u = A Z Chemistry 110 Fall 2010 Rayleigh-Jeans Law for Blackbody SI Units SI Units Secondary Units written in terms of Primary

Size: px
Start display at page:

Download "u = A Z Chemistry 110 Fall 2010 Rayleigh-Jeans Law for Blackbody SI Units SI Units Secondary Units written in terms of Primary"

Transcription

1 SI Uits Key Study Pits fr Petrucci et al., Secdary Uits writte i terms f Primary Capters 8 & 9 Nte: Fudametal cstats ad a peridic table will be prvided te midterm but equatis will t be give. Cemistry 0 Fall 00 SI Uits Cmm SI Prefixes Cemical Symbls Oe r Tw Letter Abbreviatis Carb: C Oxyge: O Nickel: Ni Gld: Au A Z ± Cemical Symbl Z Atmic N. p A Mass Number p + ± Carge p e Quatum Tery RayleigJeas Law fr Blackbdy 8πkT ρ( λ) 4 λ ρ ergy Desity k Bltzma' s Cstat T Abslute Temperature Yu d t ave t kw tis equati fr calculatis but yu suld kw tat te classical tery predicts a iverse relatisip betwee ergy Desity ad Wavelegt i.e. prprtial t λ 4 Ultravilet catastrpe eergy desity ges t ifiity as wavelegt gets smaller A failure f te classical tery Sme Imprtat quatis M Radiati c Plack's Cstat 6.66 x 0 c speed f u wave velcity ν frequecy λ wavelegt 34 ligt Js Ay wave u

2 Sme Imprtat quatis K K electr Ptelectric ffect electr m u u velcity f te electr m e mass f te electr Φ "wrk fucti" fr te metal e te eergy tresld fr remvig te e Φ ν Frequecy f te ligt tat is directed te metal surface ν ο Tresld frequecy fr te metal Ptelectric ffect Te pts f a ligt beam ave a caracteristic eergy determied by te frequecy f te ligt ( ). I te ptelectric effect, if a electr absrbs te eergy f e pt ad as mre eergy ta te wrk fucti ( 0 ), it is ejected frm te material. If te pt eergy is t lw, te electr is uable t escape te surface f te material. Icreasig te itesity f te ligt beam we > 0 icreases te umber f pts i te ligt beam, ad tus icreases te umber f electrs emitted witut icreasig te eergy tat eac electr pssesses. Te eergy f te emitted electrs des t deped te itesity f te icmig ligt, but ly te eergy f te idividual pts. lectrs ca absrb eergy frm pts we irradiated, but tey fllw a "all r tig" priciple. All f te eergy frm e pt must be absrbed ad used t liberate e electr frm atmic bidig, r te eergy is reemitted. If te pt eergy is absrbed, sme f te eergy liberates te electr frm te atm, ad te rest ctributes t te electr's kietic eergy as a free particle. Sme Imprtat quatis ergy f a Pt Radius ad ergy f t Br Orbit c r a were a 5.9 pm te Br Radius cr.79x0 8 J Sme Imprtat quatis ergy fr cage f discrete rbits frm i t f <0 fr emissi >0 fr absrpti cr i f pt e trasiti betwee rbits ergy fr pt emitted r absrbed fr discrete trasiti betwee rbits Nte tat tis eergy is simply te abslute value (i.e. psitive) f te eergy cage sw abve fr te trasiti betwee rbits c ergy cage fr trasiti betwee rbits ergy f a pt Study Tip: Rearrage te equati relatig wavelegt () ad te trasiti eergies () fr emissi ad absrpti t give te fllwig expressi ad use it t slve sme f te prblems: ( f x i ) were R.097 x 0 7 m R ( i f ) Te Rydberg cstat (R ) is actually te mst precisely kw pysical cstat f all. m e e 4 R (73) x 0 7 m c Sme Imprtat quatis Nte tat tese equatis apply t as well (Z) s tey are geeral Memrize tese equatis as tey are geeral fr, e +, Li + etc. (Nte te Z) Orbit ergy fr like species (ly e electr) Z cr Z Z Atmic Number Z cr i f 8.79x0 J a 5.9 pm a r Z ergy cage fr e jump betwee rbits frm i t f fr like species <0 fr emissi >0 fr absrpti r is radius f t rbit

3 Sme Imprtat quatis Nte tat tis equati applies t as well (Z) Z cr I Iizati ergy fr like species (cage f discrete rbits frm i t f fr like species e remved frm atm by iput f eergy A pt is absrbed t remve te electr ece >0 fr absrpti (tis is assumig te usual grud state f ) Tw New Ideas de Brglie quati predicts tat matter suld ave wavelike prperties p mu r pliear mmetum mmass uvelcity Plack s cstat λwavelegt de Brglie s quati mu Tw New Ideas Te Ucertaity Priciple Ucertaity I Psiti x p 4 Ucertaity I Mmetum Plack s Cstat Ucertaities are stadard deviatis Multielectr Atms Nucleus At r 0 Ψ is te prbability f fidig e at a sigle pit i space. By mappig Ψ at all pits i 3D space (r,θ,φ), we ca map te 3D electr prbability space fr eac rbital (r,θ,φ) Ψ Prbability at e pit ac electr will bey its w wavefucti Ψ ad explre a specific vlume i space caracteristic f te type f rbital te electr is i ac wave fucti Ψ as fur quatum umbers assciated wit it Ψ S it describes te rbital i wic a electr is fud ac electr is specified by a set f fur quatum umbers Tey determie were te electr is fud i a atm Kw te rules fr te quatum umbers Multielectr Atms P(r) te radial distributi fucti P(r) is te ttal itegrated prbability fr a sperical sell at distace r frm te ucleus r P(r) 4r Nte yu will t ave t d calculatis r plttig usig te radial distributi fucti Yu suld uderstad te ccept tat it is ttal prbability f fidig electr desity at a distace r frm te ucleus ad tat it ges t zer at te ucleus (r0) R ( r) Radial Wave Fucti ac type f rbital as Its w fuctial frm Nte P(r) 0 fr r 0 Multielectr Atms Orbital eergy depeds ad Z eff Zeff cr Orbital ergy fr a multielectr atm Z eff Z S Yu will t ave t calculate actual screeig ad Z eff but yu will ave t uderstad te peridic treds ad te screeig abilities f electrs I varius rbitals: Ier vs. valece s vs. p vs. d S screeig cstat

4 Key Study Pits. Frce f Culmbic attracti is directly prprtial t te electrstatic carges (q ad q ) ad iversely prprtial t te square f te separati betwee te carges (r ).. Defiiti f istpe. 3. Defiiti f atmic umber. 4. Defiiti f mass umber. 5. Geeral frmula fr a elemet r i. 6. Orders f decreasig eergy, frequecy ad wavelegt fr te differet types f electrmagetic radiati. 7. Itesity f a wave is directly prprtial t te square f te amplitude. 8. S.I. uit f frequecy (z, s ). 9. Meaig f S.I. prefixes: pic, femt, a, etc. Key Study Pits () 0. Rage f visible electrmagetic radiati i ameters: apprx. 400 (blue)800 (red) m.. Ipase cstructive iterferece wave amplitude augmeted.. Outfpase iterferece wave amplitude cacelled. 3. Typical wave prperties f visible ligt: diffracti ad refracti. 4. c relatisip. 4. Plack s quatum tery relatisip:. 5. Classical wave tery cat accut fr atmic lie spectra, blackbdy radiati (ultravilet catastrpe) ad ptelectric effect. Key Study Pits (3) 6. Blackbdy radiati absrbs ad emits all radiati regardless f. Ctiuus spectrum, depedet temperature. Best example ligt emitted frm a t metal. 7. RayleigJeas tery predicted tat te eergy desity fr a blackbdy wuld be ifiite at lw ad tat it was iversely prprtial t 4 ad directly prprtial t abslute temperature T. 8. istei, ptelectric effect:: K e ½ m e u ( 0 ), were 0 is te tresld frequecy ad 0 (wrk fucti). 9., eergy assciated wit a pt (G.N. Lewis). 0. Br tery: electr eergy i statiary states is cstat Key Study Pits (4). Br assumed tat te rbital agular mmetum is quatized: /.. Br s radius equati: r a 0, were a 0 Br radius (5.9 pm). 3. Br s eergy equati: (cr )/.79 x`0 8 J/. 4. (grud state). 5., 3, 4,. (excited states). 6. ergy differece betwee rbits i Br s tery: fial iitial cr (/ i / f ).79 x0 8 cr (/ i / f ) J c/ 7. missi: electr i excited state drps dw t a lwer eergy state. Key Study Pits (5) 8. Absrpti: electr is a lwer eergy state is excited t a iger eergy e. 9. Twpt trasiti: If te eergy fr a sigle pt trasiti is, te te ttal eergy fr a twpt trasiti must equal. 30. Fr Lyma lie spectra i UV: f 3. Fr Balmer lie spectra i visible: f 3. Fr Pasce lie spectra i IR: f Iizati eergy is bewee ad ifiity states. 34. Br mdel applies t all like (e electr) systems, e.g., e +, Li +, Be 3+, B 4+, C 5+. etc. Remember Z is ivlved. Key Study Pits (6) 8. de Brglie: /mc fr a pt ad /mu fr matter (electr, eutr, etc.) were u velcity f te matter. 9. Wave prperties f matter cfirmed electr diffracti wrk f DavissGermer ad Tms. (U.K.). 30. eiseberg ucertaity priciple: x. p /. 3. At te atmic level, te act f measuremet cages te system. 3. Wavefucti squared ( ) electr prbability 33. Quatum umbers (, l, m l ad m s ) 34. s, p, d, f rbitals (l 0,,, 3, respectively). 35. m s +/ r /. 36. SterGerlac experimet wit Ag atms. 37. Degeerate rbitals f te same eergy..

5 Key Study Pits (7) 38. Fr ad like species, te rbitals fr a give value are degeerate. 39. N tw electrs ave exactly te same fur quatum umbers. 40. Nde zer prbability f fidig a electr. 4. Oe s rbital, tree p rbitals, five d rbitals ad seve f rbitals. 4. Fr a s rbital (sperically symmetrical), te ttal itegrated prbability at a distace r frm te ucleus depeds r, i.e., P(r) 4r.R (r). We r 0, P(r) Screeig stregt f electrs i differet rbitals i multielectr atms: s > p > d. 44. is directly prprtial t Z eff / ad s < p < d fr te same value f i multielectr atms Key Study Pits (8) 45. Aubau prcess fr electr cfiguratis. 46. Fur rules: () miimum eergy cfigurati; () Pauli exclusi priciple; (3) ud s rule; ad (4) ce rbitals f same eergy are filled sigly, additial electrs ca be added wit ppsite sig. 47. Kw te class exceptis t te Aufbau prcess: Cr, Cu. 48. Kw te sapes ad labelig f te s, p ad d rbitals 49. Disticti betwee metals ad metals. 50. Metals ted t lse electrs, wile metals ted t gai electrs. 5. Te elemets i Grups,, 3, 4, 5, 6 ad 7 wit s x p y valece electrs wat t acieve te earest ble gas electric cfigurati i rder t be mre stable. Key Study Pits (9) 5. Sme trasiti metals lse electrs t acieve ble gas electric cfiguratis. May trasiti metals d t. 53. xtra stability f alffilled d sells (3d, 4d, 5d) 54. w t calculate atmic ad iic radii. 55. Cmparis f atmic ad iic sizes. 56. Iselectric species ad cmparis f teir atmic ad iic radii Peridic ad grup treds i atmic ad iic radii. 58. Peridic ad grup treds i iizati eergy.

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quatum Mechaics fr Scietists ad Egieers David Miller Time-depedet perturbati thery Time-depedet perturbati thery Time-depedet perturbati basics Time-depedet perturbati thery Fr time-depedet prblems csider

More information

Identical Particles. We would like to move from the quantum theory of hydrogen to that for the rest of the periodic table

Identical Particles. We would like to move from the quantum theory of hydrogen to that for the rest of the periodic table We wuld like t ve fr the quatu thery f hydrge t that fr the rest f the peridic table Oe electr at t ultielectr ats This is cplicated by the iteracti f the electrs with each ther ad by the fact that the

More information

Chapter 4. Problem Solutions

Chapter 4. Problem Solutions Chapter 4. Prblem Slutis. The great majrity f alpha particles pass thrugh gases ad thi metal fils with deflectis. T what cclusi abut atmic structure des this bservati lead? The fact that mst particles

More information

MATH Midterm Examination Victor Matveev October 26, 2016

MATH Midterm Examination Victor Matveev October 26, 2016 MATH 33- Midterm Examiati Victr Matveev Octber 6, 6. (5pts, mi) Suppse f(x) equals si x the iterval < x < (=), ad is a eve peridic extesi f this fucti t the rest f the real lie. Fid the csie series fr

More information

Solutions. Definitions pertaining to solutions

Solutions. Definitions pertaining to solutions Slutis Defiitis pertaiig t slutis Slute is the substace that is disslved. It is usually preset i the smaller amut. Slvet is the substace that des the disslvig. It is usually preset i the larger amut. Slubility

More information

Chapter 3.1: Polynomial Functions

Chapter 3.1: Polynomial Functions Ntes 3.1: Ply Fucs Chapter 3.1: Plymial Fuctis I Algebra I ad Algebra II, yu ecutered sme very famus plymial fuctis. I this secti, yu will meet may ther members f the plymial family, what sets them apart

More information

Electrostatics. . where,.(1.1) Maxwell Eqn. Total Charge. Two point charges r 12 distance apart in space

Electrostatics. . where,.(1.1) Maxwell Eqn. Total Charge. Two point charges r 12 distance apart in space Maxwell Eq. E ρ Electrstatics e. where,.(.) first term is the permittivity i vacuum 8.854x0 C /Nm secd term is electrical field stregth, frce/charge, v/m r N/C third term is the charge desity, C/m 3 E

More information

Phys 102 Lecture 25 The quantum mechanical model of light

Phys 102 Lecture 25 The quantum mechanical model of light Phys 102 Lecture 25 The quatum mechaical model of light 1 Recall last time Problems with classical physics Stability of atoms Atomic spectra Photoelectric effect Quatum model of the atom Bohr model oly

More information

Atomic Physics 4. Name: Date: 1. The de Broglie wavelength associated with a car moving with a speed of 20 m s 1 is of the order of. A m.

Atomic Physics 4. Name: Date: 1. The de Broglie wavelength associated with a car moving with a speed of 20 m s 1 is of the order of. A m. Name: Date: Atomic Pysics 4 1. Te de Broglie wavelegt associated wit a car movig wit a speed of 0 m s 1 is of te order of A. 10 38 m. B. 10 4 m. C. 10 4 m. D. 10 38 m.. Te diagram below sows tree eergy

More information

Modern Physics. Unit 15: Nuclear Structure and Decay Lecture 15.2: The Strong Force. Ron Reifenberger Professor of Physics Purdue University

Modern Physics. Unit 15: Nuclear Structure and Decay Lecture 15.2: The Strong Force. Ron Reifenberger Professor of Physics Purdue University Mder Physics Uit 15: Nuclear Structure ad Decay Lecture 15.: The Strg Frce R Reifeberger Prfessr f Physics Purdue Uiversity 1 Bidig eergy er ucle - the deuter Eergy (MeV) ~0.4fm B.E. A =.MeV/ = 1.1 MeV/ucle.

More information

A Hartree-Fock Calculation of the Water Molecule

A Hartree-Fock Calculation of the Water Molecule Chemistry 460 Fall 2017 Dr. Jea M. Stadard Nvember 29, 2017 A Hartree-Fck Calculati f the Water Mlecule Itrducti A example Hartree-Fck calculati f the water mlecule will be preseted. I this case, the water

More information

General Chemistry 1 (CHEM1141) Shawnee State University Fall 2016

General Chemistry 1 (CHEM1141) Shawnee State University Fall 2016 Geeral Chemistry 1 (CHEM1141) Shawee State Uiversity Fall 2016 September 23, 2016 Name E x a m # I C Please write yur full ame, ad the exam versi (IC) that yu have the scatr sheet! Please 0 check the bx

More information

Name: Period: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY

Name: Period: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY Name: Perid: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant

More information

PHYS-3301 Lecture 9. CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I. 5.3: Electron Scattering. Bohr s Quantization Condition

PHYS-3301 Lecture 9. CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I. 5.3: Electron Scattering. Bohr s Quantization Condition CHAPTER 5 Wave Properties of Matter ad Quatum Mecaics I PHYS-3301 Lecture 9 Sep. 5, 018 5.1 X-Ray Scatterig 5. De Broglie Waves 5.3 Electro Scatterig 5.4 Wave Motio 5.5 Waves or Particles? 5.6 Ucertaity

More information

Every gas consists of a large number of small particles called molecules moving with very high velocities in all possible directions.

Every gas consists of a large number of small particles called molecules moving with very high velocities in all possible directions. Kietic thery f gases ( Kietic thery was develped by Berlli, Jle, Clasis, axwell ad Bltzma etc. ad represets dyamic particle r micrscpic mdel fr differet gases sice it thrws light the behir f the particles

More information

D.S.G. POLLOCK: TOPICS IN TIME-SERIES ANALYSIS STATISTICAL FOURIER ANALYSIS

D.S.G. POLLOCK: TOPICS IN TIME-SERIES ANALYSIS STATISTICAL FOURIER ANALYSIS STATISTICAL FOURIER ANALYSIS The Furier Represetati f a Sequece Accrdig t the basic result f Furier aalysis, it is always pssible t apprximate a arbitrary aalytic fucti defied ver a fiite iterval f the

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpeCurseWare http://cw.mit.edu 5.8 Small-Mlecule Spectrscpy ad Dyamics Fall 8 Fr ifrmati abut citig these materials r ur Terms f Use, visit: http://cw.mit.edu/terms. 5.8 Lecture #33 Fall, 8 Page f

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015 Uiversity of Wasigto Departmet of Cemistry Cemistry 453 Witer Quarter 15 Lecture 14. /11/15 Recommeded Text Readig: Atkis DePaula: 9.1, 9., 9.3 A. Te Equipartitio Priciple & Eergy Quatizatio Te Equipartio

More information

MATHEMATICS 9740/01 Paper 1 14 Sep hours

MATHEMATICS 9740/01 Paper 1 14 Sep hours Cadidate Name: Class: JC PRELIMINARY EXAM Higher MATHEMATICS 9740/0 Paper 4 Sep 06 3 hurs Additial Materials: Cver page Aswer papers List f Frmulae (MF5) READ THESE INSTRUCTIONS FIRST Write yur full ame

More information

WEST VIRGINIA UNIVERSITY

WEST VIRGINIA UNIVERSITY WEST VIRGINIA UNIVERSITY PLASMA PHYSICS GROUP INTERNAL REPORT PL - 045 Mea Optical epth ad Optical Escape Factr fr Helium Trasitis i Helic Plasmas R.F. Bivi Nvember 000 Revised March 00 TABLE OF CONTENT.0

More information

Bohr type models of the atom give a totally incorrect picture of the atom and are of only historical significance.

Bohr type models of the atom give a totally incorrect picture of the atom and are of only historical significance. VISUAL PHYSICS ONLIN BOHR MODL OF TH ATOM Bhr typ mdls f th atm giv a ttally icrrct pictur f th atm ad ar f ly histrical sigificac. Fig.. Bhr s platary mdl f th atm. Hwvr, th Bhr mdls wr a imprtat stp

More information

ATOMIC STRUCTURE (ADVANCED) FOUNDATION BUILDER (OBJECTIVE) By law of conservation of mass and change the missing particle in neutron

ATOMIC STRUCTURE (ADVANCED) FOUNDATION BUILDER (OBJECTIVE) By law of conservation of mass and change the missing particle in neutron . (A) Li? e 6 ATOMIC STRUCTURE (ADVANCED) FOUNDATION BUILDER (OBJECTIVE) By law of coservatio of mass ad cage te missig particle i eutro. (D) e ratio lies i te sequece p l M Particle Cage Mass + + + p

More information

The power of analytical spectroscopy

The power of analytical spectroscopy The power of aalytical spectroscopy Daiila et al. J. Rama Spectr. 33, 807 (00) Reflected light Red lake varish UV light Rama spectrum Lead white ciabar Caput mortuum Byzatie Ico (AD Our 534), Lady, Our

More information

PHYS-3301 Lecture 7. CHAPTER 4 Structure of the Atom. Rutherford Scattering. Sep. 18, 2018

PHYS-3301 Lecture 7. CHAPTER 4 Structure of the Atom. Rutherford Scattering. Sep. 18, 2018 CHAPTER 4 Structure of the Atom PHYS-3301 Lecture 7 4.1 The Atomic Models of Thomso ad Rutherford 4.2 Rutherford Scatterig 4.3 The Classic Atomic Model 4.4 The Bohr Model of the Hydroge Atom 4.5 Successes

More information

Physics Methods in Art and Archaeology

Physics Methods in Art and Archaeology Physics Methods i Art ad Archaeology Michael Wiescher PHYS 78 Archaeologist i the 90ties Somewhere i South America 80 years later --- i the Valley of the Kigs, gypt Physics Tools & Techology Dager & Adveture

More information

Mihai V. Putz: Undergraduate Structural Physical Chemistry Course, Lecture 6 1

Mihai V. Putz: Undergraduate Structural Physical Chemistry Course, Lecture 6 1 Mihai V. Putz: Udergraduate Structural Physical Chemistry Course, Lecture 6 Lecture 6: Quatum-Classical Correspodece I. Bohr s Correspodece Priciple Turig back to Bohr atomic descriptio it provides the

More information

x 2 x 3 x b 0, then a, b, c log x 1 log z log x log y 1 logb log a dy 4. dx As tangent is perpendicular to the x axis, slope

x 2 x 3 x b 0, then a, b, c log x 1 log z log x log y 1 logb log a dy 4. dx As tangent is perpendicular to the x axis, slope The agle betwee the tagets draw t the parabla y = frm the pit (-,) 5 9 6 Here give pit lies the directri, hece the agle betwee the tagets frm that pit right agle Ratig :EASY The umber f values f c such

More information

An Electrostatic Catastrophe Machine as an Attosecond Pulse Generator

An Electrostatic Catastrophe Machine as an Attosecond Pulse Generator Optics ad Phtics Jural, 014, 4, 337-345 Published Olie December 014 i SciRes. http://www.scirp.rg/jural/pj http://dx.di.rg/10.436/pj.014.41034 A Electrstatic Catastrphe Machie as a Attsecd Pulse Geeratr

More information

DEPARTMENT OF ELECTRICAL ENGINEERING DIT UNIVERSITY HIGH VOLTAGE ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING DIT UNIVERSITY HIGH VOLTAGE ENGINEERING DEPARTMENT F ELECTRICAL ENGINEERING HIGH VLTAGE ENGINEERING UNIT 1: BREAKDWN IN GASES 1.) Itrducti: I mder times, high vltages are used fr a wide variety f applicatis cverig the pwer systems, idustry ad

More information

ALE 26. Equilibria for Cell Reactions. What happens to the cell potential as the reaction proceeds over time?

ALE 26. Equilibria for Cell Reactions. What happens to the cell potential as the reaction proceeds over time? Name Chem 163 Secti: Team Number: AL 26. quilibria fr Cell Reactis (Referece: 21.4 Silberberg 5 th editi) What happes t the ptetial as the reacti prceeds ver time? The Mdel: Basis fr the Nerst quati Previusly,

More information

The Excel FFT Function v1.1 P. T. Debevec February 12, The discrete Fourier transform may be used to identify periodic structures in time ht.

The Excel FFT Function v1.1 P. T. Debevec February 12, The discrete Fourier transform may be used to identify periodic structures in time ht. The Excel FFT Fucti v P T Debevec February 2, 26 The discrete Furier trasfrm may be used t idetify peridic structures i time ht series data Suppse that a physical prcess is represeted by the fucti f time,

More information

Grade 3 Mathematics Course Syllabus Prince George s County Public Schools

Grade 3 Mathematics Course Syllabus Prince George s County Public Schools Ctet Grade 3 Mathematics Curse Syllabus Price Gerge s Cuty Public Schls Prerequisites: Ne Curse Descripti: I Grade 3, istructial time shuld fcus fur critical areas: (1) develpig uderstadig f multiplicati

More information

[1 & α(t & T 1. ' ρ 1

[1 & α(t & T 1. ' ρ 1 NAME 89.304 - IGNEOUS & METAMORPHIC PETROLOGY DENSITY & VISCOSITY OF MAGMAS I. Desity The desity (mass/vlume) f a magma is a imprtat parameter which plays a rle i a umber f aspects f magma behavir ad evluti.

More information

Study of Energy Eigenvalues of Three Dimensional. Quantum Wires with Variable Cross Section

Study of Energy Eigenvalues of Three Dimensional. Quantum Wires with Variable Cross Section Adv. Studies Ther. Phys. Vl. 3 009. 5 3-0 Study f Eergy Eigevalues f Three Dimesial Quatum Wires with Variale Crss Secti M.. Sltai Erde Msa Departmet f physics Islamic Aad Uiversity Share-ey rach Ira alrevahidi@yah.cm

More information

On the structure of space-time and matter as obtained from the Planck scale by period doubling in three and four dimensions

On the structure of space-time and matter as obtained from the Planck scale by period doubling in three and four dimensions O the structure f space-time ad matter as btaied frm the Plack scale by perid dublig i three ad fur dimesis Ari Leht Helsiki Uiversity f Techlgy Labratry f Materials Sciece P.O. Bx 600, FIN-0150 HUT Oe

More information

ENGI 4421 Central Limit Theorem Page Central Limit Theorem [Navidi, section 4.11; Devore sections ]

ENGI 4421 Central Limit Theorem Page Central Limit Theorem [Navidi, section 4.11; Devore sections ] ENGI 441 Cetral Limit Therem Page 11-01 Cetral Limit Therem [Navidi, secti 4.11; Devre sectis 5.3-5.4] If X i is t rmally distributed, but E X i, V X i ad is large (apprximately 30 r mre), the, t a gd

More information

NAME Borough of Manhattan Community College Course Physics 110 Sec 721 Instructor: Dr. Hulan E. Jack Jr. Date December 19, 2006

NAME Borough of Manhattan Community College Course Physics 110 Sec 721 Instructor: Dr. Hulan E. Jack Jr. Date December 19, 2006 Brug f Manattan unity llege urse Pysics 110 Sec 721 nstructr: Dr. Hulan E. Jack Jr. Date Deceber 19, 2006 inal Exa NSTRUTONS - D 7 prbles : D Prble 1, 2 fr Prble 2,3 and 4, 2 fr Prbles 5,6 and 7, 2 fr

More information

Chapter 4 The debroglie hypothesis

Chapter 4 The debroglie hypothesis Capter 4 Te debrglie yptesis In 194, te Frenc pysicist Luis de Brglie after lking deeply int te special tery f relatiity and ptn yptesis,suggested tat tere was a mre fundamental relatin between waes and

More information

5.1 Two-Step Conditional Density Estimator

5.1 Two-Step Conditional Density Estimator 5.1 Tw-Step Cditial Desity Estimatr We ca write y = g(x) + e where g(x) is the cditial mea fucti ad e is the regressi errr. Let f e (e j x) be the cditial desity f e give X = x: The the cditial desity

More information

Physical Chemistry Laboratory I CHEM 445 Experiment 2 Partial Molar Volume (Revised, 01/13/03)

Physical Chemistry Laboratory I CHEM 445 Experiment 2 Partial Molar Volume (Revised, 01/13/03) Physical Chemistry Labratry I CHEM 445 Experimet Partial Mlar lume (Revised, 0/3/03) lume is, t a gd apprximati, a additive prperty. Certaily this apprximati is used i preparig slutis whse ccetratis are

More information

Unit -2 THEORY OF DILUTE SOLUTIONS

Unit -2 THEORY OF DILUTE SOLUTIONS Uit - THEORY OF DILUTE SOLUTIONS 1) hat is sluti? : It is a hmgeus mixture f tw r mre cmpuds. ) hat is dilute sluti? : It is a sluti i which slute ccetrati is very less. 3) Give a example fr slid- slid

More information

Development of QM. What do we know from classical physics? 1. Energy can take any continuous value.

Development of QM. What do we know from classical physics? 1. Energy can take any continuous value. Developmet of QM 1-1 What do we kow from classical physics? 1. Eergy ca take ay cotiuous value.. Electromagetic radiatio is a electric field oscillatig perpedicular to the directio of propagatio. 3. Ay

More information

Pipe Networks - Hardy Cross Method Page 1. Pipe Networks

Pipe Networks - Hardy Cross Method Page 1. Pipe Networks Pie Netwrks - Hardy Crss etd Page Pie Netwrks Itrducti A ie etwrk is a itercected set f ies likig e r mre surces t e r mre demad (delivery) its, ad ca ivlve ay umber f ies i series, bracig ies, ad arallel

More information

PHYS-3301 Lecture 10. Wave Packet Envelope Wave Properties of Matter and Quantum Mechanics I CHAPTER 5. Announcement. Sep.

PHYS-3301 Lecture 10. Wave Packet Envelope Wave Properties of Matter and Quantum Mechanics I CHAPTER 5. Announcement. Sep. Aoucemet Course webpage http://www.phys.ttu.edu/~slee/3301/ PHYS-3301 Lecture 10 HW3 (due 10/4) Chapter 5 4, 8, 11, 15, 22, 27, 36, 40, 42 Sep. 27, 2018 Exam 1 (10/4) Chapters 3, 4, & 5 CHAPTER 5 Wave

More information

Experimental Fact: E = nhf

Experimental Fact: E = nhf CHAPTR 3 The xperimetal Basis of Quatum PHYS-3301 Lecture 4 Sep. 6, 2018 3.1 Discovery of the X Ray ad the lectro 3.2 Determiatio of lectro Charge 3.3 Lie Spectra 3.4 Quatizatio 3.5 Blackbody Radiatio

More information

The structure of the atoms

The structure of the atoms Te structure of te atoms Atomos = indivisible University of Pécs, Medical Scool, Dept. Biopysics All tat exists are atoms and empty space; everyting else is merely tougt to exist. Democritus, 415 B.C.

More information

Hº = -690 kj/mol for ionization of n-propylene Hº = -757 kj/mol for ionization of isopropylene

Hº = -690 kj/mol for ionization of n-propylene Hº = -757 kj/mol for ionization of isopropylene Prblem 56. (a) (b) re egative º values are a idicati f mre stable secies. The º is mst egative fr the i-ryl ad -butyl is, bth f which ctai a alkyl substituet bded t the iized carb. Thus it aears that catis

More information

DEGENERACY AND ALL THAT

DEGENERACY AND ALL THAT DEGENERACY AND ALL THAT Te Nature of Termodyamics, Statistical Mecaics ad Classical Mecaics Termodyamics Te study of te equilibrium bulk properties of matter witi te cotext of four laws or facts of experiece

More information

Axial Temperature Distribution in W-Tailored Optical Fibers

Axial Temperature Distribution in W-Tailored Optical Fibers Axial Temperature Distributi i W-Tailred Optical ibers Mhamed I. Shehata (m.ismail34@yah.cm), Mustafa H. Aly(drmsaly@gmail.cm) OSA Member, ad M. B. Saleh (Basheer@aast.edu) Arab Academy fr Sciece, Techlgy

More information

ATOMIC STRUCTURE (MAIN) FOUNDATION BUILDER (OBJECTIVE) By law of conservation of mass and change the missing particle in neutron

ATOMIC STRUCTURE (MAIN) FOUNDATION BUILDER (OBJECTIVE) By law of conservation of mass and change the missing particle in neutron . (A) Li? e 6 4 ATOMIC STRUCTURE (MAIN) FOUNDATION BUILDER (OBJECTIVE) By law of coservatio of mass ad cage te missig particle i eutro. (D) e ratio lies i te sequece p l M Particle Cage Mass + + 4 0 +

More information

Examination No. 3 - Tuesday, Nov. 15

Examination No. 3 - Tuesday, Nov. 15 NAME (lease rit) SOLUTIONS ECE 35 - DEVICE ELECTRONICS Fall Semester 005 Examiati N 3 - Tuesday, Nv 5 3 4 5 The time fr examiati is hr 5 mi Studets are allwed t use 3 sheets f tes Please shw yur wrk, artial

More information

IIT JEE, 2005 (MAINS) SOLUTIONS CHEMISTRY 1

IIT JEE, 2005 (MAINS) SOLUTIONS CHEMISTRY 1 IIT JEE, 005 (MAINS) SLUTINS EMISTRY 1 Disclaimer: Tis bklet ctais te questis f IIT-JEE 005, Mai Examiati based te memry recall f studets alg wit slutis prvided by te faculty f Brilliat Tutrials. Sice

More information

The Acoustical Physics of a Standing Wave Tube

The Acoustical Physics of a Standing Wave Tube UIUC Physics 93POM/Physics 406POM The Physics f Music/Physics f Musical Istrumets The Acustical Physics f a Stadig Wave Tube A typical cylidrical-shaped stadig wave tube (SWT) {aa impedace tube} f legth

More information

sessions lectures 3-4

sessions lectures 3-4 Chemistry 1B Fall 016 quatizatio of eergy Chemistry 1B Fall 016 sessios lectures 3-4 E photo = h absorptio ad emissio spectra of hydroge atom 18 Z E. 17810 J Z=1 for H atom, =1,, 3,... 18 1. 17810 J 1

More information

BIO752: Advanced Methods in Biostatistics, II TERM 2, 2010 T. A. Louis. BIO 752: MIDTERM EXAMINATION: ANSWERS 30 November 2010

BIO752: Advanced Methods in Biostatistics, II TERM 2, 2010 T. A. Louis. BIO 752: MIDTERM EXAMINATION: ANSWERS 30 November 2010 BIO752: Advaced Methds i Bistatistics, II TERM 2, 2010 T. A. Luis BIO 752: MIDTERM EXAMINATION: ANSWERS 30 Nvember 2010 Questi #1 (15 pits): Let X ad Y be radm variables with a jit distributi ad assume

More information

Review for cumulative test

Review for cumulative test Hrs Math 3 review prblems Jauary, 01 cumulative: Chapters 1- page 1 Review fr cumulative test O Mday, Jauary 7, Hrs Math 3 will have a curse-wide cumulative test cverig Chapters 1-. Yu ca expect the test

More information

Sound Absorption Characteristics of Membrane- Based Sound Absorbers

Sound Absorption Characteristics of Membrane- Based Sound Absorbers Purdue e-pubs Publicatis f the Ray W. Schl f Mechaical Egieerig 8-28-2003 Sud Absrpti Characteristics f Membrae- Based Sud Absrbers J Stuart Blt, blt@purdue.edu Jih Sg Fllw this ad additial wrks at: http://dcs.lib.purdue.edu/herrick

More information

Intermediate Division Solutions

Intermediate Division Solutions Itermediate Divisi Slutis 1. Cmpute the largest 4-digit umber f the frm ABBA which is exactly divisible by 7. Sluti ABBA 1000A + 100B +10B+A 1001A + 110B 1001 is divisible by 7 (1001 7 143), s 1001A is

More information

Regents Chemistry Period Unit 3: Atomic Structure. Unit 3 Vocabulary..Due: Test Day

Regents Chemistry Period Unit 3: Atomic Structure. Unit 3 Vocabulary..Due: Test Day Name Skills: 1. Interpreting Mdels f the Atm 2. Determining the number f subatmic particles 3. Determine P, e-, n fr ins 4. Distinguish istpes frm ther atms/ins Regents Chemistry Perid Unit 3: Atmic Structure

More information

Ch. 1 Introduction to Estimation 1/15

Ch. 1 Introduction to Estimation 1/15 Ch. Itrducti t stimati /5 ample stimati Prblem: DSB R S f M f s f f f ; f, φ m tcsπf t + φ t f lectrics dds ise wt usually white BPF & mp t s t + w t st. lg. f & φ X udi mp cs π f + φ t Oscillatr w/ f

More information

Markov processes and the Kolmogorov equations

Markov processes and the Kolmogorov equations Chapter 6 Markv prcesses ad the Klmgrv equatis 6. Stchastic Differetial Equatis Csider the stchastic differetial equati: dx(t) =a(t X(t)) dt + (t X(t)) db(t): (SDE) Here a(t x) ad (t x) are give fuctis,

More information

FI 3103 Quantum Physics

FI 3103 Quantum Physics 05/09/04 FI 303 Quatum Pysics Alexader A. Iskadar Pysics of Magetism ad Potoics Researc Group Istitut Tekologi Badug Te Emergece of Quatum Pysics Wave Properties of Particle Bor Atom Alexader A. Iskadar

More information

The Quantum Oscillatory Modulated Potential Electric Field Wave Packets Produced by Electrons

The Quantum Oscillatory Modulated Potential Electric Field Wave Packets Produced by Electrons Jural f Mder Physics, 05, 6, 093-08 Published Olie Nvember 05 i SciRes. http://www.scirp.rg/jural/jmp http://dx.di.rg/0.436/jmp.05.646 The Quatum Oscillatry Mdulated Ptetial Electric Field Wave Packets

More information

Solutions to Midterm II. of the following equation consistent with the boundary condition stated u. y u x y

Solutions to Midterm II. of the following equation consistent with the boundary condition stated u. y u x y Sltis t Midterm II Prblem : (pts) Fid the mst geeral slti ( f the fllwig eqati csistet with the bdary cditi stated y 3 y the lie y () Slti : Sice the system () is liear the slti is give as a sperpsiti

More information

HW #2: 2.42, 2.44, 2.48, 2.50, 2.52, 2.58, 2.60, 2.62, 2.66, 2.68, 2.72, 2.82, 2.90, 2.96, 2.98

HW #2: 2.42, 2.44, 2.48, 2.50, 2.52, 2.58, 2.60, 2.62, 2.66, 2.68, 2.72, 2.82, 2.90, 2.96, 2.98 Chemistry 121 Lectures 6 & 7: The Mdern View f the Atm and Its Relatin t the Peridic Table Chapter 2 in McMurry, Ballantine, et. al. 7 th editin HW #2: 2.42, 2.44, 2.48, 2.50, 2.52, 2.58, 2.60, 2.62, 2.66,

More information

MODERN PHYSICS. Contents. Theory Exercise Exercise Exercise Exercise Answer Key

MODERN PHYSICS. Contents. Theory Exercise Exercise Exercise Exercise Answer Key MODERN PHYSICS Cotets Topic Page No. Teory 0-03 Exercise - 04 - Exercise - - 5 Exercise - 3 5-4 Exercise - 4 4-5 Aswer Key 6-7 Syllabus Potoelectric effect ; Bor s teory of ydroge like atoms ; Caracteristic

More information

SOLUTION. The reactor thermal output is related to the maximum heat flux in the hot channel by. Z( z ). The position of maximum heat flux ( z max

SOLUTION. The reactor thermal output is related to the maximum heat flux in the hot channel by. Z( z ). The position of maximum heat flux ( z max Te verpwer trip set pit i PWRs is desiged t isure te iu fuel eterlie teperature reais belw a give value T, ad te iiu rati reais abve a give value MR. Fr te give ifrati give a step by step predure, iludig

More information

Rates and Mechanisms of Chemical Reactions

Rates and Mechanisms of Chemical Reactions Rates ad Mechaisms f Chemical Reactis Why sme rxs prceed very fast ad thers require days, mths r eve years t prduce a detectable amt f prduct? H (g) + F (g) HF (g) (very fast) 3 H (g) + N (g) NH 3 (g)

More information

Study in Cylindrical Coordinates of the Heat Transfer Through a Tow Material-Thermal Impedance

Study in Cylindrical Coordinates of the Heat Transfer Through a Tow Material-Thermal Impedance Research ural f Applied Scieces, Egieerig ad echlgy (): 9-63, 3 ISSN: 4-749; e-issn: 4-7467 Maxwell Scietific Orgaiati, 3 Submitted: uly 4, Accepted: September 8, Published: May, 3 Study i Cylidrical Crdiates

More information

cannot commute.) this idea, we can claim that the average value of the energy is the sum of such terms over all points in space:

cannot commute.) this idea, we can claim that the average value of the energy is the sum of such terms over all points in space: Che 441 Quatu Cheistry Ntes May, 3 rev VI. Apprxiate Slutis A. Variati Methd ad Huckel Mlecular Orbital (HMO) Calculatis Refereces: Liberles, Ch. 4, Atkis, Ch. 8, Paulig ad Wils Streitweiser, "MO Thery

More information

K [f(t)] 2 [ (st) /2 K A GENERALIZED MEIJER TRANSFORMATION. Ku(z) ()x) t -)-I e. K(z) r( + ) () (t 2 I) -1/2 e -zt dt, G. L. N. RAO L.

K [f(t)] 2 [ (st) /2 K A GENERALIZED MEIJER TRANSFORMATION. Ku(z) ()x) t -)-I e. K(z) r( + ) () (t 2 I) -1/2 e -zt dt, G. L. N. RAO L. Iterat. J. Math. & Math. Scl. Vl. 8 N. 2 (1985) 359-365 359 A GENERALIZED MEIJER TRANSFORMATION G. L. N. RAO Departmet f Mathematics Jamshedpur C-perative Cllege f the Rachi Uiversity Jamshedpur, Idia

More information

are specified , are linearly independent Otherwise, they are linearly dependent, and one is expressed by a linear combination of the others

are specified , are linearly independent Otherwise, they are linearly dependent, and one is expressed by a linear combination of the others Chater 3. Higher Order Liear ODEs Kreyszig by YHLee;4; 3-3. Hmgeeus Liear ODEs The stadard frm f the th rder liear ODE ( ) ( ) = : hmgeeus if r( ) = y y y y r Hmgeeus Liear ODE: Suersiti Pricile, Geeral

More information

ENGI 4421 Central Limit Theorem Page Central Limit Theorem [Navidi, section 4.11; Devore sections ]

ENGI 4421 Central Limit Theorem Page Central Limit Theorem [Navidi, section 4.11; Devore sections ] ENGI 441 Cetral Limit Therem Page 11-01 Cetral Limit Therem [Navidi, secti 4.11; Devre sectis 5.3-5.4] If X i is t rmally distributed, but E X i, V X i ad is large (apprximately 30 r mre), the, t a gd

More information

PHYC - 505: Statistical Mechanics Homework Assignment 4 Solutions

PHYC - 505: Statistical Mechanics Homework Assignment 4 Solutions PHYC - 55: Statistical Mechaics Homewor Assigmet 4 Solutios Due February 5, 14 1. Cosider a ifiite classical chai of idetical masses coupled by earest eighbor sprigs with idetical sprig costats. a Write

More information

E o and the equilibrium constant, K

E o and the equilibrium constant, K lectrchemical measuremets (Ch -5 t 6). T state the relati betwee ad K. (D x -b, -). Frm galvaic cell vltage measuremet (a) K sp (D xercise -8, -) (b) K sp ad γ (D xercise -9) (c) K a (D xercise -G, -6)

More information

Higher Course Plan. Calculus and Relationships Expressions and Functions

Higher Course Plan. Calculus and Relationships Expressions and Functions Higher Course Pla Applicatios Calculus ad Relatioships Expressios ad Fuctios Topic 1: The Straight Lie Fid the gradiet of a lie Colliearity Kow the features of gradiets of: parallel lies perpedicular lies

More information

Quantum Numbers and Rules

Quantum Numbers and Rules OpenStax-CNX module: m42614 1 Quantum Numbers and Rules OpenStax College Tis work is produced by OpenStax-CNX and licensed under te Creative Commons Attribution License 3.0 Abstract Dene quantum number.

More information

Signal Processing in Mechatronics. Lecture 3, Convolution, Fourier Series and Fourier Transform

Signal Processing in Mechatronics. Lecture 3, Convolution, Fourier Series and Fourier Transform Sigal Processig i Mechatroics Summer semester, 1 Lecture 3, Covolutio, Fourier Series ad Fourier rasform Dr. Zhu K.P. AIS, UM 1 1. Covolutio Covolutio Descriptio of LI Systems he mai premise is that the

More information

Motor Stability. Plateau and Mesa Burning

Motor Stability. Plateau and Mesa Burning Mtr Stability Recall mass cservati fr steady erati ( =cstat) m eit m b b r b s r m icr m eit Is this cditi (it) stable? ly if rmally use.3

More information

Control Systems. Controllability and Observability (Chapter 6)

Control Systems. Controllability and Observability (Chapter 6) 6.53 trl Systems trllaility ad Oservaility (hapter 6) Geeral Framewrk i State-Spae pprah Give a LTI system: x x u; y x (*) The system might e ustale r des t meet the required perfrmae spe. Hw a we imprve

More information

Lecture 6. Semiconductor physics IV. The Semiconductor in Equilibrium

Lecture 6. Semiconductor physics IV. The Semiconductor in Equilibrium Lecture 6 Semicoductor physics IV The Semicoductor i Equilibrium Equilibrium, or thermal equilibrium No exteral forces such as voltages, electric fields. Magetic fields, or temperature gradiets are actig

More information

Chapter 5. Root Locus Techniques

Chapter 5. Root Locus Techniques Chapter 5 Rt Lcu Techique Itrducti Sytem perfrmace ad tability dt determied dby cled-lp l ple Typical cled-lp feedback ctrl ytem G Ope-lp TF KG H Zer -, - Ple 0, -, - K Lcati f ple eaily fud Variati f

More information

PROBABILITY AMPLITUDE AND INTERFERENCE

PROBABILITY AMPLITUDE AND INTERFERENCE PROILITY MPLITUDE ND INTERFERENCE I. Probability amplitude Suppose that particle is placed i the ifiite square well potetial. Let the state of the particle be give by ϕ ad let the system s eergy eigestates

More information

7. QUANTUM THEORY OF THE ATOM

7. QUANTUM THEORY OF THE ATOM 7. QUANTUM TEORY OF TE ATOM Solutions to Practice Problems Note on significant figures: If te final answer to a solution needs to be rounded off, it is given first wit one nonsignificant figure, and te

More information

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!**

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!** Tpics lists: UV-Vis Absrbance Spectrscpy Lab & ChemActivity 3-6 (nly thrugh 4) I. UV-Vis Absrbance Spectrscpy Lab Beer s law Relates cncentratin f a chemical species in a slutin and the absrbance f that

More information

Claude Elysée Lobry Université de Nice, Faculté des Sciences, parc Valrose, NICE, France.

Claude Elysée Lobry Université de Nice, Faculté des Sciences, parc Valrose, NICE, France. CHAOS AND CELLULAR AUTOMATA Claude Elysée Lbry Uiversité de Nice, Faculté des Scieces, parc Valrse, 06000 NICE, Frace. Keywrds: Chas, bifurcati, cellularautmata, cmputersimulatis, dyamical system, ifectius

More information

Periodicity & Many-Electron Atoms

Periodicity & Many-Electron Atoms Chap. 8 ELECTRON CONFIGURAT N & CEMICAL PERIODICITY 8.1-8.2 Periodicity & Many-Electron Atoms Understand the correlation of electron configuration and the periodic character of atomic properties such as

More information

A Study on Estimation of Lifetime Distribution with Covariates Under Misspecification

A Study on Estimation of Lifetime Distribution with Covariates Under Misspecification Prceedigs f the Wrld Cgress Egieerig ad Cmputer Sciece 2015 Vl II, Octber 21-23, 2015, Sa Fracisc, USA A Study Estimati f Lifetime Distributi with Cvariates Uder Misspecificati Masahir Ykyama, Member,

More information

Sodium D-line doublet. Lectures 5-6: Magnetic dipole moments. Orbital magnetic dipole moments. Orbital magnetic dipole moments

Sodium D-line doublet. Lectures 5-6: Magnetic dipole moments. Orbital magnetic dipole moments. Orbital magnetic dipole moments Lectures 5-6: Magnetic diple mments Sdium D-line dublet Orbital diple mments. Orbital precessin. Grtrian diagram fr dublet states f neutral sdium shwing permitted transitins, including Na D-line transitin

More information

Exercises and Problems

Exercises and Problems HW Chapter 4: Oe-Dimesioal Quatum Mechaics Coceptual Questios 4.. Five. 4.4.. is idepedet of. a b c mu ( E). a b m( ev 5 ev) c m(6 ev ev) Exercises ad Problems 4.. Model: Model the electro as a particle

More information

Essential Microeconomics EXISTENCE OF EQUILIBRIUM Core ideas: continuity of excess demand functions, Fixed point theorems

Essential Microeconomics EXISTENCE OF EQUILIBRIUM Core ideas: continuity of excess demand functions, Fixed point theorems Essetial Microecoomics -- 5.3 EXISTENCE OF EQUILIBRIUM Core ideas: cotiuity of excess demad fuctios, Fixed oit teorems Two commodity excage ecoomy 2 Excage ecoomy wit may commodities 5 Discotiuous demad

More information

Multi-objective Programming Approach for. Fuzzy Linear Programming Problems

Multi-objective Programming Approach for. Fuzzy Linear Programming Problems Applied Mathematical Scieces Vl. 7 03. 37 8-87 HIKARI Ltd www.m-hikari.cm Multi-bective Prgrammig Apprach fr Fuzzy Liear Prgrammig Prblems P. Padia Departmet f Mathematics Schl f Advaced Scieces VIT Uiversity

More information

Dispersion Ref Feynman Vol-I, Ch-31

Dispersion Ref Feynman Vol-I, Ch-31 Dispersin Ref Feynman Vl-I, Ch-31 n () = 1 + q N q /m 2 2 2 0 i ( b/m) We have learned that the index f refractin is nt just a simple number, but a quantity that varies with the frequency f the light.

More information

The Advection-Diffusion equation!

The Advection-Diffusion equation! ttp://www.d.edu/~gtryggva/cf-course/! Te Advectio-iffusio equatio! Grétar Tryggvaso! Sprig 3! Navier-Stokes equatios! Summary! u t + u u x + v u y = P ρ x + µ u + u ρ y Hyperbolic part! u x + v y = Elliptic

More information

Chem 115 POGIL Worksheet - Week 8 Thermochemistry (Continued), Electromagnetic Radiation, and Line Spectra

Chem 115 POGIL Worksheet - Week 8 Thermochemistry (Continued), Electromagnetic Radiation, and Line Spectra Chem 115 POGIL Wrksheet - Week 8 Thermchemistry (Cntinued), Electrmagnetic Radiatin, and Line Spectra Why? As we saw last week, enthalpy and internal energy are state functins, which means that the sum

More information

m = Mass flow rate The Lonely Electron Example 0a:

m = Mass flow rate The Lonely Electron Example 0a: The Lel Elect Exaple 0a: Mass flw ate l Liea velcit Hw fa ut f ptial eeg iteacti? Hge ucleus Bh --- 93: Uest the etu ccept. Liea etu istace eeg ( l ) l F ( tie ) ( tie ) + Like t use the peples ieas (if

More information

This presentation was created for the students of technical lyceum originally.

This presentation was created for the students of technical lyceum originally. Electro cloud This presetatio was created for the studets of techical lyceum origially. Some years ago the presetatio was itroduced durig a sciece lessos for studets i appreticeship course because of their

More information

Preview from Notesale.co.uk Page 2 of 42

Preview from Notesale.co.uk Page 2 of 42 1 PHYSICAL CHEMISTRY Dalton (1805) Tomson (1896) - Positive and negative carges Ruterford (1909) - Te Nucleus Bor (1913) - Energy levels Atomic Model : Timeline CATHODE RAYS THE DISCOVERY OF ELECTRON Scrödinger

More information

SECTION 2 Electrostatics

SECTION 2 Electrostatics SECTION Electrostatics This sectio, based o Chapter of Griffiths, covers effects of electric fields ad forces i static (timeidepedet) situatios. The topics are: Electric field Gauss s Law Electric potetial

More information

Electric Current and Resistance

Electric Current and Resistance Electric Current and Resistance Electric Current Electric current is the rate f flw f charge thrugh sme regin f space The SI unit f current is the ampere (A) 1 A = 1 C / s The symbl fr electric current

More information