Questioning the Foundations of Physics to Achieve Interstellar Travel. By Benjamin T Solomon

Size: px
Start display at page:

Download "Questioning the Foundations of Physics to Achieve Interstellar Travel. By Benjamin T Solomon"

Transcription

1 Questioning the Foundations of Physics to Achieve Interstellar Travel By Benjamin T Solomon iseti LLC PO Box 8532 Denver, CO Tel: benjamin.t.solomon@iseti.us Abstract: This essay looks at the author s research and compares it with contemporary physics to ask more questions. What is a force? Why do we need to travel? Why can t we just arrive? Is interstellar travel achievable? Does subspace exists? Is contemporary physics looking for answers in the wrong places? Brief Bio: Solomon recently completed a 12-year study into the theoretical and technological feasibility of gravity modification. He is the author of An Introduction to Gravity Modification, Universal Publishers, 520 pages, January Solomon has published several related papers, at peer reviewed SPESIF conferences and in Physics Essays.

2 Questioning the Foundations of Physics to Achieve Interstellar Travel By Benjamin T Solomon It is not sufficient to just challenge the foundations of physics just for the theoretical interest. To make the challenge come alive we need a goal that will keep us awake at night at the possibility of new unthinkable inventions that will take man where no man has gone before. Is interstellar travel possible? I have found that in trying to answer this question, I am forced to challenge the foundations of physics. This question provides a vessel to discuss how to challenge, and if we have found some of the answers, there are still more questions. The two most important questions in my opinion are, what is force?, and what is the difference between travel and arrival? That is, why do we need to travel, why can t we just arrive? I started questioning the foundations of physics in In attempting to answer the question, what is force?, in 2007 I discovered a new formula for gravitational acceleration g=τc 2 that does not require us to know the mass of the planet or star. τ is the change in time dilation divided by the change in distance. This is an immense discovery, never before accomplished in the 346- year history, since Newton, of the physics of gravitational fields, as all theories on gravity require us to know the mass of the planet or star. Gerard t Hooft the 1999 Nobel Laureate showed in 2008 that gravitational forces can be present in space even where planets and stars are not. My work goes a step further. We can determine the acceleration present in space without any knowledge of the planets or stars that cause this gravitational field (Solomon, 2011). Unlike Newtonian gravity or General Relativity, the importance of the shape of spacetime lies in the fact that it informs us of what time dilation and length contraction are, as these two parameters are the minimum information one requires to determine gravitational acceleration. Therefore, the formalism in this essay will be different from that of Newtonian gravity or General Relativity, as a tensor treatment is outside the scope of this paper. A schema is an outline of a model of a complex reality to assist in explaining this reality. The work of various researchers in the gravity field can be presented by a conceptual formalism referred to as source-field-effect schema. The source-field-effect schema corresponds to the mass-gravity-acceleration phenomenon, respectively. Puthoff s (Amoroso et al, 2002) source-field schema describes how the mass source could create a gravitational field; how General Relativity s curved spacetime could be produced by the polarizability of vacuum in the vicinity of a mass. Rueda & Haisch (Amoroso et al, 2002) source schema is about mass only. They discuss inertia mass, mass as a field and Higgs boson as the origin of mass.

3 Bondi (1957) suggested the possibility of a field schema not requiring mass. Bondi made two observations when reviewing gravitation as a theory and suggested that mass may not be critical to a theory of gravitation. First, as long as relativity is considered purely as a theory of gravitation, the inertial and passive gravitational masses do not in fact appear. This is consistent with the fact that gravitational acceleration (but not force) is independent of the mass of the object being accelerated. His second observation was that active gravitational mass occurs for the first time as a constant of integration in Schwarzschild s solution suggesting the possibility that this constant of integration could have other experimentally untested interpretations. One could conjecture that mass is a proxy for number of quarks and therefore a proxy for quark interaction as the source of gravitational fields. Bondi did not explicitly say it, but maybe one should look into other mechanisms for gravitational field sources. Hooft (2008) takes another step in Bondi s direction with his source-field schema. He states that the absence of matter no longer guarantees local flatness that the absence of mass does not guarantee that acceleration will not be present. In effect the field is being disengaged from its source. Wagoner (1998) describes a local-field schema, how a gravitational field emerges from a local analysis leading to a broad class of metric theories. Solomon s (2009) schema proposed a different local analysis, one where local field distortions in spacetime lead to a local particle distortions, and alter the shape of the particle causing the center of mass of the particle to shift. This shifting is seen as acceleration g and is governed by g = τc 2, where τ is the change in time dilation divided by the change in distance across this particle; thereby providing a mathematical solution to Hooft s (2008) assertion that absence of matter no longer guarantees local flatness. General Relativity is based on separation vector. However, splitting this separation vector equation into two equations, one part of the separation vector equation is a function of mass and the other part a tensor function. This gives rise to the question, can the mass part be replaced by something else say, an Ω function, where Ω is as yet undefined but not a function of mass? Now one realizes that the theoretical physics community has focused on the tensor part to the complete exclusion of the Ω function. That is, there is definitely the opportunity to question the foundations of physics. Looking at the massless equation for gravitational acceleration, change in time dilation divided by the change in distance is what describes a gravitational field. A small body orbiting the Earth has a certain velocity which can be converted to time dilation. Change the orbital radius of the small body by a small amount, less or more, gives a new orbital velocity and a new time dilation. Therefore, divide this change in time dilation by the change in height and multiply by the velocity of light squared, give the acceleration present. The same is with a centripetal motion. Use the velocity along the radius at any two points, determine the change in time

4 dilation then divide this change in time dilation by the change in radius and multiply by the velocity of light squared, give the acceleration present The same is true for an electron traveling in a magnetic field, but this cannot be explained without the use of equations. See Solomon 2001 for a detailed explanation. Further, this approach now explains why force is orthogonal to both electron motion and magnetic field. Contemporary electromagnetism cannot explain why other than stating it has to be a vector cross product. Which raise the question, what is the electron doing in the magnetic field? Is it rotating with respect to the magnetic field or is it locked? It is important to note that the time dilation as a spatial gradient is the key to acceleration and is termed Non Inertia or Ni Field. The Ni field concept is the first major challenge to quantum mechanics in a hundred years. Quantum mechanics states that force is transmitted by the exchange of virtual particles, whereas the Ni field states that it is the spatial gradient of time dilation. Unlike quantum mechanics, the Ni field is able to unify gravity, electromagnetism and mechanical forces. So there, we have a new physics that challenges the foundations of contemporary theories, with alternative mechanisms that need to be tested further and experimentally verified. Is it possible to design a test that will either prove or disprove that virtual particles are the carrier of force. We have an alternate hypothesis, Ni fields. Therefore, a test could be developed that considers the difference between these two approaches. Currently it does not make sense to test relativity and quantum mechanics as alternate hypothesis, because they are so very different. However, inserting a third alternative, Ni fields, could provide a means of developing test for relativity with the Ni field as an alternate hypothesis. Could we test this Ni field approach on a problem where all other physicist-engineers have failed to solve? Prof. Eric Laithwaite s Big Wheel experiment would be such a problem. Until now no one has solved it. Not with classical mechanics, quantum mechanics, relativity or string theories. The Big Wheel experiment is basically this. Pivot a wheel to the end of a 3-ft (1 m) rod. Spin this wheel to 3,000 rpm or more. Then rotate this rod with the spinning wheel at the other end. The technical description is, rotate the spin vector. It turns out that the solution to the Big Wheel experiment a=ω r ω s h produces weight loss and gain. How interesting. We have a mechanical construction that does not change its mass, but is able to produce force. If the spin and rotation are of like sense to the observer, the force is toward the observer. If unlike then the force is away from the observer. Going back to the Ω function, we note that in the Ω function mass has been replaced by spin and rotation. Further work is required to figure out how such an Ω function could be fully developed into a theoretical model.

5 The next step in challenging the foundations of physics is to replace the mass based Ω function with an electromagnetic function. Currently the work to unify electromagnetism with gravity is focused on the tensor side. This essay, however, suggest that this may not be the case. If we can do this the new physics will enable us to use electrical circuits to create force, and will one day replace all combustion engines. Imagine getting to Mars in 2 hours. But gravity modification is not the means for interstellar travel. To develop interstellar propulsion technology requires thinking outside the box. One possibility is, how do we arrive without travelling. Surprisingly, Nature shows us that this is possible. Both photons and particles with mass (electrons, protons & neutrons) have probabilistic natures. If these particles pass through a slit they arrive at either sides of the slit, not just straight ahead! This arrival is governed by probabilities. Therefore, interstellar travel technology requires an understanding of how probability is implemented in Nature, and we need to figure out how to control the arrival event, somewhat like the Hitch Hiker s Guide to the Galaxy s infinite improbability drive. Neither relativity nor quantum mechanics can or has attempted to explain probabilities. So what is probability? And, in the single slit experiment why does it decrease as one moves orthogonally away from the slit? I proposed that probabilities are a property of subspace and the way to interstellar travel. Subspace co-exists with spacetime but does not have the time dimension. So how do we test for subspace? If it is associated with probability, then can we determine tests that can confirm subspace? More interestingly, can we alter the probability of arrivals in the single slit experiments? There are other questions we can ask, why is the Doppler Effect not a special case of Gravitational Red/Blue shift? Can we find the answers? Will seeking these answers keep us awake at night at the possibility of new unthinkable inventions that will take man where no man has gone before?

6 Technical Foot Notes: R.L. Amoroso, G. Hunter, M. Kafatos, and Vigier, Gravitation and Cosmology: From the Hubble Radius to the Plank Scale, Proceedings of a Symposium in Honour of the 80th Birthday of Jean- Pierre Vigier, Edited by Amoroso, R.L., Hunter, G., Kafatos, M., and Vigier, J-P., (Kluwer Academic Publishers, Boston, USA, 2002). H. Bondi, Reviews of Modern Physics, 29-3, 423 (1957). G. Hooft, Found Phys 38, 733 (2008). B.T. Solomon, An Approach to Gravity Modification as a Propulsion Technology, Space, Propulsion and Energy Sciences International Forum (SPESIF 2009), edited by Glen Robertson, AIP Conference Proceedings, 1103, 317 (2009). B.T. Solomon, Phys. Essays 24, 327 (2011) R. V. Wagoner, 26th SLAC Summer Institute on Particle Physics, SSI 98, 1 (1998).

An Introduction to Gravity Modification

An Introduction to Gravity Modification An Introduction to Gravity Modification An Introduction to Gravity Modification: A Guide to Using Laithwaite s and Podkletnov s Experiments and the Physics of Forces for Empirical Results Second Edition

More information

Dark Matter and Energy

Dark Matter and Energy Dark Matter and Energy The gravitational force attracting the matter, causing concentration of the matter in a small space and leaving much space with low matter concentration: dark matter and energy.

More information

Gravity as the cause for nuclear force and cosmological acceleration

Gravity as the cause for nuclear force and cosmological acceleration Gravity as the cause for nuclear force and cosmological acceleration Henok Tadesse, Electrical Engineer, BSc. Ethiopia, Debrezeit, P.O Box 12 Mobile: +251 910 751339; email entkidmt@yahoo.com or wchmar@gmail.com

More information

Elementary particles and typical scales in high energy physics

Elementary particles and typical scales in high energy physics Elementary particles and typical scales in high energy physics George Jorjadze Free University of Tbilisi Zielona Gora - 23.01.2017 GJ Elementary particles and typical scales in HEP Lecture 1 1/18 Contents

More information

Relation between the

Relation between the J Phys Math 7: 169. (2016) Relation between the Gravitational and Magnetic Fields Jose Garrigues Baixauli jgarrigu@eln.upv.es Abstract Quantum and relativistic phenomena can be explained by the hypothesis

More information

ASTR 200 : Lecture 21. Stellar mass Black Holes

ASTR 200 : Lecture 21. Stellar mass Black Holes 1 ASTR 200 : Lecture 21 Stellar mass Black Holes High-mass core collapse Just as there is an upper limit to the mass of a white dwarf (the Chandrasekhar limit), there is an upper limit to the mass of a

More information

In defence of classical physics

In defence of classical physics In defence of classical physics Abstract Classical physics seeks to find the laws of nature. I am of the opinion that classical Newtonian physics is real physics. This is in the sense that it relates to

More information

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general http://pancake.uchicago.edu/ carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. As with any major theory in physics, GR has been

More information

First some Introductory Stuff => On The Web.

First some Introductory Stuff => On The Web. First some Introductory Stuff => On The Web http://hep.physics.utoronto.ca/~orr/wwwroot/phy357/phy357s.htm PHY357 = What is the Universe Made Of? Is the Universe Made of These? Proton = (u u d) held

More information

Extra Dimensions in Physics? Shamit Kachru Stanford University

Extra Dimensions in Physics? Shamit Kachru Stanford University Extra Dimensions in Physics? Shamit Kachru Stanford University One of the few bits of fundamental physics that becomes obvious to most of us in childhood: our playing field consists of three spatial dimensions,

More information

Phys 102 Lecture 28 Life, the universe, and everything

Phys 102 Lecture 28 Life, the universe, and everything Phys 102 Lecture 28 Life, the universe, and everything 1 Today we will... Learn about the building blocks of matter & fundamental forces Quarks and leptons Exchange particle ( gauge bosons ) Learn about

More information

From Quantum Mechanics to String Theory

From Quantum Mechanics to String Theory From Quantum Mechanics to String Theory Relativity (why it makes sense) Quantum mechanics: measurements and uncertainty Smashing things together: from Rutherford to the LHC Particle Interactions Quarks

More information

Hawking & the Universe

Hawking & the Universe Hawking & the Universe This is a supplement to the lecture given on Jan 26, 2015, by Dr. Mounib El Eid, Physics department, AUB. It may motivate the reader to explore some of the presented issues. There

More information

Lecture IV : Feb 1, 2017

Lecture IV : Feb 1, 2017 Lecture IV : Feb 1, 2017 Reading Assignment: Chapter 2 and 3 from Quantum Physics for Poets. Summarize your thoughts with some questions/comments. ( One page writeup Due Next Monday, Feb 6, 2017 ) Can

More information

Type Ia Supernova Observations. Supernova Results:The Context. Supernova Results. Physics 121 December 4, fainter. brighter

Type Ia Supernova Observations. Supernova Results:The Context. Supernova Results. Physics 121 December 4, fainter. brighter Physics 11 December 4, 009 Today Supernovae revisited Galaxy Rotation Curves Dark Matter & Dark Energy Scaling Factor a(t) Course Evaluations Type Ia Supernova Observations Distant supernovae are than

More information

RELATIVITY. The End of Physics? A. Special Relativity. 3. Einstein. 2. Michelson-Morley Experiment 5

RELATIVITY. The End of Physics? A. Special Relativity. 3. Einstein. 2. Michelson-Morley Experiment 5 1 The End of Physics? RELATIVITY Updated 01Aug30 Dr. Bill Pezzaglia The following statement made by a Nobel prize winning physicist: The most important fundamental laws and facts of physical science have

More information

REALIZING EINSTEIN S DREAM. Exploring Our Mysterious Universe

REALIZING EINSTEIN S DREAM. Exploring Our Mysterious Universe REALIZING EINSTEIN S DREAM Exploring Our Mysterious Universe Mysteries of the Universe Quarks Leptons Higgs Bosons Supersymmetric Particles SuperString Theory Dark Matter Dark Energy and the cosmological

More information

The ANSWER Einstein looked for Issued: July 10th ANSWER in htm: - Quick version of.

The ANSWER Einstein looked for Issued: July 10th ANSWER in htm: -   Quick version of. The ANSWER Einstein looked for Issued: July 10th 2018. ANSWER in htm: - http://amperefitz.com/answer.htm Also ANSWER in Word: - http://amperefitz.com/answer.doc And ANSWER in Adobe pdf: - http://amperefitz.com/answer.pdf

More information

ASTR 200 : Lecture 31. More Gravity: Tides, GR, and Gravitational Waves

ASTR 200 : Lecture 31. More Gravity: Tides, GR, and Gravitational Waves ASTR 200 : Lecture 31 More Gravity: Tides, GR, and Gravitational Waves 1 Topic One : Tides Differential tidal forces on the Earth. 2 How do tides work???? Think about 3 billiard balls sitting in space

More information

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future From last time Quantum field theory is a relativistic quantum theory of fields and interactions. Fermions make up matter, and bosons mediate the forces by particle exchange. Lots of particles, lots of

More information

How and Why to go Beyond the Discovery of the Higgs Boson

How and Why to go Beyond the Discovery of the Higgs Boson How and Why to go Beyond the Discovery of the Higgs Boson John Alison University of Chicago http://hep.uchicago.edu/~johnda/comptonlectures.html Lecture Outline April 1st: Newton s dream & 20th Century

More information

Survey of Astrophysics A110

Survey of Astrophysics A110 Black Holes Goals: Understand Special Relativity General Relativity How do we observe black holes. Black Holes A consequence of gravity Massive neutron (>3M ) cannot be supported by degenerate neutron

More information

Gravitational Repulsion of Matter and Antimatter

Gravitational Repulsion of Matter and Antimatter Gravitational Repulsion of Matter and Antimatter The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the electromagnetic inertia, the changing

More information

2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I

2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I 1 2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I 2 Special Relativity (1905) A fundamental change in viewing the physical space and time, now unified

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 6 Oct. 28, 2015 Today Wrap up of Einstein s General Relativity Curved Spacetime Gravitational Waves Black Holes Relativistic

More information

arxiv: v1 [physics.gen-ph] 13 Oct 2016

arxiv: v1 [physics.gen-ph] 13 Oct 2016 arxiv:1610.06787v1 [physics.gen-ph] 13 Oct 2016 Quantised inertia from relativity and the uncertainty principle. M.E. McCulloch October 24, 2016 Abstract It is shown here that if we assume that what is

More information

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles 1 Introduction The purpose of this chapter is to provide a brief introduction to the Standard Model of particle physics. In particular, it gives an overview of the fundamental particles and the relationship

More information

THE HIGGS BOSON AND THE SPACETIME METRIC (Revised June, 2016) JOHN A. GOWAN

THE HIGGS BOSON AND THE SPACETIME METRIC (Revised June, 2016) JOHN A. GOWAN THE HIGGS BOSON AND THE SPACETIME METRIC (Revised June, 2016) JOHN A. GOWAN email: jag8@cornell.edu johngowan@earthlink.net home page (page 1) home page (page 2) E-Book Abstract Currently, there seems

More information

We will consider just a small part of these which introduce Einstein s Special and General Theories of Relativity

We will consider just a small part of these which introduce Einstein s Special and General Theories of Relativity Supplementary Textbook Chapters S2 and S3: Special and General Relativity We will consider just a small part of these which introduce Einstein s Special and General Theories of Relativity Young Einstein

More information

Review Chap. 18: Particle Physics

Review Chap. 18: Particle Physics Final Exam: Sat. Dec. 18, 2:45-4:45 pm, 1300 Sterling Exam is cumulative, covering all material Review Chap. 18: Particle Physics Particles and fields: a new picture Quarks and leptons: the particle zoo

More information

Lecture Outlines. Chapter 26. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 26. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 26 Astronomy Today 8th Edition Chaisson/McMillan Chapter 26 Cosmology Units of Chapter 26 26.1 The Universe on the Largest Scales 26.2 The Expanding Universe 26.3 The Fate of the

More information

ASTR 200 : Lecture 30. More Gravity: Tides, GR, and Gravitational Waves

ASTR 200 : Lecture 30. More Gravity: Tides, GR, and Gravitational Waves ASTR 200 : Lecture 30 More Gravity: Tides, GR, and Gravitational Waves 1 Topic One : Tides Differential tidal forces on the Earth. 2 How do tides work???? Think about 3 billiard balls sitting in space

More information

Designing Force Field Engines

Designing Force Field Engines ISSN: 31998 Designing Force Field Engines Solomon BT * Xodus One Foundation, 815 N Sherman Street, Denver, Colorado, USA * Corresponding author: Solomon BT, Xodus One Foundation, 815 N Sherman Street,

More information

QUANTUM NEWTONIAN GRAVITY WORKING MODEL

QUANTUM NEWTONIAN GRAVITY WORKING MODEL QUANTUM NEWTONIAN GRAVITY WORKING MODEL (Gravitation by Radiation) Leonard J. Malinowski LJMalinowski@gmail.com MARCH 21, 2019 PUBLISHED BY SCALATIVITY LLC Scalativity.com Abstract A quantum theory of

More information

Astronomy 1143 Final Exam Review Answers

Astronomy 1143 Final Exam Review Answers Astronomy 1143 Final Exam Review Answers Prof. Pradhan April 24, 2015 What is Science? 1. Explain the difference between astronomy and astrology. 2. What number is the metric system based around? What

More information

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general http://pancake.uchicago.edu/ carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. As with any major theory in physics, GR has been

More information

A most elegant philosophy about the Theory Of Everything

A most elegant philosophy about the Theory Of Everything A most elegant philosophy about the Theory Of Everything Author: Harry Theunissen (pseudonym) Email: htheunissen61@hotmail.com Abstract: Given a simple set of assumptions, this paper gives an elegant explanation

More information

Particle + Physics at ATLAS and the Large Hadron Coillder

Particle + Physics at ATLAS and the Large Hadron Coillder Particle + Physics at ATLAS and the Large Hadron Coillder Discovering the elementary particles of the Universe Kate Shaw The International Centre for Theoretical Physics + Overview Introduction to Particle

More information

General Relativity and Cosmology. The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang

General Relativity and Cosmology. The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang General Relativity and Cosmology The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang The End of Absolute Space (AS) Special Relativity (SR) abolished AS only for the special

More information

President Kennedy's message to the congress on May 25, 1961

President Kennedy's message to the congress on May 25, 1961 B r B I Acknowledgments The authors are grateful to Prof. Dr. Dr. A. Resch, Director of the Institute of Grenzgebiete der Wissenschaften, Leopold-Franzens Univ. Innsbruck, Austria for providing access

More information

Einstein in a Nutshell

Einstein in a Nutshell Einstein in a Nutshell Richard Wolfson Benjamin F. Wissler Professor of Physics Middlebury College Insight Cruises/Scientific American January 15, 2011 Relativity in Recent News http://newscenter.berkeley.edu/2011/12/05/record-black-holes-bigger-than-our-solar-system/,

More information

Unit 5: Gravity and Rotational Motion. Brent Royuk Phys-109 Concordia University

Unit 5: Gravity and Rotational Motion. Brent Royuk Phys-109 Concordia University Unit 5: Gravity and Rotational Motion Brent Royuk Phys-109 Concordia University Rotational Concepts There s a whole branch of mechanics devoted to rotational motion, with angular equivalents for distance,

More information

Abstract: Here, I use the basic principles of the McMahon field theory to explain the strong force and the weak force, as described for atoms.

Abstract: Here, I use the basic principles of the McMahon field theory to explain the strong force and the weak force, as described for atoms. Copyright Version: 2 nd March, 2015, updated 10 th April, 2015 Page: 1 of 8 The Strong and weak forces- explained via McMahon field theory Abstract: Here, I use the basic principles of the McMahon field

More information

Higgs Field and Quantum Gravity

Higgs Field and Quantum Gravity Higgs Field and Quantum Gravity The magnetic induction creates a negative electric field, causing an electromagnetic inertia responsible for the relativistic mass change; it is the mysterious Higgs Field

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

More information

I will make this assumption for my starting point. I substitute the appropriate values into the second form of the force equation given above:

I will make this assumption for my starting point. I substitute the appropriate values into the second form of the force equation given above: This is the magnitude of the potential energy of the electron. This value divided by the radius of the orbit would give the magnitude of the force shown above. What must be decided at this point is what

More information

The Building Blocks of Nature

The Building Blocks of Nature The Building Blocks of Nature PCES 15.1 Schematic picture of constituents of an atom, & rough length scales. The size quoted for the nucleus here (10-14 m) is too large- a single nucleon has size 10-15

More information

Physics 133: Extragalactic Astronomy and Cosmology

Physics 133: Extragalactic Astronomy and Cosmology Physics 133: Extragalactic Astronomy and Cosmology Week 2 Spring 2018 Previously: Empirical foundations of the Big Bang theory. II: Hubble s Law ==> Expanding Universe CMB Radiation ==> Universe was hot

More information

has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity.

has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. http://preposterousuniverse.com/grnotes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. As with any major theory in physics, GR has been framed

More information

Pic of the day: false color topographical map from Lunar Reconnaissance Orbiter

Pic of the day: false color topographical map from Lunar Reconnaissance Orbiter Friday, November 18, 2011 Reading: Chapter 12, Chapter 13, Chapter 14 Astronomy in the news? Fabric of the Cosmos, Quantum Leap, weird world of quantum uncertainty, quantum entanglement (instantaneous

More information

Announcements. Lecture 6. General Relativity. From before. Space/Time - Energy/Momentum

Announcements. Lecture 6. General Relativity. From before. Space/Time - Energy/Momentum Announcements 2402 Lab will be started next week Lab manual will be posted on the course web today Lab Scheduling is almost done!! HW: Chapter.2 70, 75, 76, 87, 92, 97*, 99, 104, 111 1 st Quiz: 9/18 (Ch.2)

More information

Trapped in an infinite extra dimension

Trapped in an infinite extra dimension Trapped in an infinite extra dimension Damien George Nikhef theory group Nikhef Jamboree 15 16 th December 2009 Amsterdam Extra dimensions D.P. George Trapped in an infinite extra dimension 2/11 Beyond

More information

An Origin for Inertia. by John Newell.. 35 Neighbour Avenue Goolwa Beach 5214 South Australia.

An Origin for Inertia. by John Newell.. 35 Neighbour Avenue Goolwa Beach 5214 South Australia. An Origin for Inertia by John Newell.. 5 Neighbour Avenue Goolwa Beach 514 South Australia Email: spupeng7@gmail.com An Essay written for the Gravity Research Foundation 014 Awards for Essays on Gravitation.

More information

The Bohr Magneton and Bohr's second and third biggest mistakes

The Bohr Magneton and Bohr's second and third biggest mistakes The Bohr Magneton and Bohr's second and third biggest mistakes by Miles Mathis Abstract: I will show several problems with the derivation of the Bohr Magneton. Using that analysis, I will look again at

More information

Gravitational Magnetic Force

Gravitational Magnetic Force Gravitational Magnetic Force The curved space-time around current loops and solenoids carrying arbitrarily large steady electric currents is obtained from the numerical resolution of the coupled Einstein-Maxwell

More information

Physics for Poets. Gaurang Yodh, UC. (a) What does Physics study? Behavior of Matter, Radiation and their interaction.

Physics for Poets. Gaurang Yodh, UC. (a) What does Physics study? Behavior of Matter, Radiation and their interaction. Physics for Poets Gaurang Yodh, UC (a) What does Physics study? Behavior of Matter, Radiation and their interaction. (b) What is method of study? Experiment - obtain hints about phenomena using imagination

More information

Limitations of Newtonian Physics

Limitations of Newtonian Physics Limitations of Newtonian Physics 18 th and 19 th Centuries Newtonian Physics was accepted as an ultimate truth Science is never absolute Hundreds of experiments can t prove my theory right but only one

More information

Outline. The Cosmological Principle II. The Perfect Cosmological Principle. The cosmological principle. Covers chapter 2 + half of chapter 3 in Ryden

Outline. The Cosmological Principle II. The Perfect Cosmological Principle. The cosmological principle. Covers chapter 2 + half of chapter 3 in Ryden Outline Covers chapter 2 + half of chapter 3 in Ryden The Cosmological Principle I The Cosmological Principle II The cosmological principle Voids typically 70 Mpc across The Perfect Cosmological Principle

More information

Dark Energy or Repulsive Gravity

Dark Energy or Repulsive Gravity Dark Energy or Repulsive Gravity The leading theory to explain the accelerating expansion is the existence of a hypothetical repulsive force called dark energy. But in the new study, Massimo Villata, an

More information

Gravity Propulsion in a Fluid Membrane- A New Propulsion Methodology. Paul Richard Price

Gravity Propulsion in a Fluid Membrane- A New Propulsion Methodology. Paul Richard Price Gravity Propulsion in a Fluid Membrane- A New Propulsion Methodology Paul Richard Price Discussion Gravity is assumed to be a wave interaction with solid matter in the space time continuum. The Michealson-Morley

More information

cgrahamphysics.com Particles that mediate force Book pg Exchange particles

cgrahamphysics.com Particles that mediate force Book pg Exchange particles Particles that mediate force Book pg 299-300 Exchange particles Review Baryon number B Total # of baryons must remain constant All baryons have the same number B = 1 (p, n, Λ, Σ, Ξ) All non baryons (leptons

More information

Cosmology holography the brain and the quantum vacuum. Antonio Alfonso-Faus. Departamento de Aerotécnia. Madrid Technical University (UPM), Spain

Cosmology holography the brain and the quantum vacuum. Antonio Alfonso-Faus. Departamento de Aerotécnia. Madrid Technical University (UPM), Spain Cosmology holography the brain and the quantum vacuum Antonio Alfonso-Faus Departamento de Aerotécnia Madrid Technical University (UPM), Spain February, 2011. E-mail: aalfonsofaus@yahoo.es Abstract: Cosmology,

More information

Gravitation. Adrian Ferent. This is a new quantum gravity theory which breaks the wall of Planck scale. Abstract

Gravitation. Adrian Ferent. This is a new quantum gravity theory which breaks the wall of Planck scale. Abstract Gravitation Adrian Ferent This is a new quantum gravity theory which breaks the wall of Planck scale. My Nobel Prize Idea Abstract The Photon Graviton pair (coupled) has the same speed and frequency, and

More information

The Dark Side of the Higgs Field and General Relativity

The Dark Side of the Higgs Field and General Relativity The Dark Side of the Higgs Field and General Relativity The gravitational force attracting the matter, causing concentration of the matter in a small space and leaving much space with low matter concentration:

More information

Unit 5: Gravity and Rotational Motion

Unit 5: Gravity and Rotational Motion Rotational Concepts Unit 5: Gravity and Rotational Motion There s a whole branch of mechanics devoted to rotational motion, with angular equivalents for distance, speed, acceleration, mass, force, momentum

More information

Introduction to Modern Physics NE 131 Physics for Nanotechnology Engineering

Introduction to Modern Physics NE 131 Physics for Nanotechnology Engineering Introduction to Modern Physics NE 131 Physics for Nanotechnology Engineering Dr. Jamie Sanchez-Fortún Stoker Department of Physics, University of Waterloo Fall 2005 1 Introduction to Modern Physics 1.1

More information

Centrifugal, Centripetal, and Gravitational Force and Motion. The Mathematical Dimensions of the Foundation of Reality

Centrifugal, Centripetal, and Gravitational Force and Motion. The Mathematical Dimensions of the Foundation of Reality , Centripetal, and Gravitational and Motion The use of accelerometers to measure the motion produced by inertial force, centrifugal force, centripetal force, and gravitational force is at the basic foundation

More information

Class 16. Prof J. Kenney October 31, Relativity

Class 16. Prof J. Kenney October 31, Relativity Class 16 Prof J. Kenney October 31, 2016 Relativity Length contraction (moving sticks are shorter) A measuring stick at rest has a length Lo. When it is propelled at velocity v, it has a shorter length

More information

Imagination is more important than knowledge. -Albert Einstein. P.O. Box 18265, Reno, Nevada 89511, USA

Imagination is more important than knowledge. -Albert Einstein. P.O. Box 18265, Reno, Nevada 89511, USA 1 Title: General Relativity, Non-Abelian Gauge Theories, and Quantum Gravity Author: F. Winterberg Institution: Carl Friedrich Gauss Academy of Science, Potsdam, Germany and Reno, Nevada, USA. 1 Imagination

More information

10/17/2012. Lecture Two. Cosmic Forces FROM ATOMS GALAXIES

10/17/2012. Lecture Two. Cosmic Forces FROM ATOMS GALAXIES Lecture Two Cosmic Forces FROM ATOMS TO GALAXIES 1 2 Curiosity Demands that We Ask Questions "Nothing exists except atoms and empty space - everything else is opinion Democritus of Abdera 430 B. C. Greece

More information

Might have Minkowski discovered the cause of gravity before Einstein? Vesselin Petkov Minkowski Institute Montreal, Canada

Might have Minkowski discovered the cause of gravity before Einstein? Vesselin Petkov Minkowski Institute Montreal, Canada Might have Minkowski discovered the cause of gravity before Einstein? Vesselin Petkov Minkowski Institute Montreal, Canada OUTLINE We will never know how physics would have developed had Hermann Minkowski

More information

THE CONTROLLED REFRACTIVE INDEX WARP DRIVE

THE CONTROLLED REFRACTIVE INDEX WARP DRIVE THE CONTROLLED REFRACTIVE INDEX WARP DRIVE Todd J. Desiato 1 March 14, 01 v10 Abstract When a space-time warp bubble is moving at velocity (i.e. v > c), Doppler shifted photons with energy tending to infinity,

More information

Outline. General Relativity. Black Holes as a consequence of GR. Gravitational redshift/blueshift and time dilation Curvature Gravitational Lensing

Outline. General Relativity. Black Holes as a consequence of GR. Gravitational redshift/blueshift and time dilation Curvature Gravitational Lensing Outline General Relativity Gravitational redshift/blueshift and time dilation Curvature Gravitational Lensing Black Holes as a consequence of GR Waste Disposal It is decided that Earth will get rid of

More information

Unification. Benjamin Allen Sullivan* A division of BASRC, Benjamin Allen Sullivan Renaissance Corporation, Toronto.

Unification. Benjamin Allen Sullivan* A division of BASRC, Benjamin Allen Sullivan Renaissance Corporation, Toronto. Unification Benjamin Allen Sullivan* A division of BASRC, Benjamin Allen Sullivan Renaissance Corporation, Toronto. Ontario, Canada Short Communication Received date: 14/11/2016 Accepted date: 27/12/2016

More information

Preface to Presentation

Preface to Presentation Preface to Presentation I gave a presentation last October about time travel, warp drive, travel to a Goldilocks Planet etc. to provide some possible place to escape a possible dying world I mentioned

More information

Physics 314 (Survey of Astronomy) Exam 3

Physics 314 (Survey of Astronomy) Exam 3 Physics 314 (Survey of Astronomy) Exam 3 Please show all significant steps clearly in all problems. Please give clear, legible, and reasonably complete (although brief) responses to qualitative questions.

More information

Special Relativity. Principles of Special Relativity: 1. The laws of physics are the same for all inertial observers.

Special Relativity. Principles of Special Relativity: 1. The laws of physics are the same for all inertial observers. Black Holes Special Relativity Principles of Special Relativity: 1. The laws of physics are the same for all inertial observers. 2. The speed of light is the same for all inertial observers regardless

More information

Relativistic Effects

Relativistic Effects Relativistic Effects There are four effects of motion through the background which become significant as we approach the speed of light. They are: contraction in length increase in mass slowing of time

More information

On whether or not non-gravitational interaction can occur in the absence of gravity

On whether or not non-gravitational interaction can occur in the absence of gravity On whether or not non-gravitational interaction can occur in the absence of gravity S. Halayka darkessay@gmail.com August 31, 2012 Abstract The Standard Model of particle physics is built upon the implied

More information

Today. From Last Time. Fundamental Matter Particles. Similar particles. Exchange Bosons (force carriers) And several different interactions

Today. From Last Time. Fundamental Matter Particles. Similar particles. Exchange Bosons (force carriers) And several different interactions From Last Time Discussed the weak interaction All quarks and leptons have a weak charge They interact through the weak interaction Weak interaction often swamped by electromagnetic or strong interaction.

More information

Relativity, Gravitation, and Cosmology

Relativity, Gravitation, and Cosmology Relativity, Gravitation, and Cosmology A basic introduction TA-PEI CHENG University of Missouri St. Louis OXFORD UNIVERSITY PRESS Contents Parti RELATIVITY Metric Description of Spacetime 1 Introduction

More information

Postulates of Special Relativity

Postulates of Special Relativity Relativity Relativity - Seen as an intricate theory that is necessary when dealing with really high speeds - Two charged initially stationary particles: Electrostatic force - In another, moving reference

More information

Einstein did not explain the photoelectric effect. There are not Black Holes at Planck wall

Einstein did not explain the photoelectric effect. There are not Black Holes at Planck wall Einstein did not explain the photoelectric effect. There are not Black Holes at Planck wall I discovered a new Gravitation theory which breaks the wall of Planck scale! Abstract My Nobel Prize - Discoveries

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

Outline. Covers chapter 2 + half of chapter 3 in Ryden

Outline. Covers chapter 2 + half of chapter 3 in Ryden Outline Covers chapter + half of chapter 3 in Ryden The Cosmological Principle I The cosmological principle The Cosmological Principle II Voids typically 70 Mpc across The Perfect Cosmological Principle

More information

PHYS 340 ( From Atoms to the Universe ): SECTION A

PHYS 340 ( From Atoms to the Universe ): SECTION A PHYS 340 ( From Atoms to the Universe ): (Tuesday, April 26th, 2011) 12.00-2.30 pm, Room Hennings 301 FINAL EXAM This exam will last 2 hrs and 30 mins. The only material allowed into the exam will be pens,

More information

Physics 280 Closing Arguments

Physics 280 Closing Arguments Summer 2016 1 1 Department of Physics Drexel University August 26, 2016 Where have we gone We learned that everything we learned in Physics II leads to the conclusion that all inertial observers will measure

More information

Physics The study of the energy, matter, and forces in the Universe Why do stars move in the sky? How can heat be changed into electricity? What is the difference between an atom of one substance and an

More information

Elementary Particle Physics and Symmetry

Elementary Particle Physics and Symmetry Elementary Particle Physics and Symmetry ( ) Outline People have long asked: "What is the world made of?" and "What holds it together?" Why do physicists want to study particles? Because we are made of

More information

Relativity. Class 16 Prof J. Kenney June 18, boss

Relativity. Class 16 Prof J. Kenney June 18, boss Relativity Class 16 Prof J. Kenney June 18, 2018 boss Length contraction (moving sticks are shorter) A measuring stick at rest has a length Lo. When it is propelled at velocity v, it has a shorter length

More information

Physics Overview. Assessments Assessments Adopted from course materials Teacher-created assessments Standard Physical Science

Physics Overview. Assessments Assessments Adopted from course materials Teacher-created assessments Standard Physical Science Physics Curriculum Physics Overview Course Description Physics is the study of the physical world and is a mathematical application of science. The study includes an investigation of translational and

More information

8. The Expanding Universe, Revisited

8. The Expanding Universe, Revisited 8. The Expanding Universe, Revisited A1143: History of the Universe, Autumn 2012 Now that we have learned something about Einstein s theory of gravity, we are ready to revisit what we have learned about

More information

INFLATIONARY COSMOLOGY. and the ACCELERATING UNIVERSE. Alan Guth, MIT

INFLATIONARY COSMOLOGY. and the ACCELERATING UNIVERSE. Alan Guth, MIT INFLATIONARY COSMOLOGY and the ACCELERATING UNIVERSE Alan Guth, MIT An Open World of Physics Talks and Discussion by Friends of Fred Goldhaber Harriman Hall, SUNY Stony Brook, October 7, 2001 OUTLINE The

More information

Mr Casey Ray McMahon, B.Sci (Hons), B.MechEng (Hons) Copyright Version: 17 th May, 2015 Page: 1 of 8 String theory explained via McMahon field theory.

Mr Casey Ray McMahon, B.Sci (Hons), B.MechEng (Hons) Copyright Version: 17 th May, 2015 Page: 1 of 8 String theory explained via McMahon field theory. Copyright Version: 17 th May, 2015 Page: 1 of 8 String theory explained via McMahon field theory. Abstract: String theory can easily be explained in a way that can be understood with McMahon field theory

More information

Gravity Well Demo - 1 of 9. Gravity Well Demo

Gravity Well Demo - 1 of 9. Gravity Well Demo Gravity Well Demo - 1 of 9 Gravity Well Demo Brief Summary This demo/activity in Space Odyssey will give visitors a hands-on feel for how gravity works. Specifically, how Newton interpreted the force of

More information

Talking about general relativity Important concepts of Einstein s general theory of relativity. Øyvind Grøn Berlin July 21, 2016

Talking about general relativity Important concepts of Einstein s general theory of relativity. Øyvind Grøn Berlin July 21, 2016 Talking about general relativity Important concepts of Einstein s general theory of relativity Øyvind Grøn Berlin July 21, 2016 A consequence of the special theory of relativity is that the rate of a clock

More information

General Relativity. PHYS-3301 Lecture 6. Chapter 2. Announcement. Sep. 14, Special Relativity

General Relativity. PHYS-3301 Lecture 6. Chapter 2. Announcement. Sep. 14, Special Relativity Announcement Course webpage http://www.phys.ttu.edu/~slee/3301/ Textbook PHYS-3301 Lecture 6 HW2 (due 9/21) Chapter 2 63, 65, 70, 75, 76, 87, 92, 97 Sep. 14, 2017 General Relativity Chapter 2 Special Relativity

More information

Crossing the Event Horizon Presented by Nassim Haramein

Crossing the Event Horizon Presented by Nassim Haramein Crossing the Event Horizon Presented by Nassim Haramein Part 1: The Untold Physics Chapter 5: Concept of Black Holes In order to understand the concept of atoms, planets, galaxies and stars as all having

More information

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions.

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Overview The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Our understanding is about to take a giant leap.. the Large Hadron Collider

More information

GRAVITATIONAL ACCELERATION EQUATION WITH WAVELENGTH AND SPEED OF LIGHT WITHOUT USING THE UNIVERSAL GRAVITATIONAL CONSTANT OF NEWTON

GRAVITATIONAL ACCELERATION EQUATION WITH WAVELENGTH AND SPEED OF LIGHT WITHOUT USING THE UNIVERSAL GRAVITATIONAL CONSTANT OF NEWTON GRAVITATIONAL ACCELERATION EQUATION WITH WAVELENGTH AND SPEED OF LIGHT WITHOUT USING THE UNIVERSAL GRAVITATIONAL CONSTANT OF NEWTON Rodolfo Sergio González Castro Research Institute, University of Tijuana

More information