Optimisation of Pressure Loss and Flow Distribution at Pipe Bifurcation

Size: px
Start display at page:

Download "Optimisation of Pressure Loss and Flow Distribution at Pipe Bifurcation"

Transcription

1 ISSN 9 86 Volume, Issue 9 Setember 07 Otimisation of Pressure Loss and Flow Distribution at Pie Bifurcation Dr. Nagaraj Sitaram Professor, Deartment of Civil Engineering,School of Engineering Technology, Jain University, Jakkasandara Post, Kanakaura Taluk, Karnataka, India Abhijeeth Nagaraj Post Graduate Student, Det. of Mechanical Engg., Bangalore Institute of Technology, KR Road, V.V Puram, Bengaluru, Karnataka, India Abstract Pie networks are very common in industries where liquids or gases to be transorted from one location to the other. Combining and dividing ie junctions are of interest to hydraulic engineers in ie network articularly in water distribution system. The dividing junction involves additional geometric arameters comared to comonents with a single flow ath. There is also a need to know the ressure loss at the junction and arameters which influences these losses. The aer focuses in determination of ressure losses and flow distribution of ie bifurcation using the exerimental technique at various flow rates and ressures. The exerimental data and analysis for 00mm main and 75 mm bifurcated ies show the correlation between ressure loss coefficient (K) with a slit flow ratio,,. The exeriments have been conducted for four different bifurcation angles- 0 o, 5 o, 0 o, 0 o. The bifurcation loss coefficient (K) also deends u on the line ressures, bifurcation angles, and ratio of main to branch ie diameters. The exerimental findings also suggest that the head loss at the bifurcation junction will be minimum when equal discharge flow in branched ies. The hydraulic behaviour of the right and left branches for equal angle of bifurcation is also studied. Keywords: Pie, Dividing junctions, ressure loss, bifurcation, slit flow ratio, equal discharge, loss coefficient.. Introduction The division of two streams at different velocity results in loss of energy at the junction and changes to velocity for a given ressure. A hydraulic engineer is interested to know the slit flow ratios and ressure loss for a given configuration of bifurcation which is mainly used in ie networks and house lumbing. The determination of ressure loss coefficient (K) at bifurcation deends uon the geometric arameters like ie area ratio, diameter of the ie and angle of bifurcation, fluid arameters like density of the fluid, viscosity and temerature of the fluid, and flow arameters like ressure and discharge. The loss of energy at the ie bifurcation is mainly due to searation and reattachment of the fluid flow atterns near the bifurcation. The exchange of the fluid momentum and energy transfer at bifurcation junction totally deends uon the angle of bifurcation, line ressure in the ies, diameter ratios of the main and branch ies. The aer aims at the determination of loss of co-efficient at the bifurcation for various ressures and flow rates for a given angle of bifurcation ( = 0, 5, 0, 0). Also to determine the flow ratio for which ressure loss co-efficient is minimum. The various configurations of bifurcation are shown in figure below: 99 Dr. Nagaraj Sitaram, Abhijeeth Nagaraj

2 ISSN 9 86 Volume, Issue 9 Setember 07 Figure Right bifurcation Figure Left bifurcation Figure Y bifurcation. Theory The discharge valves in branch ies are measured and added together to obtain the flow in main ie based on the conservation of mass called continuity equation. The total energy for each ie is determined based on line ressure. Energy at will always be more than energy at and resectively in figure. As er the different bifurcation conditions given in figures to, the equations are: Figure Right bifurcation = + () = + () = + () The loss of co-efficient at each ie is comuted by Blevins equation (98) K = () K = (5) K = (6) K = (7) The overall loss co-efficient (K) in bifurcation junction is defined based on the branch di scharge ratio and branch loss coefficients: 00 Dr. Nagaraj Sitaram, Abhijeeth Nagaraj

3 0 Dr. Nagaraj Sitaram, Abhijeeth Nagaraj International Journal of Engineering Technology Science and Research ISSN 9 86 Volume, Issue 9 Setember 07 K K K (8) The total energy (E) for all horizontal ies (Z =Z =Z =Z ) is comuted by, g V E w (9) g V E w (0) g V E w () g V E w () The outflow energy (O) of flow is comuted by, V O () V O () V O (5) V O (6). Losses at Pie Bifurcation: The bifurcations are rovided in ies to change the direction and division of flow through it. An additional loss of head, aart from that due to fluid friction, takes lace in course of flow through ie bend. The fluid takes a curved ath while flowing through a ie bifurcation as shown in Figure 5. The flow near the shar corners creates turbulence and searation. Figure 5 Losses in Right Bifurcation

4 ISSN 9 86 Volume, Issue 9 Setember 07 This results in an increase in ressure near the outer wall of the bend, starting at some oint A (Figure 6) and rising to a maximum at some oint B. There is also a reduction of ressure near the inner wall giving a minimum ressure at C and a subsequent rise from C to B. Figure 6 Right Bifurcation in Pie flow Therefore between A and B and between C and towards outflow the fluid exeriences an adverse ressure gradient (the ressure increases in the direction of flow). Whenever a fluid flows in a curved ath, force acting radially inwards on the fluid to rovide the inward acceleration, known as centrietal acceleration. Fluid articles in this region, because of their close roximity to the wall, have low velocities and cannot overcome the adverse ressure gradient and this leads to a searation of flow from the boundary and consequent losses of energy in generating local eddies. Losses also take lace due to a secondary flows in the radial lane of the ie because of a change in ressure in the radial deth of the ie. This flow, in conjunction with the main flow, roduces a tyical siral motion of the fluid which ersists even for a downstream distance of fifty times the ie diameter from the central lane of the bend. This siral motion of the fluid increases the local flow velocity and the velocity gradient at the ie wall, and therefore results in a greater frictional loss of head than that which occurs for the same rate of flow in a straight ie of the same length and diameter. The additional loss of head due to friction the loss of head will occur due to change in direction, change in diameter and ie bends. The bend loss and is usually exressed as a fraction of the velocity head as: KV H bend g Where V is the average velocity of flow through the ie. The value of K deends on the total length of the bend and the ratio of radius of curvature R of the bend and ie diameter D and is given as: K f R D The radius of curvature R is usually taken as the radius of curvature of the centre line of the bend. The factor K varies slightly with Reynolds number Re in the tyical range of Re encountered in ractice, but increases with surface roughness. (7) (8). Exerimental Setu The exerimental setu consists of half Horse Power um, 600 mm manifold to maintain the constant ressure in the ie line. A 00 mm ieline is used as main ie which bifurcates into 75 mm ielines of galvanized iron material. The ressure gauges and flow meter are installed to know the line ressure and the values of discharge in each ie varied from 0 to 0 (-variants in bifurcation angle). The flows 0 Dr. Nagaraj Sitaram, Abhijeeth Nagaraj

5 ISSN 9 86 Volume, Issue 9 Setember 07 through the ies are discharged to a recirculating collecting tank. The readings for ressure and discharge are taken for a given bifurcation angle at various flow rates. The temerature of water is noted at the beginning and end of the exeriment. Figure 7 Exerimental setu. Valve control combination: The check valves, ressure gauges and flow meter are rovided in each ie. The valves are controlled to achieve the desired flow rate and ressure in each ie. The conditions of valves are varied to obtain ressure loss coefficient (K) for each combination (Refer Figure to ). Valve, are fully oen Valve is controlled Valve is closed Temerature = O C -7 O C Results and Discussions Obtained data is analysed to obtain the hydraulic loss of co-efficient for individual ies (K and K ) and for the junction (K) based on equation 8. Figure 8 Energy Vs. Slit Flow As the slit flow ratio in branch ie- increases the flow energy in the branch ie- also increases as shown in the Figure 8. The non-dimensional arameters like energy ratio (E /E ), Flow ratio ( / ), ressure ratios (P /P ) are comuted. 0 Dr. Nagaraj Sitaram, Abhijeeth Nagaraj

6 ISSN 9 86 Volume, Issue 9 Setember 07 Figure 9 Pressure Loss Coefficient Vs Discharge Figure 0 shows the variation of loss coefficients of branch ies with their resective slit flow ratios. The loss coefficients for the straight ie (branch ) in relatively more as comared to the branched ies and whose 0& 0.The grah also shows as the flow in the bifurcated ies tend to equalize (i.e. = = The overall loss coefficients (K) at bifurcation tend to reduce to minimum. Right Branch Left Branch Figure 0 Pressure Loss Coefficient Vs Discharge Figure 0 gives a comrehensive value for a combined loss co-efficient at bifurcation (K) with the slit flow ratio and also clearly signifies that ressure loss behaviour is symmetrical for right and left bifurcation for a given. It also clearly indicates as the slit flow ratio are nearly equal, the ressure loss co-efficient is minimum and the value is near unity. 0 Dr. Nagaraj Sitaram, Abhijeeth Nagaraj

7 ISSN 9 86 Volume, Issue 9 Setember 07 The ressure distribution in a tyical bifurcation is shown through the results obtained from Comutational Fluid Dynamics in figure. Figure Pressure distribution from Comutational Fluid Dynamics Figure Branch Pressure Loss Coefficient Vs of Outflow Energy The nature of the figure is similar to figure. It indicates that the ressure loss coefficients also related to the out flow energy at the various branches and the value is otimized when the flow is slits into equal discharge. 05 Dr. Nagaraj Sitaram, Abhijeeth Nagaraj

8 ISSN 9 86 Volume, Issue 9 Setember 07 Figure Combined Loss Co-efficient Vs Slit Flow for extreme angles Table - Exerimental Data Discharge Pie (cm /s) Discharge Pie (cm/s) Net Discharge = + (cm/s) / / Energy at Inlet E /E Energy at Inlet E /E Energy at outlet O /O Energy at outlet O /O Conclusions Detailed exeriments are conducted to understand the ressure loss at ie bifurcation with various arameters. The loss behaviour at the ieline bifurcation has been tested for right, left and central bifurcation. It is observed that for a given bifurcation angle, the loss coefficients for the right and left bifurcation are nearly same. The exerimental findings also suggest that the minimum loss at the ie line junction will occurs when the slit flow ratios are equal. Also the loss co-efficient increases as the branch angle increases. The head loss at the ie bifurcation junction is contributed by both the individual ies and angle of bifurcation. In case of straight ie bifurcation, the contribution of head loss is relatively more by the straight ie comared to branch ie. It is lanned to conduct more exeriments with angles of bifurcation.5, 5, 5 and 0. References Achantha Ramakrishna Rao, Bimlesh Kumar (009). Energy losses at ie trifurcation. Urban Water Journal, Vol.6 (). Albert Rurecht, Tomas Helmrich, Ivana Buntic (00). Very large eddy simulation for the rediction of unsteady vortex motion. th International Conference on Fluid Flow Technologies, -6. Blevins, R D. (98) Alied fluid dynamics handbook. Van Nostrand Reinhold Co., New York, USA. Bransilav Basara, Herwig A Grogger. (000) Exerimental and numerical study of the flow through trifurcation, Advanced Stimulation Technologies. RK Malik, Paras Paudel, (009) D Flow Modelling of the Trifurcation Made in Neal, Hydro Neal, 56-6 (9). Miller, D.S (990). Internal flow systems nd Edition. Gulf Publishing Comany, Houston, USA 06 Dr. Nagaraj Sitaram, Abhijeeth Nagaraj

Determination of Optimum Pressure Loss Coefficient and Flow Distribution at Unsymmetrical Pipe Trifurcation Using Experimental and Numerical Technique

Determination of Optimum Pressure Loss Coefficient and Flow Distribution at Unsymmetrical Pipe Trifurcation Using Experimental and Numerical Technique Applied Engineering 2017; 1(2): 41-47 http://www.sciencepublishinggroup.com/j/ae doi: 10.11648/j.ae.20170102.11 Determination of Optimum Pressure Loss Coefficient and Flow Distribution at Unsymmetrical

More information

Chapter 10: Flow Flow in in Conduits Conduits Dr Ali Jawarneh

Chapter 10: Flow Flow in in Conduits Conduits Dr Ali Jawarneh Chater 10: Flow in Conduits By Dr Ali Jawarneh Hashemite University 1 Outline In this chater we will: Analyse the shear stress distribution across a ie section. Discuss and analyse the case of laminar

More information

Measurement of cyclone separator

Measurement of cyclone separator Measurement of cyclone searator. Aim of the measurement Cyclones are widely used in industry (in food and chemical industry, in energy technology and in buildings) to remove dust and other articles from

More information

a) Derive general expressions for the stream function Ψ and the velocity potential function φ for the combined flow. [12 Marks]

a) Derive general expressions for the stream function Ψ and the velocity potential function φ for the combined flow. [12 Marks] Question 1 A horizontal irrotational flow system results from the combination of a free vortex, rotating anticlockwise, of strength K=πv θ r, located with its centre at the origin, with a uniform flow

More information

Useful concepts associated with the Bernoulli equation. Dynamic

Useful concepts associated with the Bernoulli equation. Dynamic Useful concets associated with the Bernoulli equation - Static, Stagnation, and Dynamic Pressures Bernoulli eq. along a streamline + ρ v + γ z = constant (Unit of Pressure Static (Thermodynamic Dynamic

More information

(British) (SI) British Metric L T [V] = L T. [a] = 2 [F] = F = 2 T

(British) (SI) British Metric L T [V] = L T. [a] = 2 [F] = F = 2 T Hydraulics ecture # CWR 40 age () ecture # Outline: Review of terminology in fluid mechanics: Energy or work Hydraulic head Bernoulli s aw, Conductivity (examle) ransient & turbulent Friction head loss

More information

Visualization of flow pattern over or around immersed objects in open channel flow.

Visualization of flow pattern over or around immersed objects in open channel flow. EXPERIMENT SEVEN: FLOW VISUALIZATION AND ANALYSIS I OBJECTIVE OF THE EXPERIMENT: Visualization of flow pattern over or around immersed objects in open channel flow. II THEORY AND EQUATION: Open channel:

More information

Chapter 1 Fundamentals

Chapter 1 Fundamentals Chater Fundamentals. Overview of Thermodynamics Industrial Revolution brought in large scale automation of many tedious tasks which were earlier being erformed through manual or animal labour. Inventors

More information

Effect of accumulators on cavitation surge in hydraulic systems

Effect of accumulators on cavitation surge in hydraulic systems Effect of accumulators on cavitation surge in hydraulic systems Donghyuk Kang, Satoshi Yamazaki, Shusaku Kagawa, Byungjin An, Motohiko Nohmi, Kazuhiko Yokota ISROMAC 6 International Symosium on Transort

More information

An equivalent diameter in calculating borehole thermal resistance for spiral coil type GHE

An equivalent diameter in calculating borehole thermal resistance for spiral coil type GHE The 01 World Congress on Advances in Civil, Environmental, and Materials esearch (ACEM 1) Seoul, Korea, August 6-30, 01 An equivalent diameter in calculating borehole thermal resistance for siral coil

More information

Experiment (4): Flow measurement

Experiment (4): Flow measurement Experiment (4): Flow measurement Introduction: The flow measuring apparatus is used to familiarize the students with typical methods of flow measurement of an incompressible fluid and, at the same time

More information

FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4)

FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) 1 1.0 Objectives The objective of this experiment is to calculate loss coefficient (K

More information

The directivity of the forced radiation of sound from panels and openings including the shadow zone

The directivity of the forced radiation of sound from panels and openings including the shadow zone The directivity of the forced radiation of sound from anels and oenings including the shadow zone J. Davy RMIT University, Alied Physics, GPO Box 476V, 3001 Melbourne, Victoria, Australia john.davy@rmit.edu.au

More information

ANALYTICAL MODEL FOR THE BYPASS VALVE IN A LOOP HEAT PIPE

ANALYTICAL MODEL FOR THE BYPASS VALVE IN A LOOP HEAT PIPE ANALYTICAL MODEL FOR THE BYPASS ALE IN A LOOP HEAT PIPE Michel Seetjens & Camilo Rindt Laboratory for Energy Technology Mechanical Engineering Deartment Eindhoven University of Technology The Netherlands

More information

Comparison of Maximum Allowable Pump Speed in a Horizontal and Vertical Pipe of Equal Geometry at Constant Power

Comparison of Maximum Allowable Pump Speed in a Horizontal and Vertical Pipe of Equal Geometry at Constant Power Pak. J. Engg. & Al. Sci. Vol. 16, Jan., 015 (. 110 10) Comarison of Maximum Allowable Pum Seed in a Horizontal and Vertical Pie of Equal Geometry at Constant Power D. Bashar 1, A. Usman, M. K. Aliyu 3

More information

Parameters Optimization and Numerical Simulation for Soft Abrasive Flow Machining

Parameters Optimization and Numerical Simulation for Soft Abrasive Flow Machining Sensors & Transducers 014 by IFSA Publishing, S. L. htt://www.sensorsortal.com Parameters Otimization and Numerical Simulation for Soft Abrasive Flow Machining Qiaoling YUAN, Shiming JI, Donghui WEN and

More information

Turbulent Flow Simulations through Tarbela Dam Tunnel-2

Turbulent Flow Simulations through Tarbela Dam Tunnel-2 Engineering, 2010, 2, 507-515 doi:10.4236/eng.2010.27067 Published Online July 2010 (htt://www.scirp.org/journal/eng) 507 Turbulent Flow Simulations through Tarbela Dam Tunnel-2 Abstract Muhammad Abid,

More information

u y

u y VO., NO., FEBRUARY 8 ISSN 89-668 6-8 Asian Research Publishing Network (ARPN). All rights reserved. NON-NEWTONIAN EFFECTS OF OAD CARRYING CAPACITY AND FRICTIONA FORCE USING RABINOWITS FUID ON TE PERFORMANCE

More information

High speed wind tunnels 2.0 Definition of high speed. 2.1 Types of high speed wind tunnels

High speed wind tunnels 2.0 Definition of high speed. 2.1 Types of high speed wind tunnels Module Lectures 6 to 1 High Seed Wind Tunnels Keywords: Blow down wind tunnels, Indraft wind tunnels, suersonic wind tunnels, c-d nozzles, second throat diffuser, shocks, condensation in wind tunnels,

More information

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0 UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and non-uniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and ir-rotational

More information

5. PRESSURE AND VELOCITY SPRING Each component of momentum satisfies its own scalar-transport equation. For one cell:

5. PRESSURE AND VELOCITY SPRING Each component of momentum satisfies its own scalar-transport equation. For one cell: 5. PRESSURE AND VELOCITY SPRING 2019 5.1 The momentum equation 5.2 Pressure-velocity couling 5.3 Pressure-correction methods Summary References Examles 5.1 The Momentum Equation Each comonent of momentum

More information

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research)

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Association of ientific Innovation and Research (IASIR) (An Association Unifying the iences, Engineering, and Alied Research) International Journal of Emerging Technologies in Comutational

More information

III. Flow Around Bends: Meander Evolution

III. Flow Around Bends: Meander Evolution III. Flow Around Bends: Meander Evolution 1. Introduction Hooke (1975) [aer available] first detailed data and measurements about what haens around meander bends how flow velocity and shear stress fields

More information

NUMERICAL ANALYSIS OF THE IMPACT OF THE INLET AND OUTLET JETS FOR THE THERMAL STRATIFICATION INSIDE A STORAGE TANK

NUMERICAL ANALYSIS OF THE IMPACT OF THE INLET AND OUTLET JETS FOR THE THERMAL STRATIFICATION INSIDE A STORAGE TANK NUMERICAL ANALYSIS OF HE IMAC OF HE INLE AND OULE JES FOR HE HERMAL SRAIFICAION INSIDE A SORAGE ANK A. Zachár I. Farkas F. Szlivka Deartment of Comuter Science Szent IstvÆn University Æter K. u.. G d llı

More information

Lesson 37 Transmission Of Air In Air Conditioning Ducts

Lesson 37 Transmission Of Air In Air Conditioning Ducts Lesson 37 Transmission Of Air In Air Conditioning Ducts Version 1 ME, IIT Kharagpur 1 The specific objectives of this chapter are to: 1. Describe an Air Handling Unit (AHU) and its functions (Section 37.1).

More information

Jet pump development for emergency draining of Kopswerk II. By Thomas Staubli and Raphael Walpen, HTA Lucerne, Switzerland

Jet pump development for emergency draining of Kopswerk II. By Thomas Staubli and Raphael Walpen, HTA Lucerne, Switzerland Jet um develoment for emergency draining of Koswerk II By Thomas Staubli and Rahael Walen, HTA Lucerne, Switzerland Abstract The lowest oint of the underground hydroelectric ower station Koswerk II of

More information

Effects of Mud Properties, Hole size, Drill String Tripping Speed and Configurations on Swab and Surge Pressure Magnitude during Drilling Operations

Effects of Mud Properties, Hole size, Drill String Tripping Speed and Configurations on Swab and Surge Pressure Magnitude during Drilling Operations International Journal of Petroleum Science and Technology ISSN 0973-638 Volume 6, Number (01),. 143-15 Research India Publications htt://www.riublication.com/ijst.htm Effects of Mud Proerties, Hole size,

More information

Experimental Setup. Flow Direction Leading Edge. Field of View (25 25 mm) Trailing Edge. Cavity Wall. H=30.0 mm. L=38.1 mm

Experimental Setup. Flow Direction Leading Edge. Field of View (25 25 mm) Trailing Edge. Cavity Wall. H=30.0 mm. L=38.1 mm Exerimental Setu High Seed Camera PCO.dimax, 1 bit Resolution: 1008x1000 ixels @ 4500 fs Resolution: 000x000 ixels @ 1400 fs High Reetition Rate Laser Photonics DM60-57 Nd:YLF Maximum ulse rate - 10 khz

More information

Pipe Flow. Lecture 17

Pipe Flow. Lecture 17 Pipe Flow Lecture 7 Pipe Flow and the Energy Equation For pipe flow, the Bernoulli equation alone is not sufficient. Friction loss along the pipe, and momentum loss through diameter changes and corners

More information

An-Najah National University Civil Engineering Departemnt. Fluid Mechanics. Chapter [2] Fluid Statics

An-Najah National University Civil Engineering Departemnt. Fluid Mechanics. Chapter [2] Fluid Statics An-Najah National University Civil Engineering Deartemnt Fluid Mechanics Chater [2] Fluid Statics 1 Fluid Statics Problems Fluid statics refers to the study of fluids at rest or moving in such a manner

More information

Numerical and Experimental Study on the Effect of Guide Vane Insertion on the Flow Characteristics in a 90º Rectangular Elbow

Numerical and Experimental Study on the Effect of Guide Vane Insertion on the Flow Characteristics in a 90º Rectangular Elbow Numerical and Experimental Study on the Effect of Guide Vane Insertion on the Flow Characteristics in a 90º Rectangular Elbow Sutardi 1, Wawan A. W., Nadia, N. and Puspita, K. 1 Mechanical Engineering

More information

The Numerical Simulation of Gas Turbine Inlet-Volute Flow Field

The Numerical Simulation of Gas Turbine Inlet-Volute Flow Field World Journal of Mechanics, 013, 3, 30-35 doi:10.436/wjm.013.3403 Published Online July 013 (htt://www.scir.org/journal/wjm) The Numerical Simulation of Gas Turbine Inlet-Volute Flow Field Tao Jiang 1,

More information

Determination of Pressure Losses in Hydraulic Pipeline Systems by Considering Temperature and Pressure

Determination of Pressure Losses in Hydraulic Pipeline Systems by Considering Temperature and Pressure Paer received: 7.10.008 UDC 61.64 Paer acceted: 0.04.009 Determination of Pressure Losses in Hydraulic Pieline Systems by Considering Temerature and Pressure Vladimir Savi 1,* - Darko Kneževi - Darko Lovrec

More information

Numerical Simulation of Particle Concentration in a Gas Cyclone Separator *

Numerical Simulation of Particle Concentration in a Gas Cyclone Separator * 2007 Petroleum Science Vol.4 No.3 Numerical Simulation of Particle Concentration in a Gas Cyclone Searator * Xue Xiaohu, Sun Guogang **, Wan Gujun and Shi Mingxian (School of Chemical Science and Engineering,

More information

CFD MODELLING AND VALIDATION OF HEAD LOSSES IN PIPE BIFURCATIONS

CFD MODELLING AND VALIDATION OF HEAD LOSSES IN PIPE BIFURCATIONS CFD MODELLING AND VALIDATION OF HEAD LOSSES IN PIPE BIFURCATIONS Kasturi Sukhapure* a, Alan Burns a, Tariq Mahmud a, Jake Spooner b. a School of Chemical and Process Engineering, University of Leeds, Leeds

More information

Flow Efficiency in Multi-Louvered Fins

Flow Efficiency in Multi-Louvered Fins University of Illinois at Urbana-Chamaign Air Conditioning and Refrigeration Center A National Science oundation/university Cooerative Research Center low Efficiency in Multi-ouvered ins X. Zhang and D.

More information

A Model Answer for. Problem Set #4 FLUID DYNAMICS

A Model Answer for. Problem Set #4 FLUID DYNAMICS A Model Answer for Problem Set #4 FLUID DYNAMICS Problem. Some elocity measurements in a threedimensional incomressible flow field indicate that u = 6xy and = -4y z. There is some conflicting data for

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 ISSN IJSER

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 ISSN IJSER ISSN 9-5518 953 Det. of Mechanical Engineering, College of Engineering Trivandrum, Thiruvananthauram, Kerala, India- 695016 vinodvayalisseril@gmail.com, kkrish9@yahoo.com Det. of Mechanical Engineering,

More information

Theory of turbomachinery. Chapter 1

Theory of turbomachinery. Chapter 1 Theory of turbomachinery Chater Introduction: Basic Princiles Take your choice of those that can best aid your action. (Shakeseare, Coriolanus) Introduction Definition Turbomachinery describes machines

More information

Estimation of dynamic behavior and energy efficiency of thrust hybrid bearings with active control

Estimation of dynamic behavior and energy efficiency of thrust hybrid bearings with active control INTERNATIONAL JOURNAL OF MECHANICS Volume 1 18 Estimation of dynamic behavior and energy efficiency of thrust hybrid bearings with active control Alexander Babin Sergey Majorov Leonid Savin Abstract The

More information

The study of erosive wear of the shaped elements of compressor station manifold of a gas pipeline

The study of erosive wear of the shaped elements of compressor station manifold of a gas pipeline OIL AND GAS TRANSPORTATION The study of erosive wear of the shaed elements of comressor station manifold of a gas ieline Ya. V. Doroshenko *, Т. І. Мarko, Yu. І. Doroshenko Ivano-Frankivsk National Technical

More information

VI. Electrokinetics. Lecture 31: Electrokinetic Energy Conversion

VI. Electrokinetics. Lecture 31: Electrokinetic Energy Conversion VI. Electrokinetics Lecture 31: Electrokinetic Energy Conversion MIT Student 1 Princiles 1.1 General Theory We have the following equation for the linear electrokinetic resonse of a nanochannel: ( ) (

More information

Hydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1

Hydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1 Hydraulics B.E. (Civil), Year/Part: II/II Tutorial solutions: Pipe flow Tutorial 1 -by Dr. K.N. Dulal Laminar flow 1. A pipe 200mm in diameter and 20km long conveys oil of density 900 kg/m 3 and viscosity

More information

Investigation of Flow Profile in Open Channels using CFD

Investigation of Flow Profile in Open Channels using CFD Investigation of Flow Profile in Open Channels using CFD B. K. Gandhi 1, H.K. Verma 2 and Boby Abraham 3 Abstract Accuracy of the efficiency measurement of a hydro-electric generating unit depends on the

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

WALL ROUGHNESS EFFECTS ON SHOCK BOUNDARY LAYER INTERACTION FLOWS

WALL ROUGHNESS EFFECTS ON SHOCK BOUNDARY LAYER INTERACTION FLOWS ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 2, Special Issue

More information

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

More information

Predictionof discharge coefficient of Venturimeter at low Reynolds numbers by analytical and CFD Method

Predictionof discharge coefficient of Venturimeter at low Reynolds numbers by analytical and CFD Method International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-3, Issue-5, May 2015 Predictionof discharge coefficient of Venturimeter at low Reynolds numbers by analytical

More information

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the co-efficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1

More information

The extreme case of the anisothermal calorimeter when there is no heat exchange is the adiabatic calorimeter.

The extreme case of the anisothermal calorimeter when there is no heat exchange is the adiabatic calorimeter. .4. Determination of the enthaly of solution of anhydrous and hydrous sodium acetate by anisothermal calorimeter, and the enthaly of melting of ice by isothermal heat flow calorimeter Theoretical background

More information

Ideal Gas Law. September 2, 2014

Ideal Gas Law. September 2, 2014 Ideal Gas Law Setember 2, 2014 Thermodynamics deals with internal transformations of the energy of a system and exchanges of energy between that system and its environment. A thermodynamic system refers

More information

Choice of urea-spray models in CFD simulations of urea-scr systems

Choice of urea-spray models in CFD simulations of urea-scr systems Choice of urea-sray models in CFD simulations of urea-scr systems Andreas Lundström & Henrik Ström Cometence Centre for Catalysis / Chemical Reaction Engineering Deartment of Chemical Engineering and Environmental

More information

The effect of geometric parameters on the head loss factor in headers

The effect of geometric parameters on the head loss factor in headers Fluid Structure Interaction V 355 The effect of geometric parameters on the head loss factor in headers A. Mansourpour & S. Shayamehr Mechanical Engineering Department, Azad University of Karaj, Iran Abstract

More information

Homogeneous and Inhomogeneous Model for Flow and Heat Transfer in Porous Materials as High Temperature Solar Air Receivers

Homogeneous and Inhomogeneous Model for Flow and Heat Transfer in Porous Materials as High Temperature Solar Air Receivers Excert from the roceedings of the COMSOL Conference 1 aris Homogeneous and Inhomogeneous Model for Flow and Heat ransfer in orous Materials as High emerature Solar Air Receivers Olena Smirnova 1 *, homas

More information

Keywords: pile, liquefaction, lateral spreading, analysis ABSTRACT

Keywords: pile, liquefaction, lateral spreading, analysis ABSTRACT Key arameters in seudo-static analysis of iles in liquefying sand Misko Cubrinovski Deartment of Civil Engineering, University of Canterbury, Christchurch 814, New Zealand Keywords: ile, liquefaction,

More information

Analysis of Pressure Transient Response for an Injector under Hydraulic Stimulation at the Salak Geothermal Field, Indonesia

Analysis of Pressure Transient Response for an Injector under Hydraulic Stimulation at the Salak Geothermal Field, Indonesia roceedings World Geothermal Congress 00 Bali, Indonesia, 5-9 Aril 00 Analysis of ressure Transient Resonse for an Injector under Hydraulic Stimulation at the Salak Geothermal Field, Indonesia Jorge A.

More information

Chapter 8 Internal Forced Convection

Chapter 8 Internal Forced Convection Chater 8 Internal Forced Convection 8.1 Hydrodynamic Considerations 8.1.1 Flow Conditions may be determined exerimentally, as shown in Figs. 7.1-7.2. Re D ρumd μ where u m is the mean fluid velocity over

More information

CHAPTER 25. Answer to Checkpoint Questions

CHAPTER 25. Answer to Checkpoint Questions CHAPTER 5 ELECTRIC POTENTIAL 68 CHAPTER 5 Answer to Checkoint Questions. (a) negative; (b) increase. (a) ositive; (b) higher 3. (a) rightward; (b),, 3, 5: ositive; 4: negative; (c) 3, then,, and 5 tie,

More information

Setting up the Mathematical Model Review of Heat & Material Balances

Setting up the Mathematical Model Review of Heat & Material Balances Setting u the Mathematical Model Review of Heat & Material Balances Toic Summary... Introduction... Conservation Equations... 3 Use of Intrinsic Variables... 4 Well-Mixed Systems... 4 Conservation of Total

More information

Implementation and Validation of Finite Volume C++ Codes for Plane Stress Analysis

Implementation and Validation of Finite Volume C++ Codes for Plane Stress Analysis CST0 191 October, 011, Krabi Imlementation and Validation of Finite Volume C++ Codes for Plane Stress Analysis Chakrit Suvanjumrat and Ekachai Chaichanasiri* Deartment of Mechanical Engineering, Faculty

More information

16. CHARACTERISTICS OF SHOCK-WAVE UNDER LORENTZ FORCE AND ENERGY EXCHANGE

16. CHARACTERISTICS OF SHOCK-WAVE UNDER LORENTZ FORCE AND ENERGY EXCHANGE 16. CHARACTERISTICS OF SHOCK-WAVE UNDER LORENTZ FORCE AND ENERGY EXCHANGE H. Yamasaki, M. Abe and Y. Okuno Graduate School at Nagatsuta, Tokyo Institute of Technology 459, Nagatsuta, Midori-ku, Yokohama,

More information

Hydraulics and hydrology

Hydraulics and hydrology Hydraulics and hydrology - project exercises - Class 4 and 5 Pipe flow Discharge (Q) (called also as the volume flow rate) is the volume of fluid that passes through an area per unit time. The discharge

More information

Head loss coefficient through sharp-edged orifices

Head loss coefficient through sharp-edged orifices Head loss coefficient through sharp-edged orifices Nicolas J. Adam, Giovanni De Cesare and Anton J. Schleiss Laboratory of Hydraulic Constructions, Ecole Polytechnique fédérale de Lausanne, Lausanne, Switzerland

More information

Analysis of High-Altitude Ionization Gauge Measurements Using the Direct Simulation Monte Carlo Method

Analysis of High-Altitude Ionization Gauge Measurements Using the Direct Simulation Monte Carlo Method th AIAA Thermohysics Conference June - July, Portland, Oregon AIAA - Analysis of High-Altitude Ionization Gauge Measurements Using the Direct Simulation Monte Carlo Method Quanhua Sun *, Chunei Cai, and

More information

VELOCITY PROFILE OF ENTRAINED AIR IN FREE FALLING PARTICLE PLUMES

VELOCITY PROFILE OF ENTRAINED AIR IN FREE FALLING PARTICLE PLUMES VELOCITY PROFILE OF ENTRAINED AIR IN FREE FALLING PARTICLE PLUMES ZQ Liu 1,*, XJ Li 1, PQ Lu 1, TH Zou 1, BY Lu 1 1 Faculty of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China

More information

Actual exergy intake to perform the same task

Actual exergy intake to perform the same task CHAPER : PRINCIPLES OF ENERGY CONSERVAION INRODUCION Energy conservation rinciles are based on thermodynamics If we look into the simle and most direct statement of the first law of thermodynamics, we

More information

ABSTRACT I. INTRODUCTION

ABSTRACT I. INTRODUCTION 2017 IJSRSET Volume 3 Issue 3 Print ISSN: 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology CFD Analysis of Flow through Single and Multi Stage Eccentric Orifice Plate Assemblies

More information

MICROPOLAR FLUID LUBRICATION OF FINITE PARTIAL ROUGH POROUS JOURNAL BEARINGS WITH SQUEEZE EFFECT

MICROPOLAR FLUID LUBRICATION OF FINITE PARTIAL ROUGH POROUS JOURNAL BEARINGS WITH SQUEEZE EFFECT International Journal of Mechanical Engineering and Technology (IJMET) Volume 6 Issue 11 Nov 015. 58-79 Article ID: IJMET_06_11_08 Available online at htt://www.iaeme.com/ijmet/issues.as?jtye=ijmet&vtye=6&itye=11

More information

Performance Prediction of Solar Thermal Parabolic Trough Concentrator System (STPTCS) by Enhancement of Heat Transfer

Performance Prediction of Solar Thermal Parabolic Trough Concentrator System (STPTCS) by Enhancement of Heat Transfer ISSN (Online) 3 4 ISSN (Print) 3 556 Vol. 3, Issue 9, Setember 5 Performance Prediction of Solar hermal Parabolic rough Concentrator System (SPCS) by Enhancement of Heat ransfer Y.. Nayak, U.. Sinha, Nilesh

More information

Piping Systems and Flow Analysis (Chapter 3)

Piping Systems and Flow Analysis (Chapter 3) Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution

More information

Calculation of Pipe Friction Loss

Calculation of Pipe Friction Loss Doc.No. 6122-F3T071 rev.2 Calculation of Pipe Friction Loss Engineering Management Group Development Planning Department Standard Pump Business Division EBARA corporation October 16th, 2013 1 / 33 2 /

More information

Time Domain Calculation of Vortex Induced Vibration of Long-Span Bridges by Using a Reduced-order Modeling Technique

Time Domain Calculation of Vortex Induced Vibration of Long-Span Bridges by Using a Reduced-order Modeling Technique 2017 2nd International Conference on Industrial Aerodynamics (ICIA 2017) ISBN: 978-1-60595-481-3 Time Domain Calculation of Vortex Induced Vibration of Long-San Bridges by Using a Reduced-order Modeling

More information

Roots Blower with Gradually Expanding Outlet Gap: Mathematical Modelling and Performance Simulation Yingjie Cai 1, a, Ligang Yao 2, b

Roots Blower with Gradually Expanding Outlet Gap: Mathematical Modelling and Performance Simulation Yingjie Cai 1, a, Ligang Yao 2, b 2nd International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 216) Roots Bloer ith Gradually Exanding Outlet Ga: Mathematical Modelling and Performance Simulation

More information

Flexible Pipes in Trenches with Stiff Clay Walls

Flexible Pipes in Trenches with Stiff Clay Walls Flexible Pies in Trenches with Stiff Clay Walls D. A. Cameron University of South Australia, South Australia, Australia J. P. Carter University of Sydney, New South Wales, Australia Keywords: flexible

More information

Compressible Flow Introduction. Afshin J. Ghajar

Compressible Flow Introduction. Afshin J. Ghajar 36 Comressible Flow Afshin J. Ghajar Oklahoma State University 36. Introduction...36-36. he Mach Number and Flow Regimes...36-36.3 Ideal Gas Relations...36-36.4 Isentroic Flow Relations...36-4 36.5 Stagnation

More information

Ultrasound Beam Focusing Considering the Cutaneous Fat Layer Effects

Ultrasound Beam Focusing Considering the Cutaneous Fat Layer Effects Ultrasound Beam Focusing Considering the Cutaneous Fat Layer Effects A. B. M. Aowlad Hossain 1*, Laehoon H. Kang 1 Deartment of Electronics and Communication Engineering Khulna University of Engineering

More information

SELF-SIMILAR FLOW OF A MIXTURE OF A NON-IDEAL GAS AND SMALL SOLID PARTICLES WITH INCREASING ENERGY BEHIND A SHOCK WAVE UNDER A GRAVITATIONAL FIELD

SELF-SIMILAR FLOW OF A MIXTURE OF A NON-IDEAL GAS AND SMALL SOLID PARTICLES WITH INCREASING ENERGY BEHIND A SHOCK WAVE UNDER A GRAVITATIONAL FIELD SELF-SIMILAR FLOW OF A MIXTURE OF A NON-IDEAL GAS AND SMALL SOLID PARTICLES WITH INCREASING ENERGY BEHIND A SHOCK WAVE UNDER A GRAVITATIONAL FIELD Vishwakarma J.P. and Prerana Pathak 1 Deartment of Mathematics

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING. Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 0 AERONAUTICAL ENGINEERING : Mechanics of Fluids : A00 : II-I- B. Tech Year : 0 0 Course Coordinator

More information

Signature: (Note that unsigned exams will be given a score of zero.)

Signature: (Note that unsigned exams will be given a score of zero.) Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (-1 point if not circled, or circled incorrectly): Prof. Dabiri Prof. Wassgren Prof.

More information

Intensely swirling turbulent pipe flow downstream of an orifice: the influence of an outlet contraction

Intensely swirling turbulent pipe flow downstream of an orifice: the influence of an outlet contraction 13 th Int. Symp. on Appl. Laser Techniques to Fluid Mechanics, Lisbon, Portugal, June 26-29, 26 Intensely swirling turbulent pipe flow downstream of an orifice: the influence of an outlet contraction Marcel

More information

Prof. B.S. Thandaveswara. Superelevation is defined as the difference in elevation of water surface between inside (1)

Prof. B.S. Thandaveswara. Superelevation is defined as the difference in elevation of water surface between inside (1) 36.4 Superelevation Superelevation is defined as the difference in elevation of water surface between inside and outside wall of the bend at the same section. y=y y (1) 1 This is similar to the road banking

More information

δq T = nr ln(v B/V A )

δq T = nr ln(v B/V A ) hysical Chemistry 007 Homework assignment, solutions roblem 1: An ideal gas undergoes the following reversible, cyclic rocess It first exands isothermally from state A to state B It is then comressed adiabatically

More information

FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1

FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1 FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1 1. A pipe 100 mm bore diameter carries oil of density 900 kg/m3 at a rate of 4 kg/s. The pipe reduces

More information

Effect of geometry on flow structure and pressure drop in pneumatic conveying of solids along horizontal ducts

Effect of geometry on flow structure and pressure drop in pneumatic conveying of solids along horizontal ducts Journal of Scientific LAÍN & Industrial SOMMERFELD Research: PNEUMATIC CONVEYING OF SOLIDS ALONG HORIZONTAL DUCTS Vol. 70, February 011,. 19-134 19 Effect of geometry on flow structure and ressure dro

More information

Prediction of Performance Characteristics of Orifice Plate Assembly for Non-Standard Conditions Using CFD

Prediction of Performance Characteristics of Orifice Plate Assembly for Non-Standard Conditions Using CFD International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-3, Issue-5, May 2015 Prediction of Performance Characteristics of Orifice Plate Assembly for Non-Standard Conditions

More information

Internal Energy in terms of Properties

Internal Energy in terms of Properties Lecture #3 Internal Energy in terms of roerties Internal energy is a state function. A change in the state of the system causes a change in its roerties. So, we exress the change in internal energy in

More information

Study on the Electromagnetic Force Affected by Short-Circuit Current in Vertical and Horizontal Arrangement of Busbar System

Study on the Electromagnetic Force Affected by Short-Circuit Current in Vertical and Horizontal Arrangement of Busbar System International Conference on Electrical, Control and Comuter Engineering Pahang, Malaysia, June 1-, 011 Study on the Electromagnetic Force Affected by Short-Circuit Current in Vertical and Horizontal Arrangement

More information

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE In this chapter, the governing equations for the proposed numerical model with discretisation methods are presented. Spiral

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

More information

Weather and Climate Laboratory Spring 2009

Weather and Climate Laboratory Spring 2009 MIT OenCourseWare htt://ocw.mit.edu 12.307 Weather and Climate Laboratory Sring 2009 For information about citing these materials or our Terms of Use, visit: htt://ocw.mit.edu/terms. Thermal wind John

More information

Turbulence Laboratory

Turbulence Laboratory Objective: CE 319F Elementary Mechanics of Fluids Department of Civil, Architectural and Environmental Engineering The University of Texas at Austin Turbulence Laboratory The objective of this laboratory

More information

R09. d water surface. Prove that the depth of pressure is equal to p +.

R09. d water surface. Prove that the depth of pressure is equal to p +. Code No:A109210105 R09 SET-1 B.Tech II Year - I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal

More information

Head Discharge Relationship of Thin Plated Rectangular Lab Fabricated Sharp Crested Weirs

Head Discharge Relationship of Thin Plated Rectangular Lab Fabricated Sharp Crested Weirs Journal of Applied Fluid Mechanics, Vol. 9, No. 3, pp. 1231-1235, 2016. Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. DOI: 10.18869/acadpub.jafm.68.228.23128 Head Discharge Relationship

More information

Effect of Geometric Configuration on Performance of Uniflow Cyclone

Effect of Geometric Configuration on Performance of Uniflow Cyclone International Journal of Engineering Research and Development e-issn: 2278-67X, p-issn: 2278-X, www.ijerd.com Volume 11, Issue 1 (January 215), PP.63-69 Effect of Geometric Configuration on Performance

More information

Tenth International Symposium on Applications of Laser Techniques to Fluid Mechanics- July 2000, Lisbon, Portugal

Tenth International Symposium on Applications of Laser Techniques to Fluid Mechanics- July 2000, Lisbon, Portugal Tenth International Symposium on Applications of Laser Techniques to Fluid Mechanics- July 2000, Lisbon, Portugal Asymmetric Diverging Flow on a 90º Tee Junction R. Maia, M. F. Proença, N. Pereira da Costa

More information

Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

More information

INTERACTION BETWEEN SEDIMENT TRANSPORT AND FLOOD FLOW: THE CASE OF KOMPSATOS RIVER BASIN, GREECE

INTERACTION BETWEEN SEDIMENT TRANSPORT AND FLOOD FLOW: THE CASE OF KOMPSATOS RIVER BASIN, GREECE Proceedings of the 13 th International Conference on Environmental Science and Technology Athens, Greece, 5-7 Setember 013 INTERACTION BETWEEN SEDIMENT TRANSPORT AND FLOOD FLOW: THE CASE OF KOMPSATOS RIVER

More information

Pressure Head: Pressure head is the height of a column of water that would exert a unit pressure equal to the pressure of the water.

Pressure Head: Pressure head is the height of a column of water that would exert a unit pressure equal to the pressure of the water. Design Manual Chapter - Stormwater D - Storm Sewer Design D- Storm Sewer Sizing A. Introduction The purpose of this section is to outline the basic hydraulic principles in order to determine the storm

More information

APPLIED FLUID DYNAMICS HANDBOOK

APPLIED FLUID DYNAMICS HANDBOOK APPLIED FLUID DYNAMICS HANDBOOK ROBERT D. BLEVINS H imhnisdia ttodisdiule Darmstadt Fachbereich Mechanik 'rw.-nr.. [VNR1 VAN NOSTRAND REINHOLD COMPANY ' ' New York Contents Preface / v 1. Definitions /

More information

International Journal of Mathematics Trends and Technology- Volume3 Issue4-2012

International Journal of Mathematics Trends and Technology- Volume3 Issue4-2012 Effect of Hall current on Unsteady Flow of a Dusty Conducting Fluid through orous medium between Parallel Porous Plates with Temerature Deendent Viscosity and Thermal Radiation Harshbardhan Singh and Dr.

More information