Class 16. Prof J. Kenney October 31, Relativity

Size: px
Start display at page:

Download "Class 16. Prof J. Kenney October 31, Relativity"

Transcription

1 Class 16 Prof J. Kenney October 31, 2016 Relativity

2 Length contraction (moving sticks are shorter) A measuring stick at rest has a length Lo. When it is propelled at velocity v, it has a shorter length according to an observer not moving with it

3 Time dilation (moving clocks run slow) Suppose you are at rest on earth Your friend is flying past you at high speed v According to you, the interval between your heartbeats is t 0 = 1 second. Your friend measures the interval between her heartbeats to be the same t 0 = 1 second.

4 Time dilation (moving clocks run slow) But YOU measure the interval between HER heartbeats to be a longer time t 0 If v = 0.99c, t = 7t o = 7 sec According to you, your moving friend is aging more slowly! But according to her, YOU are aging more slowly! (in this case the effect is symmetric)

5 Key points of Special Relativity Motions affect our measurements of distance and time Space is not fixed and uniform Time does not pass at uniform rate Space & Time cannot be thought of as separate entities. They are intrinsically linked! So introduce linked concept spacetime.

6 Train in the tunnel paradox Train and tunnel at rest According to observer at rest: Train 1,000 ft long Tunnel 800 ft long So train at rest does not fit in tunnel...

7 Train now moving at 0.8c According to observer at rest wrt tunnel: Train 600 ft long (length contraction) Tunnel 800 ft long So train DOES fit in tunnel, according to observer at rest wrt tunnel!!

8

9 Train now moving at 0.8c According to observer on train: Train 1,000 ft long Tunnel 480 ft long (length contraction) So train DOES NOT fit in tunnel, according to observer on train!!

10 Does the train fit in the tunnel or doesn t it? 1. Yes it fits 2. No it doesn t fit 3. Neither 1 nor 2 4. Both 1 and 2 5. My head hurts

11 Does it or doesn t it fit into the tunnel...and does it matter? Add something to the situation so that it DOES matter so that people could die, depending on the answer!!

12 Tunnel master controls iron gates at the 2 ends of the tunnel When the train is in the tunnel (according to the tunnel master, at rest wrt tunnel), he slams the 2 iron gates shut at the same time, then quickly opens them

13 According to tunnel master at rest wrt tunnel: Train fits in tunnel GATES DO NOT SMASH INTO TRAIN & NO ONE DIES

14 What do people on the train observe? For them, the train does not fit into the tunnel... What happens when the iron gates close? DO THEY DIE? 1. Yes, but not all of them 2. No, length contraction allows the train to fit between the gates 3. No, since the gates don t close at the same time in their view 4. No, because of time dilation 5. Yes, but in a parallel universe an identical train survives, so it s OK

15 No... Everyone agrees that they do not die. But how?

16 For observers on the train, the gates do not shut at the same time... The front gate shuts just before the front of the train reaches it, then it opens and the front of the train goes through. THEN A BIT LATER the rear gates shuts, just after the rear of the train passes. So, the train doesn t fit in the tunnel but no one dies because the gates do not close simultaneously!!

17 What observers disagree on (these things are relative) Size of train & tunnel (space) When the gates close (& whether they close simultaneously) (time) What observers agree on: events & their outcome: (events: something that occurs at a location in space at a point in time) Front gate misses front of train Back gate misses back of train

18 simultaneity Observers don t agree on whether things are simultaneous, i.e. whether spatially separate events happen at the same time! For 1 observer, 2 events might be simultaneous, but for another observer moving wrt the first, the 2 events are NOT simultaneous

19 Why does relativity seem strange to us? Need to be moving at very high speeds (v>0.1c) before effects are noticeable v 1/ [1-v 2 /c 2 ] c c c c c c c infinity

20 Why does relativity seem strange to us? Fast car 200 m.p.h 3x10-7 c Fast plane 2000 m.p.h 3x10-6 c Space shuttle 17,500 m.p.h 3x10-5 c Orbital velocity 67,000 m.p.h 1x10-4 c of earth We live in a low velocity environment. We can safely use Newtonian mechanics at these speeds

21 The Twin paradox

22 What "breaks the symmetry" between you and your twin, that allows the twin to be much younger than you on return? 1. While the physiological effects on your bodies are different, you both have experienced the same passage of time 2. Twin moved through space, whereas you did not 3. Twin accelerated at start and end, whereas you did not 4. Twin experienced different gravitational fields on journey. 5. Twin lost track of time during journey

23 The answer is : acceleration is involved! Special Relativity doesn t cover acceleration, it only covers constant velocities. (so there is no paradox no logical inconsistency) For acceleration, we need General Relativity. And it turns out, acceleration is intimately related to gravity!

24

25 Basic Postulates of General Relativity 1. Relativity (or Special Relativity) a. laws of physics same in all non-accelerating reference frames b. Speed of light constant 2. Equivalence Principle there is no way to locally distinguish between gravity and acceleration they are equivalent!

26 Motivation of Principle of Equivalence 1. You feel weightless if you are freefalling!

27 Can t distinguish between: Falling in gravity field Being at rest in zero gravity

28 Can t distinguish between: being at rest in Gravity field accelerating upwards

29 Motivation of Principle of Equivalence 2. All objects in gravitational field accelerate at same rate, independent of their mass Newton s explanation of this: Equation for dynamics: F = ma acceleration depends on force and mass, so you might expect different accelerations for different masses Equation for gravity: F grav = GMm/R 2 equating these yields: F = F grav ma = GMm/R 2 a = GM/R 2 = g (little g is gravitational acceleration at earth s surface)

30 Motivation of Principle of Equivalence 2. All objects in gravitational field accelerate at same rate, independent of their mass Newton s explanation of this: Equation for dynamics: F = ma acceleration depends on force and mass, so you might expect different accelerations for different masses Equation for gravity: F grav = GMm/R 2 equating these yields: F = F grav ma = GMm/R 2 a = GM/R 2 = g so mass m of object cancels out! acceleration (Motion) of object in gravity field doesn t depend on its mass!

31 Motivation of Principle of Equivalence 2. All objects in gravitational field accelerate at same rate, independent of their mass Newton s explanation of this: Equation for dynamics: F = ma acceleration depends on force and mass, so you might expect different accelerations for different masses Equation for gravity: F grav = GMm/R 2 equating these yields: F = F grav ma = GMm/R 2 a = GM/R 2 = g so mass m of object cancels out! this is some guy s attempt to explain observed fact! acceleration (Motion) of object in gravity field doesn t depend on its mass! this is observed fact!

32 Acceleration (Motion) of object in gravity field doesn t depend on its mass! So Newton came up with a pair of equations which each contain the mass m, but just so happen to have m cancel out when they are combined, so that the prediction agrees with the observations How convenient! [ Newton may have thought this was interesting or curious, but he didn t pursue it.] But Einstein thought this was fishy and amazing. So amazing that it deserved to be a postulate which transcends Newton s equations. This postulate is the of Principle of Equivalence

33

34

35 Light beam as seen by elevator passenger

36 Principle of equivalence acceleration gravity Acceleration bends light -> gravity bends light

37 gravitational lensing (see animation )

38 Gravitational lenses Arcs formed by distorted images of background galaxies lens is large galaxy cluster Nearly complete ring formed by distorted image of background galaxy lens is large elliptical galaxy

39 A light source passes behind a gravitational lens (point mass placed in the center of the image). The aqua circle is a source as it would be seen if there was no lens; white spots are the multiple images of the source. (wikipedia)

40 Curvature of space Gravitational bending of light suggests that we might think of space as being curved near masses

41 Curvature of space the reason light & other things follow a curved trajectory near a mass is that space is curved near the mass, and things simply follow their natural trajectory in this curved space

42 Curvature of space Imagine 3D space as 2D rubber sheet with mass as heavy ball bearings causing indentations in sheet Rolling balls on curved sheet follow trajectories & orbits similar to those of things in curved space

43 Gravitational lensing Light is deflected by curved space around masses Light paths of 2 photons which pass near a mass (deflector)

44 Curvature of space What determines trajectory or orbit: a. How sheet (or space) is curved by the masses bigger masses make big indentations in sheet (or space) b. Speed of thing DOESN T depend on mass of thing that is orbiting! This is why concept of curved space is a good one

45 Newton vs. Einstein on gravitational lensing Newton: can t explain this! Trajectory of any mass is bent from straight line by force of gravity Light has no mass, shouldn t be affected by force of gravity Einstein: can explain this! Light travels in straight line (shortest distance between 2 points) Space(time) itself is distorted (curved) by presence of matter

46 Basic ideas of General Relativity Mass of object alters properties of space & time around it Gravity causes space to become curved and time to slow down Eliminates idea of force of gravity, instead, gravity is curved spacetime

47 Tests of general relativity 1a. Deflection of starlight by masses: Shift of star position near limb of sun (1919)

48 Tests of general relativity 1b. Deflection of starlight by masses: Gravitational lenses Nearly complete ring formed by distorted image of background galaxy lens is large elliptical galaxy Arcs formed by distorted images of background galaxies lens is large galaxy cluster

49 Tests of general relativity 2. Advance of perihelion of Mercury s orbit

50 Tests of general relativity 3. Gravitational time delay: time passes more slowly in stronger gravitational field

51 Tests of general relativity 3. Gravitational time delay: radio signals from Viking Spacecraft on Mars were delayed as they passed by the Sun This is NOT because speed of light changes but because time passes more slowly in gravitational fields (gravitational time dilation)

52 Tests of general relativity 4. gravitational redshift observed from dense astronomical objects (white dwarfs, neutron stars, black holes) Gravitational time delay -> gravitational redshift Think of the frequency of an electromagnetic wave as a clock, which slows down in a gravitational field (slower frequency -> redshift)

53 Tests of general relativity 5. detection of gravitational waves from merging black holes! (2016)

Relativity. Class 16 Prof J. Kenney June 18, boss

Relativity. Class 16 Prof J. Kenney June 18, boss Relativity Class 16 Prof J. Kenney June 18, 2018 boss Length contraction (moving sticks are shorter) A measuring stick at rest has a length Lo. When it is propelled at velocity v, it has a shorter length

More information

Review Special Relativity. February 3, Absolutes of Relativity. Key Ideas of Special Relativity. Path of Ball in a Moving Train

Review Special Relativity. February 3, Absolutes of Relativity. Key Ideas of Special Relativity. Path of Ball in a Moving Train February 3, 2009 Review Special Relativity General Relativity Key Ideas of Special Relativity No material object can travel faster than light If you observe something moving near light speed: Its time

More information

Chapter S3 Spacetime and Gravity. Agenda. Distinguishing Crackpots

Chapter S3 Spacetime and Gravity. Agenda. Distinguishing Crackpots Chapter S3 Spacetime and Gravity Agenda Announce: Online Quizzes Observations Extra Credit Lecture Distinguishing Crackpot/Genuine Science Review of Special Relativity General Relativity Distinguishing

More information

Lecture 10: General Relativity I

Lecture 10: General Relativity I Lecture 10: General Relativity I! Recap: Special Relativity and the need for a more general theory! The strong equivalence principle! Gravitational time dilation! Curved space-time & Einstein s theory

More information

Astronomy 120 Overview

Astronomy 120 Overview Prof. Jeff Kenney Class 15 June 15, 2018 Astronomy 120 Overview Lec 1-5: intro, physics review (FAST) Lec 6-8: stars (FAST) Lec 9-14: galaxies, clusters & dark matter (SLOW) Lec 15-18: black holes & active

More information

Black Holes -Chapter 21

Black Holes -Chapter 21 Black Holes -Chapter 21 The most massive stellar cores If the core is massive enough (~3 M ; total initial mass of star > 25 M or so), even neutron degeneracy pressure can be overwhelmed by gravity. A

More information

Physics. Special Relativity

Physics. Special Relativity Physics Special Relativity 1 Albert Einstein, the high school dropout and patent office clerk published his ideas on Special Relativity in 1905. 2 Special vs. General Relativity Special Relativity deals

More information

Class 6 : General Relativity. ASTR398B Black Holes (Fall 2015) Prof. Chris Reynolds

Class 6 : General Relativity. ASTR398B Black Holes (Fall 2015) Prof. Chris Reynolds Class 6 : General Relativity ASTR398B Black Holes (Fall 2015) Prof. Chris Reynolds RECAP! Einstein s postulates " Laws of physics look the same in any inertial frame of reference. " The speed of light

More information

The interpretation is that gravity bends spacetime and that light follows the curvature of space.

The interpretation is that gravity bends spacetime and that light follows the curvature of space. 7/8 General Theory of Relativity GR Two Postulates of the General Theory of Relativity: 1. The laws of physics are the same in all frames of reference. 2. The principle of equivalence. Three statements

More information

Centers of Galaxies. = Black Holes and Quasars

Centers of Galaxies. = Black Holes and Quasars Centers of Galaxies = Black Holes and Quasars Models of Nature: Kepler Newton Einstein (Special Relativity) Einstein (General Relativity) Motions under influence of gravity [23] Kepler The planets move

More information

7/5. Consequences of the principle of equivalence (#3) 1. Gravity is a manifestation of the curvature of space.

7/5. Consequences of the principle of equivalence (#3) 1. Gravity is a manifestation of the curvature of space. 7/5 Consequences of the principle of equivalence (#3) 1. Gravity is a manifestation of the curvature of space. Follow the path of a light pulse in an elevator accelerating in gravityfree space. The dashed

More information

Lecture 10: General Relativity I

Lecture 10: General Relativity I Lecture 10: General Relativity I Einstein Tower Experiment Gravitational redshifting Strong Equivalence Principal Sidney Harris 10/2/13 1 O: RECAP OF SPECIAL RELATIVITY Einstein s postulates Laws of physics

More information

Mr Green sees the shorter, straight, green path and Mr. Red sees the longer, curved, red path.

Mr Green sees the shorter, straight, green path and Mr. Red sees the longer, curved, red path. Mr Green sees the shorter, straight, green path and Mr. Red sees the longer, curved, red path. In an accelerated frame, time runs slow compared to a non-accelerated frame. The Equivalence Principle tells

More information

Lecture 10: General Relativity I

Lecture 10: General Relativity I Lecture 10: General Relativity I! Einstein Tower Experiment! Gravitational redshifting! Strong Equivalence Principal! Read Chapter 8! Due to snow and confusion the mid-term is delayed to Thursday March

More information

Relativity and Black Holes

Relativity and Black Holes Relativity and Black Holes Post-MS Evolution of Very High Mass (>15 M Θ ) Stars similar to high mass except more rapid lives end in Type II supernova explosions main difference: mass of iron core at end

More information

Lecture 18 Spacetime and Gravity A2020 Prof. Tom Megeath. Midterm 2 Grade Distribution. Review: Inertial Reference Frames

Lecture 18 Spacetime and Gravity A2020 Prof. Tom Megeath. Midterm 2 Grade Distribution. Review: Inertial Reference Frames Lecture 18 Spacetime and Gravity A2020 Prof. Tom Megeath Midterm 2 Grade Distribution Review: Inertial Reference Frames Speed limit sign posted on spacestation. How fast is that man moving? The Solar System

More information

Physics 120 Quantum Physics and Beyond Today!

Physics 120 Quantum Physics and Beyond Today! Physics 120 Quantum Physics and Beyond Today! General Relativity Accelerated Frames General Relativity Light in General Relativity Motion and Time in General Relativity Back to Quantum Entanglement? More

More information

Lecture 21: General Relativity Readings: Section 24-2

Lecture 21: General Relativity Readings: Section 24-2 Lecture 21: General Relativity Readings: Section 24-2 Key Ideas: Postulates: Gravitational mass=inertial mass (aka Galileo was right) Laws of physics are the same for all observers Consequences: Matter

More information

Chapter S3 Spacetime and Gravity Pearson Education, Inc.

Chapter S3 Spacetime and Gravity Pearson Education, Inc. Chapter S3 Spacetime and Gravity What are the major ideas of general relativity? Spacetime Special relativity showed that space and time are not absolute. Instead, they are inextricably linked in a four-dimensional

More information

Gravity and Spacetime: Why do things fall?

Gravity and Spacetime: Why do things fall? Gravity and Spacetime: Why do things fall? A painless introduction to Einstein s theory of space, time and gravity David Blair University of WA Abstract I present a simple description of Einstein s theory

More information

Special theory of relativity

Special theory of relativity Announcements l CAPA #9 due Tuesday April 1 l Mastering Physics Chapter 35 due April 1 l Average on exam #2 is 26/40 l For the sum of the first two exams (80 points); l >=67 4.0 l 61-66 3.5 l 50-60 3.0

More information

Test #3 Next Tuesday, Nov. 8 Bring your UNM ID! Bring two number 2 pencils. Announcements. Review for test on Monday, Nov 7 at 3:25pm

Test #3 Next Tuesday, Nov. 8 Bring your UNM ID! Bring two number 2 pencils. Announcements. Review for test on Monday, Nov 7 at 3:25pm Test #3 Next Tuesday, Nov. 8 Bring your UNM ID! Bring two number 2 pencils Announcements Review for test on Monday, Nov 7 at 3:25pm Neutron Star - Black Hole merger Review for Test #3 Nov 8 Topics: Stars

More information

Black Holes, or the Monster at the Center of the Galaxy

Black Holes, or the Monster at the Center of the Galaxy Black Holes, or the Monster at the Center of the Galaxy Learning Objectives! How do black holes with masses a few times that of our Sun form? How can we observe such black holes?! Where and how might you

More information

Space and Time Before Einstein. The Problem with Light. Admin. 11/2/17. Key Concepts: Lecture 28: Relativity

Space and Time Before Einstein. The Problem with Light. Admin. 11/2/17. Key Concepts: Lecture 28: Relativity Admin. 11/2/17 1. Class website http://www.astro.ufl.edu/~jt/teaching/ast1002/ 2. Optional Discussion sections: Tue. ~11.30am (period 5), Bryant 3; Thur. ~12.30pm (end of period 5 and period 6), start

More information

Announcements. Lecture 6. General Relativity. From before. Space/Time - Energy/Momentum

Announcements. Lecture 6. General Relativity. From before. Space/Time - Energy/Momentum Announcements 2402 Lab will be started next week Lab manual will be posted on the course web today Lab Scheduling is almost done!! HW: Chapter.2 70, 75, 76, 87, 92, 97*, 99, 104, 111 1 st Quiz: 9/18 (Ch.2)

More information

Einstein in a Nutshell

Einstein in a Nutshell Einstein in a Nutshell Richard Wolfson Benjamin F. Wissler Professor of Physics Middlebury College Insight Cruises/Scientific American January 15, 2011 Relativity in Recent News http://newscenter.berkeley.edu/2011/12/05/record-black-holes-bigger-than-our-solar-system/,

More information

Outline. General Relativity. Black Holes as a consequence of GR. Gravitational redshift/blueshift and time dilation Curvature Gravitational Lensing

Outline. General Relativity. Black Holes as a consequence of GR. Gravitational redshift/blueshift and time dilation Curvature Gravitational Lensing Outline General Relativity Gravitational redshift/blueshift and time dilation Curvature Gravitational Lensing Black Holes as a consequence of GR Waste Disposal It is decided that Earth will get rid of

More information

RELATIVITY. The End of Physics? A. Special Relativity. 3. Einstein. 2. Michelson-Morley Experiment 5

RELATIVITY. The End of Physics? A. Special Relativity. 3. Einstein. 2. Michelson-Morley Experiment 5 1 The End of Physics? RELATIVITY Updated 01Aug30 Dr. Bill Pezzaglia The following statement made by a Nobel prize winning physicist: The most important fundamental laws and facts of physical science have

More information

Test 3 results B A. Grades posted in Learn

Test 3 results B A. Grades posted in Learn Test 3 results Grades posted in Learn D C B A End of the Semester approaches - make sure that your test, clicker and homework grades are what you think they should be on Learn F Clicker Question: What

More information

Astronomy 122 Outline

Astronomy 122 Outline Astronomy 122 Outline This Class (Lecture 19): Black Holes Next Class: The Milkyway Last Nightlab tonight! HW7 due on Friday. Mar Lecture report due in discussion class on April 5 th th. Nightlab report

More information

Elements of Physics II

Elements of Physics II Physics 132: Lecture 23 Elements of Physics II Agenda for Today Special Theory of relativity Inertial vs. non-inertial reference frames Postulates of SR Consequences of SR Time dilation Length contraction

More information

The result is; distances are contracted in the direction of motion.

The result is; distances are contracted in the direction of motion. The result is; distances are contracted in the direction of motion. t = t/(1 v 2 /c 2 ) 0.5 d = d(1- v 2 /c 2 ) 0.5 These are the Lorentz equations. The Twin-Paradox. A woman astronaut is going to fly

More information

ASTR 200 : Lecture 30. More Gravity: Tides, GR, and Gravitational Waves

ASTR 200 : Lecture 30. More Gravity: Tides, GR, and Gravitational Waves ASTR 200 : Lecture 30 More Gravity: Tides, GR, and Gravitational Waves 1 Topic One : Tides Differential tidal forces on the Earth. 2 How do tides work???? Think about 3 billiard balls sitting in space

More information

Today in Astronomy 102: Einstein studies gravity

Today in Astronomy 102: Einstein studies gravity Today in Astronomy 102: Einstein studies gravity The principle of equivalence Gravitational time dilation, specialrelativistic time dilation, and the Doppler effect Curved spacetime and the nature of tides

More information

Theory of General Relativity

Theory of General Relativity Theory of General Relativity Expansion on the concept of Special relativity Special: Inertial perspectives are Equivalent (unaccelerated) General: All perspectives are equivalent Let s go back to Newton

More information

The Problem of Slowing Clocks in Relativity Theory

The Problem of Slowing Clocks in Relativity Theory The Problem of Slowing Clocks in Relativity Theory The basic premise of Relativity Theory is that the speed of light ( c ) is a universal constant. Einstein evolved the Special Theory on the assumption

More information

ASTR 200 : Lecture 31. More Gravity: Tides, GR, and Gravitational Waves

ASTR 200 : Lecture 31. More Gravity: Tides, GR, and Gravitational Waves ASTR 200 : Lecture 31 More Gravity: Tides, GR, and Gravitational Waves 1 Topic One : Tides Differential tidal forces on the Earth. 2 How do tides work???? Think about 3 billiard balls sitting in space

More information

Einstein s Gravity. Understanding space-time and the gravitational effects of mass

Einstein s Gravity. Understanding space-time and the gravitational effects of mass Einstein s Gravity Understanding space-time and the gravitational effects of mass Albert Einstein (1879-1955) One of the iconic figures of the 20 th century, Einstein revolutionized our understanding of

More information

A100 Exploring the Universe: Black holes. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe: Black holes. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe: Black holes Martin D. Weinberg UMass Astronomy weinberg@astro.umass.edu October 30, 2014 Read: S2, S3, Chap 18 10/30/14 slide 1 Sizes of s The solar neighborhood visualized!

More information

Modern Physics notes Paul Fendley Lecture 34. Born, chapter III (most of which should be review for you), chapter VII

Modern Physics notes Paul Fendley Lecture 34. Born, chapter III (most of which should be review for you), chapter VII Modern Physics notes Paul Fendley fendley@virginia.edu Lecture 34 General Relativity Born, chapter III (most of which should be review for you), chapter VII Fowler, Remarks on General Relativity Ashby

More information

General Relativity and Gravity. Exam 2 Results. Equivalence principle. The Equivalence Principle. Experiment: throw a ball. Now throw some light

General Relativity and Gravity. Exam 2 Results. Equivalence principle. The Equivalence Principle. Experiment: throw a ball. Now throw some light General Relativity and Gravity Special Relativity deals with inertial reference frames, frames moving with a constant relative velocity. It has some rather unusual predictions Time dilation Length contraction

More information

PHSC 1053: Astronomy Relativity

PHSC 1053: Astronomy Relativity PHSC 1053: Astronomy Relativity Postulates of Special Relativity The speed of light is constant in a vacuum and will be the same for ALL observers, independent of their motion relative to the each other

More information

Relativity. Astronomy 101

Relativity. Astronomy 101 Lecture 29: Special & General Relativity Astronomy 101 Common Sense & Relativity Common Sense is the collection of prejudices acquired by the age of 18. Albert Einstein It will seem difficult at first,

More information

Big Bang, Black Holes, No Math

Big Bang, Black Holes, No Math ASTR/PHYS 109 Dr. David Toback Lectures 8 & 9 1 Prep For Today (is now due) L9 Reading: BBBHNM Unit 2 (already due) Pre-Lecture Reading Questions (PLRQ) Unit 2 Revision (if desired), Stage 2: Was due today

More information

Today HW#4 pushed back to 8:00 am Thursday Exam #1 is on Thursday Feb. 11

Today HW#4 pushed back to 8:00 am Thursday Exam #1 is on Thursday Feb. 11 Today HW#4 pushed back to 8:00 am Thursday Exam #1 is on Thursday Feb. 11 Bring a calculator and a #2 pencil Allowed 1 page notes (front and back) E=mc 2, General Relativity, and exam review ISP209s10

More information

Special Relativity: The laws of physics must be the same in all inertial reference frames.

Special Relativity: The laws of physics must be the same in all inertial reference frames. Special Relativity: The laws of physics must be the same in all inertial reference frames. Inertial Reference Frame: One in which an object is observed to have zero acceleration when no forces act on it

More information

College Physics B - PHY2054C. Special & General Relativity 11/12/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building.

College Physics B - PHY2054C. Special & General Relativity 11/12/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building. Special College - PHY2054C Special & 11/12/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline Special 1 Special 2 3 4 Special Galilean and Light Galilean and electromagnetism do predict

More information

Wallace Hall Academy

Wallace Hall Academy Wallace Hall Academy CfE Higher Physics Unit 1 - Universe Notes Name 1 Newton and Gravity Newton s Thought Experiment Satellite s orbit as an Application of Projectiles Isaac Newton, as well as giving

More information

General Relativity. In GR, mass (or energy) warps the spacetime fabric of space.

General Relativity. In GR, mass (or energy) warps the spacetime fabric of space. General Relativity Einstein s theory of General Relativity is a theory of gravity The basic idea is to drop Newton s idea of a mysterious force between masses and replace it with the 4-dimensional SpaceTime

More information

Chapter 26. Relativity

Chapter 26. Relativity Chapter 26 Relativity Time Dilation The vehicle is moving to the right with speed v A mirror is fixed to the ceiling of the vehicle An observer, O, at rest in this system holds a laser a distance d below

More information

6 points will be added to clicker grade for contest winners; 3 points for all who submitted to the OBAFGKM contest.

6 points will be added to clicker grade for contest winners; 3 points for all who submitted to the OBAFGKM contest. 1 OBAFGKM Winners 6 points will be added to clicker grade for contest winners; 3 points for all who submitted to the OBAFGKM contest. Prof. Jack Baldwin baldwin@pa.msu.edu Office hrs (BPS 3270): 3-4 Mon

More information

General Relativity and Cosmology. The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang

General Relativity and Cosmology. The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang General Relativity and Cosmology The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang The End of Absolute Space (AS) Special Relativity (SR) abolished AS only for the special

More information

Einstein s Relativity and Black Holes

Einstein s Relativity and Black Holes Einstein s Relativity and Black Holes Guiding Questions 1. What are the two central ideas behind Einstein s special theory of relativity? 2. How do astronomers search for black holes? 3. In what sense

More information

General Relativity. on the frame of reference!

General Relativity. on the frame of reference! General Relativity Problems with special relativity What makes inertial frames special? How do you determine whether a frame is inertial? Inertial to what? Problems with gravity: In equation F = GM 1M

More information

Gravity: What s the big attraction? Dan Wilkins Institute of Astronomy

Gravity: What s the big attraction? Dan Wilkins Institute of Astronomy Gravity: What s the big attraction? Dan Wilkins Institute of Astronomy Overview What is gravity? Newton and Einstein What does gravity do? Extreme gravity The true power of gravity Getting things moving

More information

Today in Astronomy 102: Einstein studies gravity

Today in Astronomy 102: Einstein studies gravity Today in Astronomy 102: Einstein studies gravity q The principle of equivalence q Gravitational time dilation, specialrelativistic time dilation, and the Doppler effect q Curved spacetime and the nature

More information

A100H Exploring the Universe: Black holes. Martin D. Weinberg UMass Astronomy

A100H Exploring the Universe: Black holes. Martin D. Weinberg UMass Astronomy A100H Exploring the Universe: Black holes Martin D. Weinberg UMass Astronomy astron100h-mdw@courses.umass.edu March 22, 2016 Read: S2, S3, Chap 18 03/22/16 slide 1 Exam #2: March 29 One week from today!

More information

Manifestations of General Relativity. Relativity and Astrophysics Lecture 32 Terry Herter

Manifestations of General Relativity. Relativity and Astrophysics Lecture 32 Terry Herter Manifestations of General elativity elativity and Astrophysics Lecture 32 Terry Herter Outline Consequences of General elativity Tests of G Escape Velocity => Black holes Black holes Size, Event Horizon,

More information

11/1/16. Important Stuff (Section 001: 9:45 am) Important Stuff (Section 002, 1:00 pm) 14.1 White Dwarfs. Chapter 14: The Bizarre Stellar Graveyard

11/1/16. Important Stuff (Section 001: 9:45 am) Important Stuff (Section 002, 1:00 pm) 14.1 White Dwarfs. Chapter 14: The Bizarre Stellar Graveyard Important Stuff (Section 001: 9:45 am) The Second Midterm is Thursday, November 10 The Second Midterm will be given in a different room: Willey 175 Bring 2 pencils and a photo-id. In accordance with the

More information

11/1/17. Important Stuff (Section 001: 9:45 am) Important Stuff (Section 002, 1:00 pm) 14.1 White Dwarfs. Chapter 14: The Bizarre Stellar Graveyard

11/1/17. Important Stuff (Section 001: 9:45 am) Important Stuff (Section 002, 1:00 pm) 14.1 White Dwarfs. Chapter 14: The Bizarre Stellar Graveyard 11/1/17 Important Stuff (Section 001: 9:45 am) The Second Midterm is Thursday, November 9 The Second Midterm will be given in a different room: Willey 175 Bring 2 pencils and a photo-id. In accordance

More information

ASTRONOMY. Chapter 24 BLACK HOLES AND CURVED SPACETIME PowerPoint Image Slideshow

ASTRONOMY. Chapter 24 BLACK HOLES AND CURVED SPACETIME PowerPoint Image Slideshow ASTRONOMY Chapter 24 BLACK HOLES AND CURVED SPACETIME PowerPoint Image Slideshow FIGURE 24.1 Stellar Mass Black Hole. On the left, a visible-light image shows a region of the sky in the constellation of

More information

! Exam 2 in this classroom on Friday! 35 Multiple choice questions! Will cover material from Lecture 12 to 22.!

! Exam 2 in this classroom on Friday! 35 Multiple choice questions! Will cover material from Lecture 12 to 22.! This Class (Lecture 24): Black Holes Are Fun Next Class: Death by Black Hole: Spaghettification Night Obs/Computer labs due in class on Nov 9 th. HW 2 due on the 7 th. Exam 2 on Friday!! Exam 2 in this

More information

Transformation of velocities

Transformation of velocities Announcements l Help room hours (1248 BPS) Ian La Valley(TA) Mon 4-6 PM Tues 12-3 PM Wed 6-9 PM Fri 10 AM-noon l LON-CAPA #9 due on Thurs Nov 15 l Third hour exam Thursday Dec 6 l Final Exam Tuesday Dec

More information

Large Scale Structure in the Universe

Large Scale Structure in the Universe Large Scale Structure in the Universe We seem to be located at the edge of a Local Supercluster, which contains dozens of clusters and groups over a 40 Mpc region. Galaxies and clusters seem to congregate

More information

Cracking the Mysteries of the Universe. Dr Janie K. Hoormann University of Queensland

Cracking the Mysteries of the Universe. Dr Janie K. Hoormann University of Queensland Cracking the Mysteries of the Universe Dr Janie K. Hoormann University of Queensland Timeline of Cosmological Discoveries 16c BCE: flat earth 5-11c CE: Sun at the centre 1837: Bessel et al. measure distance

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 6 Oct. 28, 2015 Today Wrap up of Einstein s General Relativity Curved Spacetime Gravitational Waves Black Holes Relativistic

More information

The Einsteinian Universe

The Einsteinian Universe 1/13 (Wikipedia user MissMJ) The Einsteinian Universe Szydagis 03.26.2018 Photo of Albert Einstein circa 1916. Twentieth Century Fox, Planet of the Apes Einstein s 1905 epiphany: c =?! 2/13 Recall Maxwell:

More information

Relativity. Physics April 2002 Lecture 8. Einstein at 112 Mercer St. 11 Apr 02 Physics 102 Lecture 8 1

Relativity. Physics April 2002 Lecture 8. Einstein at 112 Mercer St. 11 Apr 02 Physics 102 Lecture 8 1 Relativity Physics 102 11 April 2002 Lecture 8 Einstein at 112 Mercer St. 11 Apr 02 Physics 102 Lecture 8 1 Physics around 1900 Newtonian Mechanics Kinetic theory and thermodynamics Maxwell s equations

More information

Astronomy 421. Lecture 24: Black Holes

Astronomy 421. Lecture 24: Black Holes Astronomy 421 Lecture 24: Black Holes 1 Outline General Relativity Equivalence Principle and its Consequences The Schwarzschild Metric The Kerr Metric for rotating black holes Black holes Black hole candidates

More information

Lecture: Principle of Equivalence

Lecture: Principle of Equivalence Chapter 6 Lecture: Principle of Equivalence The general theory of relativity rests upon two principles that are in fact related: The principle of equivalence The principle of general covariance 6.1 Inertial

More information

E = mc 2. Inertial Reference Frames. Inertial Reference Frames. The Special Theory of Relativity. Slide 1 / 63. Slide 2 / 63.

E = mc 2. Inertial Reference Frames. Inertial Reference Frames. The Special Theory of Relativity. Slide 1 / 63. Slide 2 / 63. Slide 1 / 63 The Special Theory of Relativity E = mc 2 Inertial Reference Frames Slide 2 / 63 Newton's laws are only valid in inertial reference frames: n inertial reference frame is one which is not accelerating

More information

CAN A MOTHER BE YOUNGER THAN HER DAUGHTER? (and other curiosities of relativity) Everyday view (Newton and Galileo).

CAN A MOTHER BE YOUNGER THAN HER DAUGHTER? (and other curiosities of relativity) Everyday view (Newton and Galileo). Everyday view (Newton and Galileo). Einstein s view (constancy of the speed of light). Two postulates of Special Relativity and their effect on space and time. Einstein s famous equation. CAN A MOTHER

More information

Recall from last time

Recall from last time Welcome back to Physics 215 Today s agenda: Relative Motion Special relativity Forces Physics 215 Spring 2017 Lecture 05-1 1 Recall from last time If we want to use (inertial) moving frames of reference,

More information

Neutron Stars, Black Holes, Pulsars and More

Neutron Stars, Black Holes, Pulsars and More Neutron Stars, Black Holes, Pulsars and More October 30, 2002 1) Star Clusters 2) Type II Supernova 3) Neutron Stars 4) Black Holes 5) More Gravity Announcements Extra Credit there is an extra credit assignment

More information

Astronomy 1141 Life in the Universe 10/24/12

Astronomy 1141 Life in the Universe 10/24/12 Friday, October 19 Newton vs. Einstein 1) Newton: Gravity is a force acting between massive objects in static, Euclidean space. Guest lecturer: Barbara Ryden 2) Einstein: Gravity is the result of the curvature

More information

Astronomy 1143 Quiz 2 Review

Astronomy 1143 Quiz 2 Review Astronomy 1143 Quiz 2 Review Prof. Pradhan October 1, 2018 Light 1. What is light? Light is electromagnetic energy It is both a particle (photon) and a wave 2. How is light created and what can light interact

More information

Stellar remnants II. Neutron Stars 10/18/2010. (progenitor star 1.4 < M< 3 Msun) Stars, Galaxies & the Universe Announcements

Stellar remnants II. Neutron Stars 10/18/2010. (progenitor star 1.4 < M< 3 Msun) Stars, Galaxies & the Universe Announcements Stars, Galaxies & the Universe Announcements Exam #2 on Wednesday Review sheet and study guide posted by Thursday Use office hours and Astronomy Tutorial hours Covers material since Exam #1 (plus background

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

More information

8. The Expanding Universe, Revisited

8. The Expanding Universe, Revisited 8. The Expanding Universe, Revisited A1143: History of the Universe, Autumn 2012 Now that we have learned something about Einstein s theory of gravity, we are ready to revisit what we have learned about

More information

Chapter 6: Systems in Motion

Chapter 6: Systems in Motion Chapter 6: Systems in Motion The celestial order and the beauty of the universe compel me to admit that there is some excellent and eternal Being, who deserves the respect and homage of men Cicero (106

More information

General Relativity. PHYS-3301 Lecture 6. Chapter 2. Announcement. Sep. 14, Special Relativity

General Relativity. PHYS-3301 Lecture 6. Chapter 2. Announcement. Sep. 14, Special Relativity Announcement Course webpage http://www.phys.ttu.edu/~slee/3301/ Textbook PHYS-3301 Lecture 6 HW2 (due 9/21) Chapter 2 63, 65, 70, 75, 76, 87, 92, 97 Sep. 14, 2017 General Relativity Chapter 2 Special Relativity

More information

Q W u e. c t o u m m e P h B. B e. s c i k c s 2. John Harris 1

Q W u e. c t o u m m e P h B. B e. s c i k c s 2. John Harris 1 Q W u e a l n c t o u m m e P h B y a s c i k c s 2 & B e y o n d! Yale Physics 120 3/26/2018 Quantum Physics and Beyond John Harris 1 Physics 120 Reminder: the Rest of the Term Today - Mar 26 Mon Apr

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 1 Newton s Second Law Force, Mass, and Acceleration Newton s first law

More information

Postulate 2: Light propagates through empty space with a definite speed (c) independent of the speed of the source or of the observer.

Postulate 2: Light propagates through empty space with a definite speed (c) independent of the speed of the source or of the observer. Einstein s Special Theory of Relativity 1 m E = mv E =m*c m* = KE =m*c - m c 1- v p=mv p=m*v c 9-1 Postulate 1: The laws of physics have the same form in all inertial reference frames. Postulate : Light

More information

Did you read chapter 7? Housekeeping. Special Relativity Postulates. Famous quotes from Einstein. Symmetry. (Special Principle of Relativity) 5/9/2007

Did you read chapter 7? Housekeeping. Special Relativity Postulates. Famous quotes from Einstein. Symmetry. (Special Principle of Relativity) 5/9/2007 Housekeeping Vocab quiz: Do Due Exam versus Vocab Quiz Did you read chapter 7? a) Yes b) No c) We have a book? 1 2 Famous quotes from Einstein "Everything should be made as simple as possible, but not

More information

An Introduction to General Relativity

An Introduction to General Relativity An Introduction to General Relativity So Far, We Have Galileo s Concepts Decided that constant velocity is the natural state of things Newton s Concepts Devised a natural philosophy in which acceleration

More information

Special Theory of Relativity. The Newtonian Electron. Newton vs. Einstein. So if Newtonian Physics is wrong. It is all Relative.

Special Theory of Relativity. The Newtonian Electron. Newton vs. Einstein. So if Newtonian Physics is wrong. It is all Relative. Special Theory of Relativity Chapter 26 The Newtonian Electron Newtonian Theory (everything we have done so far in class) can be tested at high speeds by accelerating electrons or other charged particles

More information

Lecture 18 Vacuum, General Relativity

Lecture 18 Vacuum, General Relativity The Nature of the Physical World Lecture 18 Vacuum, General Relativity Arán García-Bellido 1 Standard Model recap Fundamental particles Fundamental Forces Quarks (u, d, c, s, t, b) fractional electric

More information

6 General Relativity. Today, we are going to talk about gravity as described by Einstein s general theory of relativity.

6 General Relativity. Today, we are going to talk about gravity as described by Einstein s general theory of relativity. 6 General Relativity Today, we are going to talk about gravity as described by Einstein s general theory of relativity. We start with a simple question: Why do objects with di erent masses fall at the

More information

Theory of Relativity Final Quiz July 11, VERY short answers. Each worth 1 point.

Theory of Relativity Final Quiz July 11, VERY short answers. Each worth 1 point. Theory of Relativity Final Quiz July 11, 2012 Name: Below are short questions and problems. Answer to the best of your ability. All equations and constants you need are on a separate sheet. VERY short

More information

Astronomy 1 Fall 2016

Astronomy 1 Fall 2016 Astronomy 1 Fall 2016 Lecture 14; November 10, 2016 Previously on Astro 1 Late evolution and death of intermediate-mass stars (about 0.4 M to about 4 M ): red giant when shell hydrogen fusion begins, a

More information

Lecture Outlines. Chapter 22. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 22. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 22 Astronomy Today 8th Edition Chaisson/McMillan Chapter 22 Neutron Stars and Black Holes Units of Chapter 22 22.1 Neutron Stars 22.2 Pulsars 22.3 Neutron-Star Binaries 22.4 Gamma-Ray

More information

Survey of Astrophysics A110

Survey of Astrophysics A110 Black Holes Goals: Understand Special Relativity General Relativity How do we observe black holes. Black Holes A consequence of gravity Massive neutron (>3M ) cannot be supported by degenerate neutron

More information

Making Sense of the Universe (Chapter 4) Why does the Earth go around the Sun? Part, but not all, of Chapter 4

Making Sense of the Universe (Chapter 4) Why does the Earth go around the Sun? Part, but not all, of Chapter 4 Making Sense of the Universe (Chapter 4) Why does the Earth go around the Sun? Part, but not all, of Chapter 4 Based on part of Chapter 4 This material will be useful for understanding Chapters 8 and 11

More information

Special Relativity 1

Special Relativity 1 Special Relativity 1 Special Relativity: A Summary Caitlyn Edwards Dr. Gan Modern Physics November 2017 Special Relativity 2 Abstract The physics of Einstein s theory of special relativity differs dramatically

More information

Gravity, General Relativity, and Dark Matter

Gravity, General Relativity, and Dark Matter Gravity, General Relativity, and Dark Matter 6 CHAPTER For more than seventy-five years, the theories of general relativity and quantum mechanics have done an incredible job of correctly predicting the

More information

Class 5: Equivalence Principle

Class 5: Equivalence Principle Class 5: Equivalence Principle In this class we will discuss the conceptual foundations of General Relativity, in which gravity may be associated with the reference frames in which perceive events Class

More information

General Relativity ASTR 2110 Sarazin. Gravitational Waves from Merging Black Holes

General Relativity ASTR 2110 Sarazin. Gravitational Waves from Merging Black Holes General Relativity ASTR 2110 Sarazin Gravitational Waves from Merging Black Holes General Relativity ASTR 2110 Sarazin Gravitational Waves from Merging Black Holes General Relativity Not related to Corporal

More information

Gravity Well Demo - 1 of 9. Gravity Well Demo

Gravity Well Demo - 1 of 9. Gravity Well Demo Gravity Well Demo - 1 of 9 Gravity Well Demo Brief Summary This demo/activity in Space Odyssey will give visitors a hands-on feel for how gravity works. Specifically, how Newton interpreted the force of

More information

Chapter 37. Relativity. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow

Chapter 37. Relativity. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Chapter 37 Relativity PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 37 Looking forward at why different

More information