Q = x u is the difference quotient. Also if h 0, such that

More information

N Ji INTEGRATION USING

N Ji INTEGRATION USING NTEGRATON TECHNQUES integrate using the trigonometric identities shi (x) = -( - cos(x)), cos (x) = -( + cos(x)) and + taii (x) = sec (x) (ACMSM 6) B use substitution = g(x) to integrate expressions of

More information

16 Inverse Trigonometric Functions

16 Inverse Trigonometric Functions 6 Inverse Trigonometric Functions Concepts: Restricting the Domain of the Trigonometric Functions The Inverse Sine Function The Inverse Cosine Function The Inverse Tangent Function Using the Inverse Trigonometric

More information

Exploring Substitution

Exploring Substitution I. Introduction Exploring Substitution Math Fall 08 Lab We use the Fundamental Theorem of Calculus, Part to evaluate a definite integral. If f is continuous on [a, b] b and F is any antiderivative of f

More information

The Relation between the Integral and the Derivative Graphs. Unit #10 : Graphs of Antiderivatives, Substitution Integrals

The Relation between the Integral and the Derivative Graphs. Unit #10 : Graphs of Antiderivatives, Substitution Integrals Graphs of Antiderivatives - Unit #0 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F (x) The guess-and-check method for anti-differentiation.

More information

Business and Life Calculus

Business and Life Calculus Business and Life Calculus George Voutsadakis Mathematics and Computer Science Lake Superior State University LSSU Math 2 George Voutsadakis (LSSU) Calculus For Business and Life Sciences Fall 203 / 55

More information

Chapter 2: Differentiation

Chapter 2: Differentiation Chapter 2: Differentiation Winter 2016 Department of Mathematics Hong Kong Baptist University 1 / 75 2.1 Tangent Lines and Their Slopes This section deals with the problem of finding a straight line L

More information

MATH 222 SECOND SEMESTER CALCULUS

MATH 222 SECOND SEMESTER CALCULUS MATH SECOND SEMESTER CALCULUS Spring Math nd Semester Calculus Lecture notes version.7(spring ) This is a self contained set of lecture notes for Math. The notes were written by Sigurd Angenent, starting

More information

New test - November 03, 2015 [79 marks]

New test - November 03, 2015 [79 marks] New test - November 03, 05 [79 marks] Let f(x) = e x cosx, x. a. Show that f (x) = e x ( cosx sin x). correctly finding the derivative of e x, i.e. e x correctly finding the derivative of cosx, i.e. sin

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

Differentiation by taking logarithms

Differentiation by taking logarithms Differentiation by taking logarithms In this unit we look at how we can use logarithms to simplify certain functions before we differentiate them. In order to master the techniques explained here it is

More information

Study 5.5, # 1 5, 9, 13 27, 35, 39, 49 59, 63, 69, 71, 81. Class Notes: Prof. G. Battaly, Westchester Community College, NY Homework.

Study 5.5, # 1 5, 9, 13 27, 35, 39, 49 59, 63, 69, 71, 81. Class Notes: Prof. G. Battaly, Westchester Community College, NY Homework. Goals: 1. Recognize an integrand that is the derivative of a composite function. 2. Generalize the Basic Integration Rules to include composite functions. 3. Use substitution to simplify the process of

More information