The two-modular Fourier transform of binary functions

Size: px
Start display at page:

Download "The two-modular Fourier transform of binary functions"

Transcription

1 of binary functions Yi Hong (Monash University, Melbourne, Australia) (Monash University, Melbourne, Australia) Jean-Claude Belfiore (Telecom ParisTech)

2 The Discrete Fourier Transform N samples of a discrete-time signal (real or complex) form the time-domain vector x = (x[n]) N 1 n=0 The discrete Fourier transform (DFT) of x is the frequency-domain vector X = (X[k]) N 1 k=0 X[k] = N 1 n=0 x[n]e j2πnk N k = 0,...N 1 The inverse discrete Fourier transform (IDFT) of X is x[n] = 1 N N 1 k=0 X[k]e j2πnk N n = 0,...N 1

3 The Discrete Fourier Transform The vector x = (x[n]) N 1 n=0 gives the N samples of a time-domain function f : Z C If f is periodic by N samples then f : Z N C (assumption for DFT to provide the discrete spectrum) The time axis Z N = {0,1,...N 1} is an additive group G = (Z N,+) with addition mod N then f : G C In the frequency domain X = (X[k]) N 1 k=0 represents the transform of f as a periodic function ˆf : G C The frequency axis has the same additive group structure G = (Z N,+)

4 The Discrete Fourier Transform The DFT matrix F = {e j2πnk N } N 1 n,k=0 is a unitary matrix such that X T = Fx T x T = 1 N FH X T The vectors x and X are a two representations of the signal x[n] in different coordinate systems, defined by the time basis and frequency basis. x x[n] X frequency time

5 One-dimensional group representation The Abelian group G = (Z N,+) with addition mod N admits the following one-dimensional representations χ k : G S k C χ k (n) = e j2πnk N where k = 0,...,N 1 and } S k = {1,e j2π k N,e j2π 2k N,,e j2π (N 1)k N The representation χ k is a group homomorphism transforming the addition mod N in G into the multiplication of N-th roots of unity in S k, i.e., for any a,b G χ k (a+b) = χ k (a)χ k (b) since e j2π(a+b)k N = e j2πak N e j2π bk N

6 Example Z 6 k S k ={χ k (g),g G={0,1,2,3,4,5}} Ker(χ k ), G/Ker(χ k ) 0 0 {1} {0,1,2,3,4,5},{0} {1,e j2π 6,e j4π 6,e j6π 6,e j8π 6,e j10π 6 } {0},{0,1,2,3,4,5} {1,e j4π 6,e j8π 6 } {0,3},{0,2,4} {1, 1} {0,2,4},{0,3} {1,e j4π 6,e j8π 6 } {0,3},{0,2,4} {1,e j2π 6,e j4π 6,e j6π 6,e j8π 6,e j10π 6 } {0},{0,1,2,3,4,5} 4 5

7 Example Z 6 (cont.) g G χ 0 (g) ψ 0 χ 1 (g) 1 e j2π 6 e j4π 6 e j6π 6 e j8π 6 e j10π 6 ψ 1 χ 2 (g) 1 e j4π 6 e j8π 6 1 e j4π 6 e j8π 6 ψ 2 χ 3 (g) ψ 3 χ 4 (g) 1 e j4π 6 e j8π 6 1 e j4π 6 e j8π 6 ψ 4 χ 5 (g) 1 e j2π 6 e j4π 6 e j6π 6 e j8π 6 e j10π 6 ψ 5 F = ψ 0. ψ 5

8 DFT using representations as Fourier basis The representations χ k for k = 0,...,N 1 are all inequivalent. Some are one-to-one and some are many-to-one and the images can be associated with subgroups of G We can formally rewrite the DFT as X[k] = x,ψ k = g Gx[g]χ k (g) k = 0,...,N 1 The complex vectors ψ k = [χ k (g)] g G form the discrete Fourier basis vectors Each representation provides a lens through which we observe the time-domain signal x[n].

9 FFT using representations as Fourier basis Given a normal subgroup H G we define the quotient group G/H consisting of the coset leaders u of the cosets u+h The direct product of H and G/H is isomorphic to G i.e., G = {u+v u H,v G/H} H G/H All u H = Ker(χ k ) are mapped to the same value χ k (u) = χ k (0) = 1 S k Then we can compute the DFT more efficiently as X[k] = x[g]χ k (g) = x[u+v]χ k (u+v) g G v G/H u H = ( ) x[u+v] χ k (v) k = 0,...,N 1 v G/H u H

10 Known generalizations of the DFT concept f : G C, where G can be an arbitrary group (not only Abelian): Fourier coefficients are complex matrices These generalizations make use of multi-dimensional representations of the group G with matrices over C The inverse Fourier transform uses 1 G Tr( ) the Trace operator of a matrix to get back to time domain scalar values of f. f : G K, where K is a field of characteristic p and p does not divide G : Fourier coefficients are scalars in K since an exponential function can be defined using a primitive element α K.

11 The missing Fourier Transform for binary functions We consider a finite commutative ring R of characteristic p = 2, e.g., F 2 [X]/φ(X), where φ(x) is a binary-coefficient polynomial of degree m. Elements of R are represented by m-bit vectors (or polynomials of degree at most m 1) and multiplications are computed by polynomial multiplication mod φ(x). Let G = C2 n be the additive group of Fn 2 (n bit vectors) We study binary functions f : G R (n bit to m bit) and their convolutions (group ring R[G]) What does not work? If p = 2 divides G = 2 n = N, the inverse DFT term 1/N is not defined in R and the Trace fails to work in the generalized inverse DFT.

12 The two-modular representations of G Let G = C 2 = {0,1} then a two-modular representation as 2 2 binary matrices over R, is given by the two matrices ( ) ( ) E 0 = π 1 (0) = and E = π 1 (1) = 0 1 The matrix entries are the zero and one element in R. The n-fold direct product of C 2, G = C n 2 = C 2 C 2 can be represented as the Kroneker product of the representations of C 2, i.e., π n (G) π 1 (C 2 ) π 1 (C 2 )

13 The two-modular representations of G = C 2 C 2 Let the binary vectors b = (b 1,...,b n ) represent the elements of G with bitwise addition mod 2 (XOR). Then π n (b) = E b = π 1 (b 1 ) π 1 (b n ) Example G = C 2 C 2 ( ) ( ) E 00 = E 01 = E 10 = ( ) E 11 = ( )

14 The two-modular Fourier basis for G = C 2 C 2 Consider the two-modular representations (2 k 2 k matrices) of the nested subgroups of G = C n 2, H 0 = {0 n } H 1 H k H n 1 H n = G where H 1 = C2, H 2 = C2 C 2, H 3 = C2 C 2 C 2, etc. The Fourier basis vectors are made up of all the inequivalent two-modular representations π k H 0 = Im(π0 ) = {1} H 1 = Im(π1 ) = {E 0,E 1 } H 2 = Im(π2 ) = {E 00,E 01,E 10,E 11 } H 3 = Im(π3 ) = {E 000,E 001,E 010,E 011,E 100,E 101,E 110,E 111 }.

15 Example G = C 3 2 The Fourier basis vectors ψ k = [E τk (g) : g G] are the 2 n -component vectors (indexed by g) of 2 k 2 k matrices from the set Im(π k ) g G π 0 (g) ψ 0 π 1 (g) E 0 E 1 E 0 E 1 E 0 E 1 E 0 E 1 ψ 1 π 2 (g) E 00 E 01 E 11 E 10 E 00 E 01 E 11 E 10 ψ 2 π 3 (g) E 000 E 010 E 001 E 011 E 111 E 101 E 110 E 100 ψ 3

16 The two-modular Fourier Transform of f : G R We abstractly define the k-th Fourier coefficients as the 2 k 2 k matrix with elements in R ˆf k = f,ψ k g Gf(g)E τk (g) for k = 0,...,n (1) where E τk (g) ψ k selected by g according to a (surjective) group homomorphism τ k : G C2 k (n-bit to k-bits).

17 The two-modular Fast Fourier Transform We can represent the elements of H k = C k 2 as n-bit vectors with the first n k bits set to zero i.e., H k = {(0,...,0,b n k+1,...,b n ) b i {0,1}} = C k 2 k = 1,...,n The quotient groups G/H k are represented as n-bit vectors with the last k bits set to zero i.e., { {(b1,...,b G/H k = n k,0,...,0) b i {0,1}} k = 1,...,n 1 {0 n } k = n. Consider the binary subgroup d k = {0,d k } of H k where Then d k = (0,...,0,b n k+1 = 1,0...,0) }{{} G H k / d k }{{} 2 n d k }{{} 2 k 1 2 G/H k }{{} 2 n k

18 The two-modular Fast Fourier Transform The k-th Fourier coefficients ˆf k can be explicitly computed by collecting the terms with the same E τk (g), i.e., ˆf k = f(u+v) v G n/h k + f(u+d k +v) v G n/h k u H k / d k E σk (u) E σk (u) k = 0,...,n where σ k (u) is a map converting the n bit vector u H k / d k to a k bit vector in C2 k, i.e., it removes the first n k zero bits of the n bit vector u. The corresponding σ k (u) is the binary complement of the bits of σ k (u).

19 The two-modular Inverse Fourier Transform Let π k (g) = E τk (g) be the 2 k 2 k representation of an element g C2 k then we define the character of g as Φ k (E τk (g)) (E τk (g)) (1,2 k ) {0,1} i.e., Φ extracts the top-right corner element of the matrix E g. The representation of the all ones vector 1 = (1,1,...,1) yields Φ(E 1 ) = 1, while any other binary vector representation is mapped to zero. Since Φ k is an homomorphism, we have { 1 iff a b = 1 (or a = b) Φ k (E a E b ) = Φ k (E a b ) = 0 otherwise

20 The two-modular Inverse Fourier Transform The inverse Fourier transform is given by f j = f c = ˆf n ) 0 + Φ k (ˆfk E τk (c) k=1 j = 0,...,2 n 1 (2) where c = (c n,...,c k,...,c 1 ) and j = D(c) is the decimal representation of c.

21 The convolution theorem can be used to transform convolution in the time-domain defined as (f 1 f 2 )(a) b G f 1 (ab 1 )f 2 (b) = b Gf 1 (a b)f 2 (b) into the product in the frequency domain i.e., (f 1 f 2 )(ρ) = ˆf 1 (ρ)ˆf 2 (ρ) This is where the multiplicative structure of R plays a role.

22 Conclusions A new look at the Discrete Fourier Transform Potential applications of the two-modular Fourier transform reliable computation of binary functions classification of binary functions (polynomial vs. transcendental over R) cryptography complexity of binary functions

23 Thank you!

The Two-Modular Fourier Transform of Binary Functions

The Two-Modular Fourier Transform of Binary Functions 1 The Two-Modular Fourier Transform of Binary Functions Yi Hong, Senior Member, IEEE, Emanuele Viterbo, Fellow, IEEE, and Jean-Claude Belfiore, Member, IEEE Abstract In this paper, we provide a solution

More information

A Little Beyond: Linear Algebra

A Little Beyond: Linear Algebra A Little Beyond: Linear Algebra Akshay Tiwary March 6, 2016 Any suggestions, questions and remarks are welcome! 1 A little extra Linear Algebra 1. Show that any set of non-zero polynomials in [x], no two

More information

Artin s and Brauer s Theorems on Induced. Characters

Artin s and Brauer s Theorems on Induced. Characters Artin s and Brauer s Theorems on Induced Characters János Kramár December 14, 2005 1 Preliminaries Let G be a finite group. Every representation of G defines a unique left C[G]- module where C[G] is the

More information

Many of the groups with which we are familiar are arithmetical in nature, and they tend to share key structures that combine more than one operation.

Many of the groups with which we are familiar are arithmetical in nature, and they tend to share key structures that combine more than one operation. 12. Rings 1 Rings Many of the groups with which we are familiar are arithmetical in nature, and they tend to share key structures that combine more than one operation. Example: Z, Q, R, and C are an Abelian

More information

Some practice problems for midterm 2

Some practice problems for midterm 2 Some practice problems for midterm 2 Kiumars Kaveh November 14, 2011 Problem: Let Z = {a G ax = xa, x G} be the center of a group G. Prove that Z is a normal subgroup of G. Solution: First we prove Z is

More information

REPRESENTATION THEORY. WEEK 4

REPRESENTATION THEORY. WEEK 4 REPRESENTATION THEORY. WEEK 4 VERA SERANOVA 1. uced modules Let B A be rings and M be a B-module. Then one can construct induced module A B M = A B M as the quotient of a free abelian group with generators

More information

Algebraic Structures Exam File Fall 2013 Exam #1

Algebraic Structures Exam File Fall 2013 Exam #1 Algebraic Structures Exam File Fall 2013 Exam #1 1.) Find all four solutions to the equation x 4 + 16 = 0. Give your answers as complex numbers in standard form, a + bi. 2.) Do the following. a.) Write

More information

Finite Fields. Mike Reiter

Finite Fields. Mike Reiter 1 Finite Fields Mike Reiter reiter@cs.unc.edu Based on Chapter 4 of: W. Stallings. Cryptography and Network Security, Principles and Practices. 3 rd Edition, 2003. Groups 2 A group G, is a set G of elements

More information

Ph 219b/CS 219b. Exercises Due: Wednesday 22 February 2006

Ph 219b/CS 219b. Exercises Due: Wednesday 22 February 2006 1 Ph 219b/CS 219b Exercises Due: Wednesday 22 February 2006 6.1 Estimating the trace of a unitary matrix Recall that using an oracle that applies the conditional unitary Λ(U), Λ(U): 0 ψ 0 ψ, 1 ψ 1 U ψ

More information

MATH 3030, Abstract Algebra Winter 2012 Toby Kenney Sample Midterm Examination Model Solutions

MATH 3030, Abstract Algebra Winter 2012 Toby Kenney Sample Midterm Examination Model Solutions MATH 3030, Abstract Algebra Winter 2012 Toby Kenney Sample Midterm Examination Model Solutions Basic Questions 1. Give an example of a prime ideal which is not maximal. In the ring Z Z, the ideal {(0,

More information

Group-theoretic approach to Fast Matrix Multiplication

Group-theoretic approach to Fast Matrix Multiplication Jenya Kirshtein 1 Group-theoretic approach to Fast Matrix Multiplication Jenya Kirshtein Department of Mathematics University of Denver Jenya Kirshtein 2 References 1. H. Cohn, C. Umans. Group-theoretic

More information

Mathematics for Cryptography

Mathematics for Cryptography Mathematics for Cryptography Douglas R. Stinson David R. Cheriton School of Computer Science University of Waterloo Waterloo, Ontario, N2L 3G1, Canada March 15, 2016 1 Groups and Modular Arithmetic 1.1

More information

BASIC GROUP THEORY : G G G,

BASIC GROUP THEORY : G G G, BASIC GROUP THEORY 18.904 1. Definitions Definition 1.1. A group (G, ) is a set G with a binary operation : G G G, and a unit e G, possessing the following properties. (1) Unital: for g G, we have g e

More information

Teddy Einstein Math 4320

Teddy Einstein Math 4320 Teddy Einstein Math 4320 HW4 Solutions Problem 1: 2.92 An automorphism of a group G is an isomorphism G G. i. Prove that Aut G is a group under composition. Proof. Let f, g Aut G. Then f g is a bijective

More information

EXERCISES IN MODULAR FORMS I (MATH 726) (2) Prove that a lattice L is integral if and only if its Gram matrix has integer coefficients.

EXERCISES IN MODULAR FORMS I (MATH 726) (2) Prove that a lattice L is integral if and only if its Gram matrix has integer coefficients. EXERCISES IN MODULAR FORMS I (MATH 726) EYAL GOREN, MCGILL UNIVERSITY, FALL 2007 (1) We define a (full) lattice L in R n to be a discrete subgroup of R n that contains a basis for R n. Prove that L is

More information

7. Let K = 15 be the subgroup of G = Z generated by 15. (a) List the elements of K = 15. Answer: K = 15 = {15k k Z} (b) Prove that K is normal subgroup of G. Proof: (Z +) is Abelian group and any subgroup

More information

DISCRETE FOURIER TRANSFORM

DISCRETE FOURIER TRANSFORM DISCRETE FOURIER TRANSFORM 1. Introduction The sampled discrete-time fourier transform (DTFT) of a finite length, discrete-time signal is known as the discrete Fourier transform (DFT). The DFT contains

More information

Mathematical Foundations of Cryptography

Mathematical Foundations of Cryptography Mathematical Foundations of Cryptography Cryptography is based on mathematics In this chapter we study finite fields, the basis of the Advanced Encryption Standard (AES) and elliptical curve cryptography

More information

Math 429/581 (Advanced) Group Theory. Summary of Definitions, Examples, and Theorems by Stefan Gille

Math 429/581 (Advanced) Group Theory. Summary of Definitions, Examples, and Theorems by Stefan Gille Math 429/581 (Advanced) Group Theory Summary of Definitions, Examples, and Theorems by Stefan Gille 1 2 0. Group Operations 0.1. Definition. Let G be a group and X a set. A (left) operation of G on X is

More information

The MacWilliams Identities

The MacWilliams Identities The MacWilliams Identities Jay A. Wood Western Michigan University Colloquium March 1, 2012 The Coding Problem How to ensure the integrity of a message transmitted over a noisy channel? Cleverly add redundancy.

More information

Supplementary Notes: Simple Groups and Composition Series

Supplementary Notes: Simple Groups and Composition Series 18.704 Supplementary Notes: Simple Groups and Composition Series Genevieve Hanlon and Rachel Lee February 23-25, 2005 Simple Groups Definition: A simple group is a group with no proper normal subgroup.

More information

Factorial Designs and Harmonic Analysis on Finite Abelian Groups

Factorial Designs and Harmonic Analysis on Finite Abelian Groups Factorial Designs and Harmonic Analysis on Finite Abelian Groups P.M. van de Ven EURANDOM P.O. Box 513, 5600 MB, Eindhoven The Netherlands email: vandeven@eurandom.tue.nl A. Di Bucchianico EURANDOM and

More information

Abstract Algebra FINAL EXAM May 23, Name: R. Hammack Score:

Abstract Algebra FINAL EXAM May 23, Name: R. Hammack Score: Abstract Algebra FINAL EXAM May 23, 2003 Name: R. Hammack Score: Directions: Please answer the questions in the space provided. To get full credit you must show all of your work. Use of calculators and

More information

Fields and Galois Theory. Below are some results dealing with fields, up to and including the fundamental theorem of Galois theory.

Fields and Galois Theory. Below are some results dealing with fields, up to and including the fundamental theorem of Galois theory. Fields and Galois Theory Below are some results dealing with fields, up to and including the fundamental theorem of Galois theory. This should be a reasonably logical ordering, so that a result here should

More information

Finite Fields. SOLUTIONS Network Coding - Prof. Frank H.P. Fitzek

Finite Fields. SOLUTIONS Network Coding - Prof. Frank H.P. Fitzek Finite Fields In practice most finite field applications e.g. cryptography and error correcting codes utilizes a specific type of finite fields, namely the binary extension fields. The following exercises

More information

ALGEBRA PH.D. QUALIFYING EXAM September 27, 2008

ALGEBRA PH.D. QUALIFYING EXAM September 27, 2008 ALGEBRA PH.D. QUALIFYING EXAM September 27, 2008 A passing paper consists of four problems solved completely plus significant progress on two other problems; moreover, the set of problems solved completely

More information

D-MATH Algebra I HS 2013 Prof. Brent Doran. Solution 3. Modular arithmetic, quotients, product groups

D-MATH Algebra I HS 2013 Prof. Brent Doran. Solution 3. Modular arithmetic, quotients, product groups D-MATH Algebra I HS 2013 Prof. Brent Doran Solution 3 Modular arithmetic, quotients, product groups 1. Show that the functions f = 1/x, g = (x 1)/x generate a group of functions, the law of composition

More information

Fundamentals of the DFT (fft) Algorithms

Fundamentals of the DFT (fft) Algorithms Fundamentals of the DFT (fft) Algorithms D. Sundararajan November 6, 9 Contents 1 The PM DIF DFT Algorithm 1.1 Half-wave symmetry of periodic waveforms.............. 1. The DFT definition and the half-wave

More information

Supplement. Dr. Bob s Modern Algebra Glossary Based on Fraleigh s A First Course on Abstract Algebra, 7th Edition, Sections 0 through IV.

Supplement. Dr. Bob s Modern Algebra Glossary Based on Fraleigh s A First Course on Abstract Algebra, 7th Edition, Sections 0 through IV. Glossary 1 Supplement. Dr. Bob s Modern Algebra Glossary Based on Fraleigh s A First Course on Abstract Algebra, 7th Edition, Sections 0 through IV.23 Abelian Group. A group G, (or just G for short) is

More information

Congruences and Residue Class Rings

Congruences and Residue Class Rings Congruences and Residue Class Rings (Chapter 2 of J. A. Buchmann, Introduction to Cryptography, 2nd Ed., 2004) Shoichi Hirose Faculty of Engineering, University of Fukui S. Hirose (U. Fukui) Congruences

More information

book 2005/1/23 20:41 page 132 #146

book 2005/1/23 20:41 page 132 #146 book 2005/1/23 20:41 page 132 #146 132 2. BASIC THEORY OF GROUPS Definition 2.6.16. Let a and b be elements of a group G. We say that b is conjugate to a if there is a g G such that b = gag 1. You are

More information

Solutions to Assignment 4

Solutions to Assignment 4 1. Let G be a finite, abelian group written additively. Let x = g G g, and let G 2 be the subgroup of G defined by G 2 = {g G 2g = 0}. (a) Show that x = g G 2 g. (b) Show that x = 0 if G 2 = 2. If G 2

More information

CATEGORY THEORY. Cats have been around for 70 years. Eilenberg + Mac Lane =. Cats are about building bridges between different parts of maths.

CATEGORY THEORY. Cats have been around for 70 years. Eilenberg + Mac Lane =. Cats are about building bridges between different parts of maths. CATEGORY THEORY PROFESSOR PETER JOHNSTONE Cats have been around for 70 years. Eilenberg + Mac Lane =. Cats are about building bridges between different parts of maths. Definition 1.1. A category C consists

More information

Graduate Preliminary Examination

Graduate Preliminary Examination Graduate Preliminary Examination Algebra II 18.2.2005: 3 hours Problem 1. Prove or give a counter-example to the following statement: If M/L and L/K are algebraic extensions of fields, then M/K is algebraic.

More information

CS 6815: Lecture 4. September 4, 2018

CS 6815: Lecture 4. September 4, 2018 XS = X s... X st CS 685: Lecture 4 Instructor: Eshan Chattopadhyay Scribe: Makis Arsenis and Ayush Sekhari September 4, 208 In this lecture, we will first see an algorithm to construct ɛ-biased spaces.

More information

MATH 433 Applied Algebra Lecture 22: Review for Exam 2.

MATH 433 Applied Algebra Lecture 22: Review for Exam 2. MATH 433 Applied Algebra Lecture 22: Review for Exam 2. Topics for Exam 2 Permutations Cycles, transpositions Cycle decomposition of a permutation Order of a permutation Sign of a permutation Symmetric

More information

Algebra Exam, Spring 2017

Algebra Exam, Spring 2017 Algebra Exam, Spring 2017 There are 5 problems, some with several parts. Easier parts count for less than harder ones, but each part counts. Each part may be assumed in later parts and problems. Unjustified

More information

Math Introduction to Modern Algebra

Math Introduction to Modern Algebra Math 343 - Introduction to Modern Algebra Notes Field Theory Basics Let R be a ring. M is called a maximal ideal of R if M is a proper ideal of R and there is no proper ideal of R that properly contains

More information

Quantum Computing Lecture Notes, Extra Chapter. Hidden Subgroup Problem

Quantum Computing Lecture Notes, Extra Chapter. Hidden Subgroup Problem Quantum Computing Lecture Notes, Extra Chapter Hidden Subgroup Problem Ronald de Wolf 1 Hidden Subgroup Problem 1.1 Group theory reminder A group G consists of a set of elements (which is usually denoted

More information

Chapter 3. Rings. The basic commutative rings in mathematics are the integers Z, the. Examples

Chapter 3. Rings. The basic commutative rings in mathematics are the integers Z, the. Examples Chapter 3 Rings Rings are additive abelian groups with a second operation called multiplication. The connection between the two operations is provided by the distributive law. Assuming the results of Chapter

More information

Factorization in Polynomial Rings

Factorization in Polynomial Rings Factorization in Polynomial Rings Throughout these notes, F denotes a field. 1 Long division with remainder We begin with some basic definitions. Definition 1.1. Let f, g F [x]. We say that f divides g,

More information

A PROOF OF BURNSIDE S p a q b THEOREM

A PROOF OF BURNSIDE S p a q b THEOREM A PROOF OF BURNSIDE S p a q b THEOREM OBOB Abstract. We prove that if p and q are prime, then any group of order p a q b is solvable. Throughout this note, denote by A the set of algebraic numbers. We

More information

MATH 4107 (Prof. Heil) PRACTICE PROBLEMS WITH SOLUTIONS Spring 2018

MATH 4107 (Prof. Heil) PRACTICE PROBLEMS WITH SOLUTIONS Spring 2018 MATH 4107 (Prof. Heil) PRACTICE PROBLEMS WITH SOLUTIONS Spring 2018 Here are a few practice problems on groups. You should first work through these WITHOUT LOOKING at the solutions! After you write your

More information

Two subgroups and semi-direct products

Two subgroups and semi-direct products Two subgroups and semi-direct products 1 First remarks Throughout, we shall keep the following notation: G is a group, written multiplicatively, and H and K are two subgroups of G. We define the subset

More information

COMPUTER ARITHMETIC. 13/05/2010 cryptography - math background pp. 1 / 162

COMPUTER ARITHMETIC. 13/05/2010 cryptography - math background pp. 1 / 162 COMPUTER ARITHMETIC 13/05/2010 cryptography - math background pp. 1 / 162 RECALL OF COMPUTER ARITHMETIC computers implement some types of arithmetic for instance, addition, subtratction, multiplication

More information

Presentation of Normal Bases

Presentation of Normal Bases Presentation of Normal Bases Mohamadou Sall mohamadou1.sall@ucad.edu.sn University Cheikh Anta Diop, Dakar (Senegal) Pole of Research in Mathematics and their Applications in Information Security (PRMAIS)

More information

Lecture 7 Cyclic groups and subgroups

Lecture 7 Cyclic groups and subgroups Lecture 7 Cyclic groups and subgroups Review Types of groups we know Numbers: Z, Q, R, C, Q, R, C Matrices: (M n (F ), +), GL n (F ), where F = Q, R, or C. Modular groups: Z/nZ and (Z/nZ) Dihedral groups:

More information

2) e = e G G such that if a G 0 =0 G G such that if a G e a = a e = a. 0 +a = a+0 = a.

2) e = e G G such that if a G 0 =0 G G such that if a G e a = a e = a. 0 +a = a+0 = a. Chapter 2 Groups Groups are the central objects of algebra. In later chapters we will define rings and modules and see that they are special cases of groups. Also ring homomorphisms and module homomorphisms

More information

Ph.D. Qualifying Examination in Algebra Department of Mathematics University of Louisville January 2018

Ph.D. Qualifying Examination in Algebra Department of Mathematics University of Louisville January 2018 Ph.D. Qualifying Examination in Algebra Department of Mathematics University of Louisville January 2018 Do 6 problems with at least 2 in each section. Group theory problems: (1) Suppose G is a group. The

More information

and this makes M into an R-module by (1.2). 2

and this makes M into an R-module by (1.2). 2 1. Modules Definition 1.1. Let R be a commutative ring. A module over R is set M together with a binary operation, denoted +, which makes M into an abelian group, with 0 as the identity element, together

More information

1 Fields and vector spaces

1 Fields and vector spaces 1 Fields and vector spaces In this section we revise some algebraic preliminaries and establish notation. 1.1 Division rings and fields A division ring, or skew field, is a structure F with two binary

More information

REPRESENTATION THEORY WEEK 7

REPRESENTATION THEORY WEEK 7 REPRESENTATION THEORY WEEK 7 1. Characters of L k and S n A character of an irreducible representation of L k is a polynomial function constant on every conjugacy class. Since the set of diagonalizable

More information

The Hunt for a Quantum Algorithm for Graph Isomorphism

The Hunt for a Quantum Algorithm for Graph Isomorphism The Hunt for a Quantum Algorithm for Graph Isomorphism Cristopher Moore, University of New Mexico Alexander Russell, University of Connecticut Leonard J. Schulman, Caltech The Hidden Subgroup Problem Given

More information

Foundations of Cryptography

Foundations of Cryptography Foundations of Cryptography Ville Junnila viljun@utu.fi Department of Mathematics and Statistics University of Turku 2015 Ville Junnila viljun@utu.fi Lecture 7 1 of 18 Cosets Definition 2.12 Let G be a

More information

1 2 3 style total. Circle the correct answer; no explanation is required. Each problem in this section counts 5 points.

1 2 3 style total. Circle the correct answer; no explanation is required. Each problem in this section counts 5 points. 1 2 3 style total Math 415 Examination 3 Please print your name: Answer Key 1 True/false Circle the correct answer; no explanation is required. Each problem in this section counts 5 points. 1. The rings

More information

Finite Frobenius Rings and the MacWilliams Identities

Finite Frobenius Rings and the MacWilliams Identities Finite Frobenius Rings and the MacWilliams Identities Jay A. Wood Department of Mathematics Western Michigan University http://homepages.wmich.edu/ jwood/ Algebra and Communications Seminar University

More information

Boston College, Department of Mathematics, Chestnut Hill, MA , May 25, 2004

Boston College, Department of Mathematics, Chestnut Hill, MA , May 25, 2004 NON-VANISHING OF ALTERNANTS by Avner Ash Boston College, Department of Mathematics, Chestnut Hill, MA 02467-3806, ashav@bcedu May 25, 2004 Abstract Let p be prime, K a field of characteristic 0 Let (x

More information

Monoids. Definition: A binary operation on a set M is a function : M M M. Examples:

Monoids. Definition: A binary operation on a set M is a function : M M M. Examples: Monoids Definition: A binary operation on a set M is a function : M M M. If : M M M, we say that is well defined on M or equivalently, that M is closed under the operation. Examples: Definition: A monoid

More information

Problem 4 (Wed Jan 29) Let G be a finite abelian group. Prove that the following are equivalent

Problem 4 (Wed Jan 29) Let G be a finite abelian group. Prove that the following are equivalent Last revised: May 16, 2014 A.Miller M542 www.math.wisc.edu/ miller/ Problem 1 (Fri Jan 24) (a) Find an integer x such that x = 6 mod 10 and x = 15 mod 21 and 0 x 210. (b) Find the smallest positive integer

More information

Name: Solutions Final Exam

Name: Solutions Final Exam Instructions. Answer each of the questions on your own paper. Be sure to show your work so that partial credit can be adequately assessed. Put your name on each page of your paper. 1. [10 Points] All of

More information

ENTRY GROUP THEORY. [ENTRY GROUP THEORY] Authors: started Mark Lezama: October 2003 Literature: Algebra by Michael Artin, Mathworld.

ENTRY GROUP THEORY. [ENTRY GROUP THEORY] Authors: started Mark Lezama: October 2003 Literature: Algebra by Michael Artin, Mathworld. ENTRY GROUP THEORY [ENTRY GROUP THEORY] Authors: started Mark Lezama: October 2003 Literature: Algebra by Michael Artin, Mathworld Group theory [Group theory] is studies algebraic objects called groups.

More information

Quadratic reciprocity (after Weil) 1. Standard set-up and Poisson summation

Quadratic reciprocity (after Weil) 1. Standard set-up and Poisson summation (December 19, 010 Quadratic reciprocity (after Weil Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ I show that over global fields k (characteristic not the quadratic norm residue symbol

More information

MATH RING ISOMORPHISM THEOREMS

MATH RING ISOMORPHISM THEOREMS MATH 371 - RING ISOMORPHISM THEOREMS DR. ZACHARY SCHERR 1. Theory In this note we prove all four isomorphism theorems for rings, and provide several examples on how they get used to describe quotient rings.

More information

Lecture 3 Small bias with respect to linear tests

Lecture 3 Small bias with respect to linear tests 03683170: Expanders, Pseudorandomness and Derandomization 3/04/16 Lecture 3 Small bias with respect to linear tests Amnon Ta-Shma and Dean Doron 1 The Fourier expansion 1.1 Over general domains Let G be

More information

Your Name MATH 435, EXAM #1

Your Name MATH 435, EXAM #1 MATH 435, EXAM #1 Your Name You have 50 minutes to do this exam. No calculators! No notes! For proofs/justifications, please use complete sentences and make sure to explain any steps which are questionable.

More information

MAT 445/ INTRODUCTION TO REPRESENTATION THEORY

MAT 445/ INTRODUCTION TO REPRESENTATION THEORY MAT 445/1196 - INTRODUCTION TO REPRESENTATION THEORY CHAPTER 1 Representation Theory of Groups - Algebraic Foundations 1.1 Basic definitions, Schur s Lemma 1.2 Tensor products 1.3 Unitary representations

More information

INTRODUCTION TO REPRESENTATION THEORY AND CHARACTERS

INTRODUCTION TO REPRESENTATION THEORY AND CHARACTERS INTRODUCTION TO REPRESENTATION THEORY AND CHARACTERS HANMING ZHANG Abstract. In this paper, we will first build up a background for representation theory. We will then discuss some interesting topics in

More information

Representations. 1 Basic definitions

Representations. 1 Basic definitions Representations 1 Basic definitions If V is a k-vector space, we denote by Aut V the group of k-linear isomorphisms F : V V and by End V the k-vector space of k-linear maps F : V V. Thus, if V = k n, then

More information

Ph 219b/CS 219b. Exercises Due: Wednesday 11 February 2009

Ph 219b/CS 219b. Exercises Due: Wednesday 11 February 2009 1 Ph 219b/CS 219b Exercises Due: Wednesday 11 February 2009 5.1 The peak in the Fourier transform In the period finding algorithm we prepared the periodic state A 1 1 x 0 + jr, (1) A j=0 where A is the

More information

Total 100

Total 100 Math 542 Midterm Exam, Spring 2016 Prof: Paul Terwilliger Your Name (please print) SOLUTIONS NO CALCULATORS/ELECTRONIC DEVICES ALLOWED. MAKE SURE YOUR CELL PHONE IS OFF. Problem Value 1 10 2 10 3 10 4

More information

MATH 403 MIDTERM ANSWERS WINTER 2007

MATH 403 MIDTERM ANSWERS WINTER 2007 MAH 403 MIDERM ANSWERS WINER 2007 COMMON ERRORS (1) A subset S of a ring R is a subring provided that x±y and xy belong to S whenever x and y do. A lot of people only said that x + y and xy must belong

More information

Abstract Algebra II Groups ( )

Abstract Algebra II Groups ( ) Abstract Algebra II Groups ( ) Melchior Grützmann / melchiorgfreehostingcom/algebra October 15, 2012 Outline Group homomorphisms Free groups, free products, and presentations Free products ( ) Definition

More information

Chapter 4 Finite Fields

Chapter 4 Finite Fields Chapter 4 Finite Fields Introduction will now introduce finite fields of increasing importance in cryptography AES, Elliptic Curve, IDEA, Public Key concern operations on numbers what constitutes a number

More information

Additional notes on group representations Hjalmar Rosengren, 30 September 2015

Additional notes on group representations Hjalmar Rosengren, 30 September 2015 Additional notes on group representations Hjalmar Rosengren, 30 September 2015 Throughout, group means finite group and representation means finitedimensional representation over C. Interpreting the character

More information

MAT534 Fall 2013 Practice Midterm I The actual midterm will consist of five problems.

MAT534 Fall 2013 Practice Midterm I The actual midterm will consist of five problems. MAT534 Fall 2013 Practice Midterm I The actual midterm will consist of five problems. Problem 1 Find all homomorphisms a) Z 6 Z 6 ; b) Z 6 Z 18 ; c) Z 18 Z 6 ; d) Z 12 Z 15 ; e) Z 6 Z 25 Proof. a)ψ(1)

More information

Section 3 Isomorphic Binary Structures

Section 3 Isomorphic Binary Structures Section 3 Isomorphic Binary Structures Instructor: Yifan Yang Fall 2006 Outline Isomorphic binary structure An illustrative example Definition Examples Structural properties Definition and examples Identity

More information

Graph isomorphism, the hidden subgroup problem and identifying quantum states

Graph isomorphism, the hidden subgroup problem and identifying quantum states 1 Graph isomorphism, the hidden subgroup problem and identifying quantum states Pranab Sen NEC Laboratories America, Princeton, NJ, U.S.A. Joint work with Sean Hallgren and Martin Rötteler. Quant-ph 0511148:

More information

REPRESENTATION THEORY NOTES FOR MATH 4108 SPRING 2012

REPRESENTATION THEORY NOTES FOR MATH 4108 SPRING 2012 REPRESENTATION THEORY NOTES FOR MATH 4108 SPRING 2012 JOSEPHINE YU This note will cover introductory material on representation theory, mostly of finite groups. The main references are the books of Serre

More information

NOTES ON FINITE FIELDS

NOTES ON FINITE FIELDS NOTES ON FINITE FIELDS AARON LANDESMAN CONTENTS 1. Introduction to finite fields 2 2. Definition and constructions of fields 3 2.1. The definition of a field 3 2.2. Constructing field extensions by adjoining

More information

THE HIDDEN SUBGROUP PROBLEM - REVIEW AND OPEN PROBLEMS

THE HIDDEN SUBGROUP PROBLEM - REVIEW AND OPEN PROBLEMS THE HIDDEN SUBGROUP PROBLE - REVIEW AND OPEN PROBLES CHRIS LOONT, CYBERNET Abstract. An overview of quantum computing and in particular the Hidden Subgroup Problem are presented from a mathematical viewpoint.

More information

B Sc MATHEMATICS ABSTRACT ALGEBRA

B Sc MATHEMATICS ABSTRACT ALGEBRA UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc MATHEMATICS (0 Admission Onwards) V Semester Core Course ABSTRACT ALGEBRA QUESTION BANK () Which of the following defines a binary operation on Z

More information

Math 345 Sp 07 Day 7. b. Prove that the image of a homomorphism is a subring.

Math 345 Sp 07 Day 7. b. Prove that the image of a homomorphism is a subring. Math 345 Sp 07 Day 7 1. Last time we proved: a. Prove that the kernel of a homomorphism is a subring. b. Prove that the image of a homomorphism is a subring. c. Let R and S be rings. Suppose R and S are

More information

Algebraic Invariants of Phylogenetic Trees

Algebraic Invariants of Phylogenetic Trees Harvey Mudd College November 21st, 2006 The Problem DNA Sequence Data Given a set of aligned DNA sequences... Human: A G A C G T T A C G T A... Chimp: A G A G C A A C T T T G... Monkey: A A A C G A T A

More information

Frequency-domain representation of discrete-time signals

Frequency-domain representation of discrete-time signals 4 Frequency-domain representation of discrete-time signals So far we have been looing at signals as a function of time or an index in time. Just lie continuous-time signals, we can view a time signal as

More information

CSIR - Algebra Problems

CSIR - Algebra Problems CSIR - Algebra Problems N. Annamalai DST - INSPIRE Fellow (SRF) Department of Mathematics Bharathidasan University Tiruchirappalli -620024 E-mail: algebra.annamalai@gmail.com Website: https://annamalaimaths.wordpress.com

More information

Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum

Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum CEN352, DR. Nassim Ammour, King Saud University 1 Fourier Transform History Born 21 March 1768 ( Auxerre ). Died 16 May 1830 ( Paris ) French

More information

IRREDUCIBLE REPRESENTATIONS OF GL(2,F q ) A main tool that will be used is Mackey's Theorem. The specic intertwiner is given by (f) = f(x) = 1

IRREDUCIBLE REPRESENTATIONS OF GL(2,F q ) A main tool that will be used is Mackey's Theorem. The specic intertwiner is given by (f) = f(x) = 1 IRREDUCIBLE REPRESENTATIONS OF GL(2,F q ) NAVA CHITRIK Referenced heavily from Daniel Bump (99), Automorphic Representations, Section 4. In these notes I will give a complete description of the irreducible

More information

Intertwining integrals on completely solvable Lie groups

Intertwining integrals on completely solvable Lie groups s on s on completely solvable Lie June 16, 2011 In this talk I shall explain a topic which interests me in my collaboration with Ali Baklouti and Jean Ludwig. s on In this talk I shall explain a topic

More information

Background Material in Algebra and Number Theory. Groups

Background Material in Algebra and Number Theory. Groups PRELIMINARY READING FOR ALGEBRAIC NUMBER THEORY. HT 2016/17. Section 0. Background Material in Algebra and Number Theory The following gives a summary of the main ideas you need to know as prerequisites

More information

Groups. Chapter 1. If ab = ba for all a, b G we call the group commutative.

Groups. Chapter 1. If ab = ba for all a, b G we call the group commutative. Chapter 1 Groups A group G is a set of objects { a, b, c, } (not necessarily countable) together with a binary operation which associates with any ordered pair of elements a, b in G a third element ab

More information

REPRESENTATION THEORY OF S n

REPRESENTATION THEORY OF S n REPRESENTATION THEORY OF S n EVAN JENKINS Abstract. These are notes from three lectures given in MATH 26700, Introduction to Representation Theory of Finite Groups, at the University of Chicago in November

More information

Exponential and Weierstrass equations

Exponential and Weierstrass equations Exponential and Weierstrass equations Jonathan Kirby 8th April 2005 1 Complex functions Exponentiation is a group homomorphism C exp C. For each elliptic curve E there is a -function which gives a group

More information

MATH 3030, Abstract Algebra FALL 2012 Toby Kenney Midyear Examination Friday 7th December: 7:00-10:00 PM

MATH 3030, Abstract Algebra FALL 2012 Toby Kenney Midyear Examination Friday 7th December: 7:00-10:00 PM MATH 3030, Abstract Algebra FALL 2012 Toby Kenney Midyear Examination Friday 7th December: 7:00-10:00 PM Basic Questions 1. Compute the factor group Z 3 Z 9 / (1, 6). The subgroup generated by (1, 6) is

More information

Algebra Qualifying Exam, Fall 2018

Algebra Qualifying Exam, Fall 2018 Algebra Qualifying Exam, Fall 2018 Name: Student ID: Instructions: Show all work clearly and in order. Use full sentences in your proofs and solutions. All answers count. In this exam, you may use the

More information

Lecture 8: The Field B dr

Lecture 8: The Field B dr Lecture 8: The Field B dr October 29, 2018 Throughout this lecture, we fix a perfectoid field C of characteristic p, with valuation ring O C. Fix an element π C with 0 < π C < 1, and let B denote the completion

More information

Background on Chevalley Groups Constructed from a Root System

Background on Chevalley Groups Constructed from a Root System Background on Chevalley Groups Constructed from a Root System Paul Tokorcheck Department of Mathematics University of California, Santa Cruz 10 October 2011 Abstract In 1955, Claude Chevalley described

More information

Algebra Exam Topics. Updated August 2017

Algebra Exam Topics. Updated August 2017 Algebra Exam Topics Updated August 2017 Starting Fall 2017, the Masters Algebra Exam will have 14 questions. Of these students will answer the first 8 questions from Topics 1, 2, and 3. They then have

More information

18.702: Quiz 1 Solutions

18.702: Quiz 1 Solutions MIT MATHEMATICS 18.702: Quiz 1 Solutions February 28 2018 There are four problems on this quiz worth equal value. You may quote without proof any result stated in class or in the assigned reading, unless

More information

Notes on Group Theory. by Avinash Sathaye, Professor of Mathematics November 5, 2013

Notes on Group Theory. by Avinash Sathaye, Professor of Mathematics November 5, 2013 Notes on Group Theory by Avinash Sathaye, Professor of Mathematics November 5, 2013 Contents 1 Preparation. 2 2 Group axioms and definitions. 2 Shortcuts................................. 2 2.1 Cyclic groups............................

More information

A Primer on Homological Algebra

A Primer on Homological Algebra A Primer on Homological Algebra Henry Y Chan July 12, 213 1 Modules For people who have taken the algebra sequence, you can pretty much skip the first section Before telling you what a module is, you probably

More information