# APPLIED FLUID DYNAMICS HANDBOOK

Size: px
Start display at page:

Transcription

1 APPLIED FLUID DYNAMICS HANDBOOK ROBERT D. BLEVINS H imhnisdia ttodisdiule Darmstadt Fachbereich Mechanik 'rw.-nr.. [VNR1 VAN NOSTRAND REINHOLD COMPANY ' ' New York

2 Contents Preface / v 1. Definitions / 1 2. Symbols / 5 3. Units / 6 4. Dimensional Analysis / Introduction / Boundary Geometry / Euler Number / Reynolds Number / Mach Number / Froude Number / Weber Number / Cavitation Number / Richardson Number / Rayleigh Number / Strouhal Number / Kolmogoroff Scales / Application / Then-Theorem / Example: Model Testing a Nuclear Reactor / Example: Model Testing of a Surfboard / Conservation Equations / Introduction / Conservation of Mass / Equations of Conservation of Mass / Example of Conservation of Mass / Conservation of Energy / 23 ' 5.3 A Forms of Fluid Energy / Equations of Conservation of Energy / Examples of Conservation of Energy / The Bernoulli Equations / Presentation of the Equations / Example of the Bernoulli Equations / Conservation of Momentum / The Momentum Equations / Examples of Conservation of Momentum / Pipe and Duct Flow / General Considerations / General Assumptions / Principles of Pipe Flow / Velocity Profiles for Fully Developed Pipe Flow / Inlet Length / Fully Developed Profiles / Straight Uniform Pipes and Ducts / General Form for Incompressible Flow / Friction Factor for Laminar Flow (Re<2000) / Friction Factor for Transitional Flow (2000 <Re <4000) / Friction Factor for Turbulent Flow (Re>4000) / Curved Pipes and Bends / General Form./ Diametrical Pressure Difference / Curved Pipes and Gradual Bends / Sharp Bends / Vanes in Sharp Bends / Interaction Between Closely Spaced Bends and Components / Force on a Bend / Abrupt Changes in Flow Area / Entrances and Abrupt Contractions / Exits and Abrupt Expansions / Orifice Plates / Valves / 83 vii

3 viii CONTENTS 6.6 Joining and Dividing Flow / Classification of Pipe Junctions / 89 ' Pipe Junctions / Manifolds / Networks / Compressible Flow / Compressible Flow of a Perfect Gas Through Uniform Pipes and Ducts / A Technique for Adiabatic Flow Through Pipeline Components / Two-Phase Flow / Fundamental Concepts / Liquid-Gas Two-Phase Flow / Solid-Liquid Two-Phase Flow / Examples of Pipe Flow / Compressible Air Flow Example / Water Flow Example / Adiabatic Pipeline Flow Example / Nozzles, Diffusers, and Venturis / General Assumptions / Theoretical Nozzle Performance / General Considerations / Incompressible Nozzle Flow / Compressible Nozzle Flow / Nozzle Discharge Coefficient / Theoretical Diffuser Performance / General Considerations in Diffuser Analysis / Theoretical Aspects of Diffuser Performance / 144 '7.4.3 Diffuser Stall / Diffuser Pressure Recovery Coefficient / General Considerations / 147 * Performance of Diffusers with Free Discharge / Venturi Tubes / Examples / Nozzle Example / Diffuser Example / 160 P 8. Open Channel Flow / General Considerations / Uniform Flow in a Uniform Channel / Pressure and Velocity Distribution/ 165 Q Computation of Uniform Flow / Critical Flow / Varied Flow / Gradually Varied Flow / Hydraulic Jump / 192, 8.4 Channel Structures / Weirs / Spillways / Flumes / Sluice Gates / Transitions / Sediment Transport / Sediment Production and Properties / Initiation of Motion / Rate of Sediment Discharge / Scour Around Piers / Example / Jets, Plumes, Wakes, and Shear Layers / General Assumptions / Submerged Jets / General Considerations / Submerged Laminar Jets (Re<2000) / Submerged Turbulent Jets (Re > 3000) / Wall Jets, Impinging Jets, Jets in Coflow, Jets in Cross Flow, Jets with Swirl / Wall Jets / Jets in Coflow / Round Jets in Cross Flow / Round Jets with Swirl / Plumes and Buoyant Jets / General Considerations / Plume Characteristics / Turbulent Buoyant Jets in a Uniform Reservoir / Turbulent Buoyant Jets in Stratified Reservoir with Cross Flow / Jet Pumps and Confined Jets / Jet Pumps / Confined Jets / Liquid Jets in Gases and Bubble Plumes in Liquids / Liquid Jets in Gases / Bubble Plumes / Far Wakes / General Considerations / Laminar Wakes / Turbulent Wakes / Shear Layers / Examples / Jet Example / Plume Example / Fluid Dynamic Drag / General Considerations / Boundary Layer Drag / General Considerations / 279

4 CONTENTS ix Laminar Similar Solutions / Approximate Methods for f Incompressible Laminar Boundary Layers / Separation and Boundary Layer Control / Laminar-Turbulent Transition / Turbulent Boundary Layer / Approximate Methods for Turbulent Boundary Layers / Drag of Protuberances in Turbulent Boundary Layers / Screens, Grillages, and Tube Bundles / Screens, Grillages, and Perforated Plates / Tube and Rod Arrays / Bluff Structures / General Considerations / Three Coefficients / Principles of Drag Minimization / Application to Road Vehicles / Streamlined Structures / General Considerations Streamlined Struts, Bodies, and Nonlifting Airfoils / Wings, Airfoils, and Lift / Cavitating and Surface-Piercing Structures / Cavitation and Drag / ^ Ventilation and Drag / Resistance of Ships / lpA Method of Computing Ship Resistance / Aspects of Skin Friction Resistance of Ships / Aspects of Wave-Making Resistance / Examples / Terminal Speed of a Falling Object/ Glide Slope of a Wing / Wind and Atmospheric Processes / Introduction / Atmospheric Composition, Statics, and Stability / Atmospheric Characteristics / Atmospheric Stability / Origin of Wind and Storms I, General Considerations / Geostrophic and Local Winds / Surface Winds / General Considerations / Boundary Layer of the Earth / Extreme Winds / Wind Pressure, Wind Forces, and Urban Aerodynamics / General Considerations / Wind Pressure on Structures / Wind Forces on Structures / Wind Breaks and Urban Aerodynamics / Examples / Altimetry / Wind Force on a Lattice Tower / Ocean Waves and Coastal Processes / Introduction / Waves in Deep Water and Constant Depth Shallow Water / General Considerations / Wave Mechanics / Wind Waves and Swell / Other Wave Generation / Waves in Basins and Shoaling Water / Shoaling Water / Reflection and Resonance / Refraction and Diffraction / Wave Forces on Structures / General Considerations / Wave Forces on Pilings and Piers / Wave Forces on Large Cylindrical Structures / Wave Forces on Sea Walls / Rubble Mound Breakwater / Examples / Diffraction and Shoaling at a Beach / Wave Force on a Piling / Porous Media, Fluid Bearings, and Fluid Seals / Introduction / Porous Media / General Considerations / Darcy's Law and Its Solution / Application to Fluidized Beds / Fluid Bearings and Seals / General Considerations / Fluid Bearings / Seals / Example: Flow Between a Rotating and a Stationary Cylinder / Properties of Gases and Liquids / Introduction / Gases / Perfect Gas Law / 510

5 ) x CONTENTS Compressibility of Nonideal Gases / Viscosity / 516 t Data for Air and Other Gases at Low Pressure / Liquids / 524 Appendix A: Navier-Stokes and Boundary Layer Equations / 529 A.I Navier-Stokes Equations in Two-Dimensional Flow / 529 A.2 Navier-Stokes Equations for Axisymmetric Flow in Cylindrical Coordinates / 530 A.3 Boundary Layer Equations / 531 Appendix B: Reynolds Stress and Turbulence Measurements / 536 B.I General Considerations / 536 B.2 Measurements in Turbulent Jets / 537 B.3 Measurements in Turbulent Wakes / 540 B.4 Measurements in Turbulent Plane Shear Layer / 541 B.5 Measurements in Turbulent Boundary Layers / 541 B.6 Measurements in Turbulent Pipe Flow / 543 Appendix C: Potential Flow / 544 C. 1 General Considerations / 544 C.2 Potential Flow Fields / 545 Index / 555

### ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids

CHAPTER 1 Properties of Fluids ENGINEERING FLUID MECHANICS 1.1 Introduction 1.2 Development of Fluid Mechanics 1.3 Units of Measurement (SI units) 1.4 Mass, Density, Specific Weight, Specific Volume, Specific

### Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous

### Engineering Fluid Mechanics

Engineering Fluid Mechanics Eighth Edition Clayton T. Crowe WASHINGTON STATE UNIVERSITY, PULLMAN Donald F. Elger UNIVERSITY OF IDAHO, MOSCOW John A. Roberson WASHINGTON STATE UNIVERSITY, PULLMAN WILEY

### Contents. I Introduction 1. Preface. xiii

Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

### FLUID MECHANICS AND HEAT TRANSFER

AN INTRODUCTION TO FLUID MECHANICS AND HEAT TRANSFER AN INTRODUCTION TO FLUID MECHANICS AND HEAT TRANSFER WITH APPLICATIONS IN CHEMICAL & MECHANICAL PROCESS ENGINEERING BY J. M. KAY AND R. M. NEDDERMAN

### INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.

Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 0 AERONAUTICAL ENGINEERING : Mechanics of Fluids : A00 : II-I- B. Tech Year : 0 0 Course Coordinator

### B.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation: 2016 PG Specialisation : NA Sub. Code / Sub. Name : CH16304 FLUID MECHANICS Unit : I

Department of Chemical Engineering B.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation: 2016 PG Specialisation : NA Sub. Code / Sub. Name : CH16304 FLUID MECHANICS Unit : I LP: CH 16304 Rev. No: 00

### Approximate physical properties of selected fluids All properties are given at pressure kn/m 2 and temperature 15 C.

Appendix FLUID MECHANICS Approximate physical properties of selected fluids All properties are given at pressure 101. kn/m and temperature 15 C. Liquids Density (kg/m ) Dynamic viscosity (N s/m ) Surface

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

### CLASS SCHEDULE 2013 FALL

CLASS SCHEDULE 2013 FALL Class # or Lab # 1 Date Aug 26 2 28 Important Concepts (Section # in Text Reading, Lecture note) Examples/Lab Activities Definition fluid; continuum hypothesis; fluid properties

### Fundamentals of Fluid Mechanics

Sixth Edition Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

### UNIT I FLUID PROPERTIES AND STATICS

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: II-B.Tech & I-Sem Course & Branch:

### R09. d water surface. Prove that the depth of pressure is equal to p +.

Code No:A109210105 R09 SET-1 B.Tech II Year - I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal

### FE Exam Fluids Review October 23, Important Concepts

FE Exam Fluids Review October 3, 013 mportant Concepts Density, specific volume, specific weight, specific gravity (Water 1000 kg/m^3, Air 1. kg/m^3) Meaning & Symbols? Stress, Pressure, Viscosity; Meaning

### 2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False A. True B.

CHAPTER 03 1. Write Newton's second law of motion. YOUR ANSWER: F = ma 2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False 3.Streamwise

### Fluid Mechanics. du dy

FLUID MECHANICS Technical English - I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's

Preface... xiii PART I. ELEMENTS IN FLUID MECHANICS... 1 Chapter 1. Local Equations of Fluid Mechanics... 3 1.1. Forces, stress tensor, and pressure... 4 1.2. Navier Stokes equations in Cartesian coordinates...

### CONVECTION HEAT TRANSFER

CONVECTION HEAT TRANSFER THIRD EDITION Adrian Bejan J. A. Jones Professor of Mechanical Engineering Duke University Durham, North Carolina WILEY JOHN WILEY & SONS, INC. CONTENTS Preface Preface to the

### Part A: 1 pts each, 10 pts total, no partial credit.

Part A: 1 pts each, 10 pts total, no partial credit. 1) (Correct: 1 pt/ Wrong: -3 pts). The sum of static, dynamic, and hydrostatic pressures is constant when flow is steady, irrotational, incompressible,

### FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

### Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Objective: Text: To introduce the basic concepts of fluid mechanics and heat transfer necessary for solution of engineering

### Experiment- To determine the coefficient of impact for vanes. Experiment To determine the coefficient of discharge of an orifice meter.

SUBJECT: FLUID MECHANICS VIVA QUESTIONS (M.E 4 th SEM) Experiment- To determine the coefficient of impact for vanes. Q1. Explain impulse momentum principal. Ans1. Momentum equation is based on Newton s

### Fundamentals of Aerodynamics

Fundamentals of Aerodynamics Fourth Edition John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland Me Graw Hill

### Experiment (4): Flow measurement

Experiment (4): Flow measurement Introduction: The flow measuring apparatus is used to familiarize the students with typical methods of flow measurement of an incompressible fluid and, at the same time

### An-Najah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction

1 An-Najah National University Civil Engineering Department Fluid Mechanics Chapter 1 General Introduction 2 What is Fluid Mechanics? Mechanics deals with the behavior of both stationary and moving bodies

### Fluid Mechanics c) Orificemeter a) Viscous force, Turbulence force, Compressible force a) Turbulence force c) Integration d) The flow is rotational

Fluid Mechanics 1. Which is the cheapest device for measuring flow / discharge rate. a) Venturimeter b) Pitot tube c) Orificemeter d) None of the mentioned 2. Which forces are neglected to obtain Euler

### Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

### Friction Factors and Drag Coefficients

Levicky 1 Friction Factors and Drag Coefficients Several equations that we have seen have included terms to represent dissipation of energy due to the viscous nature of fluid flow. For example, in the

### COURSE CODE : 3072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

COURSE TITLE : FLUID MECHANICS COURSE CODE : 307 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIOD 1 Properties of Fluids 0 Fluid Friction and Flow

### Hydromechanics: Course Summary

Hydromechanics: Course Summary Hydromechanics VVR090 Material Included; French: Chapters to 9 and 4 + Sample problems Vennard & Street: Chapters 8 + 3, and (part of it) Roberson & Crowe: Chapter Collection

### William В. Brower, Jr. A PRIMER IN FLUID MECHANICS. Dynamics of Flows in One Space Dimension. CRC Press Boca Raton London New York Washington, D.C.

William В. Brower, Jr. A PRIMER IN FLUID MECHANICS Dynamics of Flows in One Space Dimension CRC Press Boca Raton London New York Washington, D.C. Table of Contents Chapter 1 Fluid Properties Kinetic Theory

### Tutorial 10. Boundary layer theory

Tutorial 10 Boundary layer theory 1. If the velocity distribution law in a laminar boundary layer over a flat plate is assumes to be of the form, determine the velocity distribution law. At y = 0, u= 0

### Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Aerodynamics Dr. Guven Aerospace Engineer (P.hD) Aerodynamic Forces All aerodynamic forces are generated wither through pressure distribution or a shear stress distribution on a body. The

### NPTEL Quiz Hydraulics

Introduction NPTEL Quiz Hydraulics 1. An ideal fluid is a. One which obeys Newton s law of viscosity b. Frictionless and incompressible c. Very viscous d. Frictionless and compressible 2. The unit of kinematic

### Hydraulics and hydrology

Hydraulics and hydrology - project exercises - Class 4 and 5 Pipe flow Discharge (Q) (called also as the volume flow rate) is the volume of fluid that passes through an area per unit time. The discharge

### Higher Education. Mc Grauu FUNDAMENTALS AND APPLICATIONS SECOND EDITION

FLUID MECHANICS FUNDAMENTALS AND APPLICATIONS SECOND EDITION Mc Grauu Higher Education Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok Bogota Caracas Kuala Lumpur

### 4 Finite Control Volume Analysis Introduction Reynolds Transport Theorem Conservation of Mass

iv 2.3.2 Bourdon Gage................................... 92 2.3.3 Pressure Transducer................................ 93 2.3.4 Manometer..................................... 95 2.3.4.1 Piezometer................................

### Piping Systems and Flow Analysis (Chapter 3)

Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution

### V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0

UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and non-uniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and ir-rotational

### S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]-113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum

### Chapter 3 Bernoulli Equation

1 Bernoulli Equation 3.1 Flow Patterns: Streamlines, Pathlines, Streaklines 1) A streamline, is a line that is everywhere tangent to the velocity vector at a given instant. Examples of streamlines around

### s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I

Fundamentals of Engineering (FE) Exam General Section Steven Burian Civil & Environmental Engineering October 26, 2010 s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum

### Visualization of flow pattern over or around immersed objects in open channel flow.

EXPERIMENT SEVEN: FLOW VISUALIZATION AND ANALYSIS I OBJECTIVE OF THE EXPERIMENT: Visualization of flow pattern over or around immersed objects in open channel flow. II THEORY AND EQUATION: Open channel:

### SCHOOL OF CHEMICAL ENGINEERING FACULTY OF ENGINEERING AND TECHNOLOGY SRM UNIVERSITY COURSE PLAN

SCHOOL OF CHEMICAL ENGINEERING FACULTY OF ENGINEERING AND TECHNOLOGY SRM UNIVERSITY COURSE PLAN Course code : CH0317 Course Title : Momentum Transfer Semester : V Course Time : July Nov 2011 Required Text

### Lecture-4. Flow Past Immersed Bodies

Lecture-4 Flow Past Immersed Bodies Learning objectives After completing this lecture, you should be able to: Identify and discuss the features of external flow Explain the fundamental characteristics

### EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the co-efficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1

### CONVECTION HEAT TRANSFER

CONVECTION HEAT TRANSFER SECOND EDITION Adrian Bejan J. A. Jones Professor of Mechanical Engineering Duke University Durham, North Carolina A WILEY-INTERSCIENCE PUBUCATION JOHN WILEY & SONS, INC. New York

### FUNDAMENTALS OF AERODYNAMICS

*A \ FUNDAMENTALS OF AERODYNAMICS Second Edition John D. Anderson, Jr. Professor of Aerospace Engineering University of Maryland H ' McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas

### ME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B.

Fall 010 Exam 1A. 1B. Fall 010 Exam 1C. Water is flowing through a 180º bend. The inner and outer radii of the bend are 0.75 and 1.5 m, respectively. The velocity profile is approximated as C/r where C

### External Flow and Boundary Layer Concepts

1 2 Lecture (8) on Fayoum University External Flow and Boundary Layer Concepts By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical

### Fundamentals of Aerodynamits

Fundamentals of Aerodynamits Fifth Edition in SI Units John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland

### vector H. If O is the point about which moments are desired, the angular moment about O is given:

The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment

### ESSEX COUNTY COLLEGE Engineering Technologies and Computer Sciences Division MET 215 Fluid Mechanics Course Outline

ESSEX COUNTY COLLEGE Engineering Technologies and Computer Sciences Division MET 215 Fluid Mechanics Course Outline Course Number & Name: MET 215 Fluid Mechanics Credit Hours: 3.0 Contact Hours: 4.5 Lecture:

### FLUID FLOW FOR THE PRACTICING CHEMICAL ENGINEER

FLUID FLOW FOR THE PRACTICING CHEMICAL ENGINEER J. Patrick Abulencia Louis Theodore WILEY A JOHN WILEY & SONS, INC., PUBLICATION PREFACE INTRODUCTION xvii xix I INTRODUCTION TO FLUID FLOW 1 II History

### 2 Navier-Stokes Equations

1 Integral analysis 1. Water enters a pipe bend horizontally with a uniform velocity, u 1 = 5 m/s. The pipe is bended at 90 so that the water leaves it vertically downwards. The input diameter d 1 = 0.1

### SPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30

SPC 307 - Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30 1. The maximum velocity at which an aircraft can cruise occurs when the thrust available with the engines operating with the

### Lecture 3 The energy equation

Lecture 3 The energy equation Dr Tim Gough: t.gough@bradford.ac.uk General information Lab groups now assigned Timetable up to week 6 published Is there anyone not yet on the list? Week 3 Week 4 Week 5

### An Introduction to Engineering Fluid Mechanics

An Introduction to Engineering Fluid Mechanics Other Macmillan titles of related interest Jonas M. K. Dake: Essentials of Engineering Hydrology L. Huisman: Groundwater Recovery L. M. Milne-Thomson: Theoretical

### 1. Introduction, tensors, kinematics

1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and

### The most common methods to identify velocity of flow are pathlines, streaklines and streamlines.

4 FLUID FLOW 4.1 Introduction Many civil engineering problems in fluid mechanics are concerned with fluids in motion. The distribution of potable water, the collection of domestic sewage and storm water,

### Recap: Static Fluids

Recap: Static Fluids Archimedes principal states that the buoyant force acting on an object is equal to the weight of fluid displaced. If the average density of object is greater than density of fluid

### Steven Burian Civil & Environmental Engineering September 25, 2013

Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session

### Hydraulics for Urban Storm Drainage

Urban Hydraulics Hydraulics for Urban Storm Drainage Learning objectives: understanding of basic concepts of fluid flow and how to analyze conduit flows, free surface flows. to analyze, hydrostatic pressure

### Fluid Mechanics. Spring 2009

Instructor: Dr. Yang-Cheng Shih Department of Energy and Refrigerating Air-Conditioning Engineering National Taipei University of Technology Spring 2009 Chapter 1 Introduction 1-1 General Remarks 1-2 Scope

### Day 24: Flow around objects

Day 24: Flow around objects case 1) fluid flowing around a fixed object (e.g. bridge pier) case 2) object travelling within a fluid (cars, ships planes) two forces are exerted between the fluid and the

Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

### CFD in COMSOL Multiphysics

CFD in COMSOL Multiphysics Mats Nigam Copyright 2016 COMSOL. Any of the images, text, and equations here may be copied and modified for your own internal use. All trademarks are the property of their respective

### COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING COURSE: GEC 223 DISCLAIMER The contents of this document are intended for practice and leaning purposes at the

### AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics

AEROSPACE ENGINEERING DEPARTMENT Second Year - Second Term (2008-2009) Fluid Mechanics & Gas Dynamics Similitude,Dimensional Analysis &Modeling (1) [7.2R*] Some common variables in fluid mechanics include:

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### CHAPTER THREE FLUID MECHANICS

CHAPTER THREE FLUID MECHANICS 3.1. Measurement of Pressure Drop for Flow through Different Geometries 3.. Determination of Operating Characteristics of a Centrifugal Pump 3.3. Energy Losses in Pipes under

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### Bluff Body, Viscous Flow Characteristics ( Immersed Bodies)

Bluff Body, Viscous Flow Characteristics ( Immersed Bodies) In general, a body immersed in a flow will experience both externally applied forces and moments as a result of the flow about its external surfaces.

### CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018

CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018 Date Day Subject Read HW Sept. 21 F Introduction 1, 2 24 M Finite control volume analysis

### PREFACE. Julian C. Smith Peter Harriott. xvii

PREFACE This sixth edition of the text on the unit operations of chemical engineering has been extensively revised and updated, with much new material and considerable condensation of some sections. Its

### ME3560 Tentative Schedule Spring 2019

ME3560 Tentative Schedule Spring 2019 Week Number Date Lecture Topics Covered Prior to Lecture Read Section Assignment Prep Problems for Prep Probs. Must be Solved by 1 Monday 1/7/2019 1 Introduction to

### A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives 3 i i 2 1 INTRODUCTION Property:

### CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD

CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS 1 INTRODUCTION Flow often referred as an ideal fluid. We presume that such a fluid has no viscosity. However, this is an idealized situation that does not exist.

### GATE PSU. Chemical Engineering. Fluid Mechanics. For. The Gate Coach 28, Jia Sarai, Near IIT Hauzkhas, New Delhi 16 (+91) ,

For GATE PSU Chemical Engineering Fluid Mechanics GATE Syllabus Fluid statics, Newtonian and non-newtonian fluids, Bernoulli equation, Macroscopic friction factors, energy balance, dimensional analysis,

### Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 17 Laminar and Turbulent flows Welcome back to the video course on fluid mechanics. In

### Fluid Mechanics II. Newton s second law applied to a control volume

Fluid Mechanics II Stead flow momentum equation Newton s second law applied to a control volume Fluids, either in a static or dnamic motion state, impose forces on immersed bodies and confining boundaries.

### COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour. Basic Equations in fluid Dynamics

COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour Basic Equations in fluid Dynamics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Description of Fluid

### ME3560 Tentative Schedule Fall 2018

ME3560 Tentative Schedule Fall 2018 Week Number 1 Wednesday 8/29/2018 1 Date Lecture Topics Covered Introduction to course, syllabus and class policies. Math Review. Differentiation. Prior to Lecture Read

### 2 Internal Fluid Flow

Internal Fluid Flow.1 Definitions Fluid Dynamics The study of fluids in motion. Static Pressure The pressure at a given point exerted by the static head of the fluid present directly above that point.

### Chapter 7 The Energy Equation

Chapter 7 The Energy Equation 7.1 Energy, Work, and Power When matter has energy, the matter can be used to do work. A fluid can have several forms of energy. For example a fluid jet has kinetic energy,

### PHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements.

PHYSICS Course Structure Unit Topics Marks I Physical World and Measurement 1 Physical World 2 Units and Measurements II Kinematics 3 Motion in a Straight Line 23 4 Motion in a Plane III Laws of Motion

### PHYSICAL MECHANISM OF CONVECTION

Tue 8:54:24 AM Slide Nr. 0 of 33 Slides PHYSICAL MECHANISM OF CONVECTION Heat transfer through a fluid is by convection in the presence of bulk fluid motion and by conduction in the absence of it. Chapter

### Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Lecture slides Challenge the future 3-0-0 Introduction to Aerospace Engineering Aerodynamics 5 & 6 Prof. H. Bijl ir. N. Timmer Delft University of Technology 5. Compressibility

### 6.1 According to Handbook of Chemistry and Physics the composition of air is

6. Compressible flow 6.1 According to Handbook of Chemistry and Physics the composition of air is From this, compute the gas constant R for air. 6. The figure shows a, Pitot-static tube used for velocity

### [.B.S.E., M.I.E.T., F.H.E.A. Environment, Heriot-Watt University

Sixth edition JOHN F. DOUGLAS ".Sc, Ph.D., A.C.G.I., D.I.C., C.Eng., M.I.C.E., M.l.Mech.E. Fomieily of London South Bank University JANUSZ M. GASIOREK B.Sc, Ph.D., C.Eng., M.l.Mech.E., M.C.I.B.S.E. Formerly

### Theory and Fundamental of Fluid Mechanics

1 2 Lecture (1) on Fayoum University Theory and Fundamental of Fluid Mechanics By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical

### Viscous Flow in Ducts

Dr. M. Siavashi Iran University of Science and Technology Spring 2014 Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate

### Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

### Performance. 5. More Aerodynamic Considerations

Performance 5. More Aerodynamic Considerations There is an alternative way of looking at aerodynamic flow problems that is useful for understanding certain phenomena. Rather than tracking a particle of

### 10.52 Mechanics of Fluids Spring 2006 Problem Set 3

10.52 Mechanics of Fluids Spring 2006 Problem Set 3 Problem 1 Mass transfer studies involving the transport of a solute from a gas to a liquid often involve the use of a laminar jet of liquid. The situation

### Chapter 1: Basic Concepts

What is a fluid? A fluid is a substance in the gaseous or liquid form Distinction between solid and fluid? Solid: can resist an applied shear by deforming. Stress is proportional to strain Fluid: deforms