Time- and Energy-Based Stability

Size: px
Start display at page:

Download "Time- and Energy-Based Stability"

Transcription

1 Time- and Energy-Based Stability Outline Root Locus Lyapunov s methods 1 Copyright c 2015 Roderic Grupen

2 8+ Root Locus ω n 2 Θ( s) Θ( ref s) 2 s + 2 s + ω 2 n ζω n 0 y γ θ ref θ act 128 The homogeneous (unforced) differential equation of motion: 1+GH = s 2 +2ζω n s+ω 2 n = 0 stability: bounded input bounded output (BIBO) Im K 8+ unstable consider: 1+GH = s 2 +2s+K K from 8 K=1 K from 8 Re K=0 K 2 Copyright c 2015 Roderic Grupen

3 Analytic Stability Lyapunov s Direct Method Stability - the origin of the state space is stable if there eists a region, S(r), such that states which start within S(r) remain within S(r). Asymptotic Stability - a system is asymptotically stable in S(r) if as t, the system state approaches the origin of the state space. S(r) 3 Copyright c 2015 Roderic Grupen

4 Analytic Stability - Lyapunov s Second Method Define: an arbitrary scalar function, V(, t), called a Lyapunov function, continuous is all first derivatives, where is the state and t is time, Iff: If the function, V(,t), eists such that: (a) V(0,t) = 0, and (b) V(,t) > 0, for 0 (positive definite), and (c) V/ t < 0 (negative def inite), Then: the system described by V is asymptotically stable in the neighborhood of the origin....if a system is stable, then there eists a suitable Lyapunov function....if, however, a particular Lyapunov function does not satisfy these criteria, it is not necessarily true that this system is unstable. 4 Copyright c 2015 Roderic Grupen

5 EXAMPLE: spring-mass-damper system dynamics: ẍ+ B Mẋ+ K M = 0 K m B E = v 0 (Mv)dv + 0 (K)d = 1 2 Mv K2 = 1 2 Mẋ K2 Lyapunov function: V(,t) = E = Mẋ2 2 (a) V(0,t) = 0, (b) V(,t) > 0, + K2 2 (c) V/ t negative def inite? 5 Copyright c 2015 Roderic Grupen

6 EXAMPLE: spring-mass-damper m K B B>0 B= t=0...the entire state space is asymptotically stable for B > 0. 6 Copyright c 2015 Roderic Grupen

7 EXAMPLE: population dynamics system dynamics: 1 = # males 2 = # females ẋ 1 = 1 +α 1 2 = 1 (α 2 1) ẋ 2 = 2 +β 1 2 = 2 (β 1 1) equilibrium points: ẋ = 0 (a) 1 = 2 = 0 (b) 1 = 1 β, 2 = 1 α Lyapunov function: V(0,t) = 0 V(,t) > 0 } choose V(,t) = V t = 2 1 ẋ ẋ 2 = 2 2 1(α 2 1)+2 2 2(β 1 1) 0 7 Copyright c 2015 Roderic Grupen

8 EXAMPLE: population dynamics 8 Copyright c 2015 Roderic Grupen

9 Putting it All Together - Control Law Synthesis we now have some powerful tools under our belt: tools for generating analytical descriptions of system dynamics Newton/Euler (outward/inward) iterations Lagrange s Equation (from calculus of variations) tools for analyzing linear controls, CLTF tools for eamining stability root locus Lyapunov s Second Method 9 Copyright c 2015 Roderic Grupen

10 Putting it All Together - Balancing the Cart-Pole 1. describe the dynamics of the system The Lagrangian and Lagrange s Equations 2. linearize around the desired equilibrium position, write the dynamics as a set of n first-order equations q = Aq 3. add a(parametric) linear controller and describe the net(plant + compensator) system behavior q = Aq+Bu(t) 4. use the properties of stable systems to find control parameters B that stabilize the system 10 Copyright c 2015 Roderic Grupen

11 Control Law Synthesis Cart/Pole Inverted Pendulum y m θ y M p p u(t) position and velocity of the pendulum p = Lsin(θ) ẋ p = Lcos(θ) θ+ẋ y p = Lcos(θ) ẏ p = Lsin(θ) θ construct the Lagrangian L = T V: T = 1 2 Mẋ m(ẋ2 p+ẏ 2 p) = 1 2 Mẋ m (( L 2 cos 2 (θ) θ 2 2Lcos(θ) θẋ+ẋ 2 )+ (L 2 sin 2 (θ) θ 2 )) = 1 2 (M +m)ẋ m ( L 2 cos 2 (θ) θ 2 +L 2 sin 2 (θ) θ 2 ) mlcos(θ) θẋ = 1 2 (M +m)ẋ ml2 θ2 mlcos(θ) θẋ 11 Copyright c 2015 Roderic Grupen

12 Control Law Synthesis y m θ y M p p u(t) Cart/Pole Inverted Pendulum V = mgy p = mglcos(θ) so the Lagrangian is: L = 1 2 (M +m)ẋ ml2 θ2 mlcos(θ) θẋ mglcos(θ) and Lagrange s equations are written: d L L = Γ i. dt q i q i 12 Copyright c 2015 Roderic Grupen

13 Cart-Pole Dynamics L = 1 2 (M +m)ẋ ml2 θ2 mlcos(θ) θẋ mglcos(θ) d L L = Γ i dt q i q i for the coordinate of the cart: L ẋ = (M +m)ẋ mlcos(θ) θ d L dt ẋ = (M +m)ẍ+mlsin(θ) θ 2 mlcos(θ) θ L = 0 and u(t) = (M +m)ẍ+mlsin(θ) θ 2 mlcos(θ) θ 13 Copyright c 2015 Roderic Grupen

14 Cart-Pole Dynamics L = 1 2 (M +m)ẋ ml2 θ2 mlcos(θ) θẋ mglcos(θ) d L L = Γ i dt q i q i for the (unactuated) angle of the pendulum: L = ml2 θ mlcos(θ)ẋ θ so d dt L = ml2 θ mlcos(θ)ẍ+mlsin(θ) θẋ θ L θ = mlsin(θ) θẋ+mglsin(θ) 0 = ml 2 θ mlcos(θ)ẍ+mlsin(θ) θẋ mlsin(θ) θẋ mglsin(θ) = ml 2 θ mlcos(θ)ẍ mglsin(θ) 14 Copyright c 2015 Roderic Grupen

15 Linearized Cart-Pole Equation of Motion (M +m)ẍ+mlsin(θ) θ 2 mlcos(θ) θ = u(t) ml 2 θ mlcos(θ)ẍ mglsin(θ) = 0 using small angle assumptions (sin(θ) θ; cos(θ) 1), and assuming small pendulum velocities ( θ 2 0): (M +m)ẍ ml θ = u(t) ml 2 θ mlẍ mglθ = 0 if we define state variables: (q 1 q 2 q 3 q 4 ) = ( ẋ θ θ) then the equations of motion become: (M +m) q 2 ml q 4 = u(t) (a) q 2 + L q 4 = gq 3 (b) if we solve (b) for L q 4 and substitute into (a)... or (M) q 2 mgq 3 = u(t) q 2 = mg M q 3+ u(t) M 15 Copyright c 2015 Roderic Grupen

16 Linearized Cart-Pole Equation of Motion (cont.) similarly, if we solve for q 2 in (a) and substitute into (b), we get q 4 = q 2 = u(t)+ml q 4 M +m (M +m) M g L q 3+ u(t) ML therefore, we can write the cart-pole dynamics in the form of four first order equations (assume that m << M, so that m/m 0): q 1 = q 2 q 2 = 1 M u(t) q 3 = q 4 q 4 = g L q 3+ 1 ML u(t) 16 Copyright c 2015 Roderic Grupen

17 Linearized Cart-Pole Equation of Motion (cont.) q 1 q 2 q 3 q 4 = q = Aq+Bu(t) q 1 q 2 q 3 + q g/l 0 0 1/M 0 1/ML u(t) The characteristic equation of this linear system is det(λi A) = λ 2 (λ 2 g L ) so we get four roots: λ 1 = λ 2 = 0 λ 3 = + g/l λ 4 = g/l (unstable) 17 Copyright c 2015 Roderic Grupen

18 Simplified, Linearized Cart-Pole isolate variables q 3 and q 4 to focus on the unstable roots and to design control inputs that stabilizes the system... [ q3 q 4 ] = [ 0 1 g/l 0 ][ q3 q 4 ] + [ 0 1/ML ] u(t) the characteristic equation of the simplified system verifies that we have isolated the unstable part of the system dynamics det(λi A) = (λ 2 g L ) λ = ± g/l (unstable) 18 Copyright c 2015 Roderic Grupen

19 Simplified, Linearized Cart-Pole Stabilizing Compensator suppose we define a linear control input u(t) = Hq = [h 1 h 2 ] [ q3 q 4 ] [ q3 q 4 ] = = [ ][ ] [ 0 1 q3 0 + g/l 0 q 4 (h 1 q 3 +h 2 q 4 )/ML [ ][ ] 0 1 q3 g/l+h 1 /(ML) h 2 /(ML) q 4 ] pickan(h 1,h 2 )compensatorthatmakeseigenvaluesnegative...e.g., let h 1 = Mg det(λi A) = λ 1 ( 0 (λ h 2 /(ML)) = λ λ h ) 2 ML λ 1,2 = 0, h 2 ML therefore, h 1 = Mg and h 2 < 0, i.e. u(t) = (Mg)θ B θ balances the cart-pole near vertical (θ = θ = 0)! 19 Copyright c 2015 Roderic Grupen

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as 2 MODELING Once the control target is identified, which includes the state variable to be controlled (ex. speed, position, temperature, flow rate, etc), and once the system drives are identified (ex. force,

More information

The Inverted Pendulum

The Inverted Pendulum Lab 1 The Inverted Pendulum Lab Objective: We will set up the LQR optimal control problem for the inverted pendulum and compute the solution numerically. Think back to your childhood days when, for entertainment

More information

P321(b), Assignement 1

P321(b), Assignement 1 P31(b), Assignement 1 1 Exercise 3.1 (Fetter and Walecka) a) The problem is that of a point mass rotating along a circle of radius a, rotating with a constant angular velocity Ω. Generally, 3 coordinates

More information

Dynamical Systems & Lyapunov Stability

Dynamical Systems & Lyapunov Stability Dynamical Systems & Lyapunov Stability Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University Outline Ordinary Differential Equations Existence & uniqueness Continuous dependence

More information

EE Homework 3 Due Date: 03 / 30 / Spring 2015

EE Homework 3 Due Date: 03 / 30 / Spring 2015 EE 476 - Homework 3 Due Date: 03 / 30 / 2015 Spring 2015 Exercise 1 (10 points). Consider the problem of two pulleys and a mass discussed in class. We solved a version of the problem where the mass was

More information

PHY 5246: Theoretical Dynamics, Fall September 28 th, 2015 Midterm Exam # 1

PHY 5246: Theoretical Dynamics, Fall September 28 th, 2015 Midterm Exam # 1 Name: SOLUTIONS PHY 5246: Theoretical Dynamics, Fall 2015 September 28 th, 2015 Mierm Exam # 1 Always remember to write full work for what you do. This will help your grade in case of incomplete or wrong

More information

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems CDS 101 1. For each of the following linear systems, determine whether the origin is asymptotically stable and, if so, plot the step response and frequency response for the system. If there are multiple

More information

7 Pendulum. Part II: More complicated situations

7 Pendulum. Part II: More complicated situations MATH 35, by T. Lakoba, University of Vermont 60 7 Pendulum. Part II: More complicated situations In this Lecture, we will pursue two main goals. First, we will take a glimpse at a method of Classical Mechanics

More information

Lagrange s Equations of Motion and the Generalized Inertia

Lagrange s Equations of Motion and the Generalized Inertia Lagrange s Equations of Motion and the Generalized Inertia The Generalized Inertia Consider the kinetic energy for a n degree of freedom mechanical system with coordinates q, q 2,... q n. If the system

More information

Classical Mechanics Comprehensive Exam Solution

Classical Mechanics Comprehensive Exam Solution Classical Mechanics Comprehensive Exam Solution January 31, 011, 1:00 pm 5:pm Solve the following six problems. In the following problems, e x, e y, and e z are unit vectors in the x, y, and z directions,

More information

Classical Mechanics Review (Louisiana State University Qualifier Exam)

Classical Mechanics Review (Louisiana State University Qualifier Exam) Review Louisiana State University Qualifier Exam Jeff Kissel October 22, 2006 A particle of mass m. at rest initially, slides without friction on a wedge of angle θ and and mass M that can move without

More information

Question 1: A particle starts at rest and moves along a cycloid whose equation is. 2ay y a

Question 1: A particle starts at rest and moves along a cycloid whose equation is. 2ay y a Stephen Martin PHYS 10 Homework #1 Question 1: A particle starts at rest and moves along a cycloid whose equation is [ ( ) a y x = ± a cos 1 + ] ay y a There is a gravitational field of strength g in the

More information

POTENTIAL ENERGY AND ENERGY CONSERVATION

POTENTIAL ENERGY AND ENERGY CONSERVATION 7 POTENTIAL ENERGY AND ENERGY CONSERVATION 7.. IDENTIFY: U grav = mgy so ΔU grav = mg( y y ) SET UP: + y is upward. EXECUTE: (a) ΔU = (75 kg)(9.8 m/s )(4 m 5 m) = +6.6 5 J (b) ΔU = (75 kg)(9.8 m/s )(35

More information

MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions

MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions Question 1. SIGNALS: Design of a noise-cancelling headphone system. 1a. Based on the low-pass filter given, design a high-pass filter,

More information

Stability of Nonlinear Systems An Introduction

Stability of Nonlinear Systems An Introduction Stability of Nonlinear Systems An Introduction Michael Baldea Department of Chemical Engineering The University of Texas at Austin April 3, 2012 The Concept of Stability Consider the generic nonlinear

More information

M2A2 Problem Sheet 3 - Hamiltonian Mechanics

M2A2 Problem Sheet 3 - Hamiltonian Mechanics MA Problem Sheet 3 - Hamiltonian Mechanics. The particle in a cone. A particle slides under gravity, inside a smooth circular cone with a vertical axis, z = k x + y. Write down its Lagrangian in a) Cartesian,

More information

Dynamics. 1 Copyright c 2015 Roderic Grupen

Dynamics. 1 Copyright c 2015 Roderic Grupen Dynamics The branch of physics that treats the action of force on bodies in motion or at rest; kinetics, kinematics, and statics, collectively. Websters dictionary Outline Conservation of Momentum Inertia

More information

Lecture 27: Generalized Coordinates and Lagrange s Equations of Motion

Lecture 27: Generalized Coordinates and Lagrange s Equations of Motion Lecture 27: Generalize Coorinates an Lagrange s Equations of Motion Calculating T an V in terms of generalize coorinates. Example: Penulum attache to a movable support 6 Cartesian Coorinates: (X, Y, Z)

More information

CHAPTER 12 OSCILLATORY MOTION

CHAPTER 12 OSCILLATORY MOTION CHAPTER 1 OSCILLATORY MOTION Before starting the discussion of the chapter s concepts it is worth to define some terms we will use frequently in this chapter: 1. The period of the motion, T, is the time

More information

Control Systems. Internal Stability - LTI systems. L. Lanari

Control Systems. Internal Stability - LTI systems. L. Lanari Control Systems Internal Stability - LTI systems L. Lanari outline LTI systems: definitions conditions South stability criterion equilibrium points Nonlinear systems: equilibrium points examples stable

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67 1/67 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 6 Mathematical Representation of Physical Systems II State Variable Models for Dynamic Systems u 1 u 2 u ṙ. Internal Variables x 1, x 2 x n y 1 y 2. y m Figure

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 9, 2017 11:00AM to 1:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

More information

Linearization problem. The simplest example

Linearization problem. The simplest example Linear Systems Lecture 3 1 problem Consider a non-linear time-invariant system of the form ( ẋ(t f x(t u(t y(t g ( x(t u(t (1 such that x R n u R m y R p and Slide 1 A: f(xu f(xu g(xu and g(xu exist and

More information

Analog Signals and Systems and their properties

Analog Signals and Systems and their properties Analog Signals and Systems and their properties Main Course Objective: Recall course objectives Understand the fundamentals of systems/signals interaction (know how systems can transform or filter signals)

More information

STABILITY ANALYSIS OF DYNAMIC SYSTEMS

STABILITY ANALYSIS OF DYNAMIC SYSTEMS C. Melchiorri (DEI) Automatic Control & System Theory 1 AUTOMATIC CONTROL AND SYSTEM THEORY STABILITY ANALYSIS OF DYNAMIC SYSTEMS Claudio Melchiorri Dipartimento di Ingegneria dell Energia Elettrica e

More information

Chapter 2 SDOF Vibration Control 2.1 Transfer Function

Chapter 2 SDOF Vibration Control 2.1 Transfer Function Chapter SDOF Vibration Control.1 Transfer Function mx ɺɺ( t) + cxɺ ( t) + kx( t) = F( t) Defines the transfer function as output over input X ( s) 1 = G( s) = (1.39) F( s) ms + cs + k s is a complex number:

More information

EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.

EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators. Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8- am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 4: LMIs for State-Space Internal Stability Solving the Equations Find the output given the input State-Space:

More information

Class Notes for Advanced Dynamics (MEAM535)

Class Notes for Advanced Dynamics (MEAM535) Class Notes f Avance Dynamics MEAM535 Michael A. Carchii December 9, 9 Equilibrium Points, Small Perturbations Linear Stability Analysis The following notes were initially base aroun the text entitle:

More information

Transverse Linearization for Controlled Mechanical Systems with Several Passive Degrees of Freedom (Application to Orbital Stabilization)

Transverse Linearization for Controlled Mechanical Systems with Several Passive Degrees of Freedom (Application to Orbital Stabilization) Transverse Linearization for Controlled Mechanical Systems with Several Passive Degrees of Freedom (Application to Orbital Stabilization) Anton Shiriaev 1,2, Leonid Freidovich 1, Sergey Gusev 3 1 Department

More information

1 Lyapunov theory of stability

1 Lyapunov theory of stability M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability

More information

Robotics, Geometry and Control - A Preview

Robotics, Geometry and Control - A Preview Robotics, Geometry and Control - A Preview Ravi Banavar 1 1 Systems and Control Engineering IIT Bombay HYCON-EECI Graduate School - Spring 2008 Broad areas Types of manipulators - articulated mechanisms,

More information

The Pendulum Plain and Puzzling

The Pendulum Plain and Puzzling The Pendulum Plain and Puzzling Chris Sangwin School of Mathematics University of Edinburgh April 2017 Chris Sangwin (University of Edinburgh) Pendulum April 2017 1 / 38 Outline 1 Introduction and motivation

More information

PHY6426/Fall 07: CLASSICAL MECHANICS HOMEWORK ASSIGNMENT #1 due by 9:35 a.m. Wed 09/05 Instructor: D. L. Maslov Rm.

PHY6426/Fall 07: CLASSICAL MECHANICS HOMEWORK ASSIGNMENT #1 due by 9:35 a.m. Wed 09/05 Instructor: D. L. Maslov Rm. PHY646/Fall 07: CLASSICAL MECHANICS HOMEWORK ASSIGNMENT # due by 9:35 a.m. Wed 09/05 Instructor: D. L. Maslov maslov@phys.ufl.edu 39-053 Rm. 4 Please help your instructor by doing your work neatly.. Goldstein,

More information

SOLUTIONS, PROBLEM SET 11

SOLUTIONS, PROBLEM SET 11 SOLUTIONS, PROBLEM SET 11 1 In this problem we investigate the Lagrangian formulation of dynamics in a rotating frame. Consider a frame of reference which we will consider to be inertial. Suppose that

More information

PHYSICS 44 MECHANICS Homework Assignment II SOLUTION

PHYSICS 44 MECHANICS Homework Assignment II SOLUTION July 21, 23 PHYSICS 44 MECHANICS Homewk Assignment II SOLUTION Problem 1 AcartofmassM is placed on rails and attached to a wall with the help of a massless spring with constant k (as shown in the Figure

More information

Consider a particle in 1D at position x(t), subject to a force F (x), so that mẍ = F (x). Define the kinetic energy to be.

Consider a particle in 1D at position x(t), subject to a force F (x), so that mẍ = F (x). Define the kinetic energy to be. Chapter 4 Energy and Stability 4.1 Energy in 1D Consider a particle in 1D at position x(t), subject to a force F (x), so that mẍ = F (x). Define the kinetic energy to be T = 1 2 mẋ2 and the potential energy

More information

Classical Mechanics. FIG. 1. Figure for (a), (b) and (c). FIG. 2. Figure for (d) and (e).

Classical Mechanics. FIG. 1. Figure for (a), (b) and (c). FIG. 2. Figure for (d) and (e). Classical Mechanics 1. Consider a cylindrically symmetric object with a total mass M and a finite radius R from the axis of symmetry as in the FIG. 1. FIG. 1. Figure for (a), (b) and (c). (a) Show that

More information

Dissipativity. Outline. Motivation. Dissipative Systems. M. Sami Fadali EBME Dept., UNR

Dissipativity. Outline. Motivation. Dissipative Systems. M. Sami Fadali EBME Dept., UNR Dissipativity M. Sami Fadali EBME Dept., UNR 1 Outline Differential storage functions. QSR Dissipativity. Algebraic conditions for dissipativity. Stability of dissipative systems. Feedback Interconnections

More information

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod)

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) 28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) θ + ω 2 sin θ = 0. Indicate the stable equilibrium points as well as the unstable equilibrium points.

More information

Lyapunov stability ORDINARY DIFFERENTIAL EQUATIONS

Lyapunov stability ORDINARY DIFFERENTIAL EQUATIONS Lyapunov stability ORDINARY DIFFERENTIAL EQUATIONS An ordinary differential equation is a mathematical model of a continuous state continuous time system: X = < n state space f: < n! < n vector field (assigns

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture 25 Oscillations simple harmonic motion pendulum driven and damped oscillations http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture: 1. Oscillations

More information

Lecture A1 : Systems and system models

Lecture A1 : Systems and system models Lecture A1 : Systems and system models Jan Swevers July 2006 Aim of this lecture : Understand the process of system modelling (different steps). Define the class of systems that will be considered in this

More information

Small oscillations and normal modes

Small oscillations and normal modes Chapter 4 Small oscillations and normal modes 4.1 Linear oscillations Discuss a generalization of the harmonic oscillator problem: oscillations of a system of several degrees of freedom near the position

More information

Introduction to Feedback Control

Introduction to Feedback Control Introduction to Feedback Control USING DESIGN STUDIES RANDAL W. BEARD TIMOTHY W. MCLAIN Revised: October 3, 28 26 Randal W. Beard All rights reserved. This work may not be distributed and/or modified without

More information

Robotics. Dynamics. Marc Toussaint U Stuttgart

Robotics. Dynamics. Marc Toussaint U Stuttgart Robotics Dynamics 1D point mass, damping & oscillation, PID, dynamics of mechanical systems, Euler-Lagrange equation, Newton-Euler recursion, general robot dynamics, joint space control, reference trajectory

More information

Physics 132 3/31/17. March 31, 2017 Physics 132 Prof. E. F. Redish Theme Music: Benny Goodman. Swing, Swing, Swing. Cartoon: Bill Watterson

Physics 132 3/31/17. March 31, 2017 Physics 132 Prof. E. F. Redish Theme Music: Benny Goodman. Swing, Swing, Swing. Cartoon: Bill Watterson March 31, 2017 Physics 132 Prof. E. F. Redish Theme Music: Benny Goodman Swing, Swing, Swing Cartoon: Bill Watterson Calvin & Hobbes 1 Outline The makeup exam Recap: the math of the harmonic oscillator

More information

Chapter 13 Oscillations about Equilibrium. Copyright 2010 Pearson Education, Inc.

Chapter 13 Oscillations about Equilibrium. Copyright 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium Periodic Motion Units of Chapter 13 Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring

More information

CDS 101 Precourse Phase Plane Analysis and Stability

CDS 101 Precourse Phase Plane Analysis and Stability CDS 101 Precourse Phase Plane Analysis and Stability Melvin Leok Control and Dynamical Systems California Institute of Technology Pasadena, CA, 26 September, 2002. mleok@cds.caltech.edu http://www.cds.caltech.edu/

More information

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli Control Systems I Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 13, 2017 E. Frazzoli (ETH)

More information

2 Lyapunov Stability. x(0) x 0 < δ x(t) x 0 < ɛ

2 Lyapunov Stability. x(0) x 0 < δ x(t) x 0 < ɛ 1 2 Lyapunov Stability Whereas I/O stability is concerned with the effect of inputs on outputs, Lyapunov stability deals with unforced systems: ẋ = f(x, t) (1) where x R n, t R +, and f : R n R + R n.

More information

Variation Principle in Mechanics

Variation Principle in Mechanics Section 2 Variation Principle in Mechanics Hamilton s Principle: Every mechanical system is characterized by a Lagrangian, L(q i, q i, t) or L(q, q, t) in brief, and the motion of he system is such that

More information

Lecture 4 Stabilization

Lecture 4 Stabilization Lecture 4 Stabilization This lecture follows Chapter 5 of Doyle-Francis-Tannenbaum, with proofs and Section 5.3 omitted 17013 IOC-UPC, Lecture 4, November 2nd 2005 p. 1/23 Stable plants (I) We assume that

More information

Introduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31

Introduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31 Introduction Classical Control Robust Control u(t) y(t) G u(t) G + y(t) G : nominal model G = G + : plant uncertainty Uncertainty sources : Structured : parametric uncertainty, multimodel uncertainty Unstructured

More information

MCE 366 System Dynamics, Spring Problem Set 2. Solutions to Set 2

MCE 366 System Dynamics, Spring Problem Set 2. Solutions to Set 2 MCE 366 System Dynamics, Spring 2012 Problem Set 2 Reading: Chapter 2, Sections 2.3 and 2.4, Chapter 3, Sections 3.1 and 3.2 Problems: 2.22, 2.24, 2.26, 2.31, 3.4(a, b, d), 3.5 Solutions to Set 2 2.22

More information

Oscillating Inverted Pendulum and Applications

Oscillating Inverted Pendulum and Applications Oscillating Inverted Pendulum and Applications Ramon Driesen, Jaden Johnston, Massimo Pascale, and Evan Ridley Department of Mathematics, University of Arizona, Tucson, Arizona, 85719 (Dated: March 20,

More information

Physics 6010, Fall 2016 Constraints and Lagrange Multipliers. Relevant Sections in Text:

Physics 6010, Fall 2016 Constraints and Lagrange Multipliers. Relevant Sections in Text: Physics 6010, Fall 2016 Constraints and Lagrange Multipliers. Relevant Sections in Text: 1.3 1.6 Constraints Often times we consider dynamical systems which are defined using some kind of restrictions

More information

The Principle of Least Action

The Principle of Least Action The Principle of Least Action In their never-ending search for general principles, from which various laws of Physics could be derived, physicists, and most notably theoretical physicists, have often made

More information

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization Plan of the Lecture Review: control, feedback, etc Today s topic: state-space models of systems; linearization Goal: a general framework that encompasses all examples of interest Once we have mastered

More information

STABILITY. Phase portraits and local stability

STABILITY. Phase portraits and local stability MAS271 Methods for differential equations Dr. R. Jain STABILITY Phase portraits and local stability We are interested in system of ordinary differential equations of the form ẋ = f(x, y), ẏ = g(x, y),

More information

Lecture 13: Forces in the Lagrangian Approach

Lecture 13: Forces in the Lagrangian Approach Lecture 3: Forces in the Lagrangian Approach In regular Cartesian coordinates, the Lagrangian for a single particle is: 3 L = T U = m x ( ) l U xi l= Given this, we can readily interpret the physical significance

More information

Daba Meshesha Gusu and O.Chandra Sekhara Reddy 1

Daba Meshesha Gusu and O.Chandra Sekhara Reddy 1 International Journal of Basic and Applied Sciences Vol. 4. No. 1 2015. Pp.22-27 Copyright by CRDEEP. All Rights Reserved. Full Length Research Paper Solutions of Non Linear Ordinary Differential Equations

More information

Non-Linear Response of Test Mass to External Forces and Arbitrary Motion of Suspension Point

Non-Linear Response of Test Mass to External Forces and Arbitrary Motion of Suspension Point LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO- CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Technical Note LIGO-T980005-01- D 10/28/97 Non-Linear Response of Test

More information

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017 CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS Prof. N. Harnew University of Oxford TT 2017 1 OUTLINE : CP1 REVISION LECTURE 3 : INTRODUCTION TO CLASSICAL MECHANICS 1. Angular velocity and

More information

Rotational motion problems

Rotational motion problems Rotational motion problems. (Massive pulley) Masses m and m 2 are connected by a string that runs over a pulley of radius R and moment of inertia I. Find the acceleration of the two masses, as well as

More information

SEMINAR 2. PENDULUMS. V = mgl cos θ. (2) L = T V = 1 2 ml2 θ2 + mgl cos θ, (3) d dt ml2 θ2 + mgl sin θ = 0, (4) θ + g l

SEMINAR 2. PENDULUMS. V = mgl cos θ. (2) L = T V = 1 2 ml2 θ2 + mgl cos θ, (3) d dt ml2 θ2 + mgl sin θ = 0, (4) θ + g l Probem 7. Simpe Penduum SEMINAR. PENDULUMS A simpe penduum means a mass m suspended by a string weightess rigid rod of ength so that it can swing in a pane. The y-axis is directed down, x-axis is directed

More information

Different Modelling and Controlling Technique For Stabilization Of Inverted Pendulam

Different Modelling and Controlling Technique For Stabilization Of Inverted Pendulam International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-23 Different Modelling and Controlling Technique For Stabilization Of Inverted Pendulam K.CHAKRABORTY,, R.R. MUKHERJEE,

More information

Topic # Feedback Control Systems

Topic # Feedback Control Systems Topic #19 16.31 Feedback Control Systems Stengel Chapter 6 Question: how well do the large gain and phase margins discussed for LQR map over to DOFB using LQR and LQE (called LQG)? Fall 2010 16.30/31 19

More information

Chapter 13: Oscillatory Motions

Chapter 13: Oscillatory Motions Chapter 13: Oscillatory Motions Simple harmonic motion Spring and Hooe s law When a mass hanging from a spring and in equilibrium, the Newton s nd law says: Fy ma Fs Fg 0 Fs Fg This means the force due

More information

Represent this system in terms of a block diagram consisting only of. g From Newton s law: 2 : θ sin θ 9 θ ` T

Represent this system in terms of a block diagram consisting only of. g From Newton s law: 2 : θ sin θ 9 θ ` T Exercise (Block diagram decomposition). Consider a system P that maps each input to the solutions of 9 4 ` 3 9 Represent this system in terms of a block diagram consisting only of integrator systems, represented

More information

CDS Solutions to Final Exam

CDS Solutions to Final Exam CDS 22 - Solutions to Final Exam Instructor: Danielle C Tarraf Fall 27 Problem (a) We will compute the H 2 norm of G using state-space methods (see Section 26 in DFT) We begin by finding a minimal state-space

More information

Stability of Parameter Adaptation Algorithms. Big picture

Stability of Parameter Adaptation Algorithms. Big picture ME5895, UConn, Fall 215 Prof. Xu Chen Big picture For ˆθ (k + 1) = ˆθ (k) + [correction term] we haven t talked about whether ˆθ(k) will converge to the true value θ if k. We haven t even talked about

More information

Robotics. Dynamics. University of Stuttgart Winter 2018/19

Robotics. Dynamics. University of Stuttgart Winter 2018/19 Robotics Dynamics 1D point mass, damping & oscillation, PID, dynamics of mechanical systems, Euler-Lagrange equation, Newton-Euler, joint space control, reference trajectory following, optimal operational

More information

3. Fundamentals of Lyapunov Theory

3. Fundamentals of Lyapunov Theory Applied Nonlinear Control Nguyen an ien -.. Fundamentals of Lyapunov heory he objective of this chapter is to present Lyapunov stability theorem and illustrate its use in the analysis and the design of

More information

Topic # /31 Feedback Control Systems. Analysis of Nonlinear Systems Lyapunov Stability Analysis

Topic # /31 Feedback Control Systems. Analysis of Nonlinear Systems Lyapunov Stability Analysis Topic # 16.30/31 Feedback Control Systems Analysis of Nonlinear Systems Lyapunov Stability Analysis Fall 010 16.30/31 Lyapunov Stability Analysis Very general method to prove (or disprove) stability of

More information

System simulation using Matlab, state plane plots

System simulation using Matlab, state plane plots System simulation using Matlab, state plane plots his lab is mainly concerned with making state plane (also referred to as phase plane ) plots for various linear and nonlinear systems with two states he

More information

Introduction to Process Control

Introduction to Process Control Introduction to Process Control For more visit :- www.mpgirnari.in By: M. P. Girnari (SSEC, Bhavnagar) For more visit:- www.mpgirnari.in 1 Contents: Introduction Process control Dynamics Stability The

More information

Nonholonomic Constraints Examples

Nonholonomic Constraints Examples Nonholonomic Constraints Examples Basilio Bona DAUIN Politecnico di Torino July 2009 B. Bona (DAUIN) Examples July 2009 1 / 34 Example 1 Given q T = [ x y ] T check that the constraint φ(q) = (2x + siny

More information

Nonlinear Oscillations and Chaos

Nonlinear Oscillations and Chaos CHAPTER 4 Nonlinear Oscillations and Chaos 4-. l l = l + d s d d l l = l + d m θ m (a) (b) (c) The unetended length of each spring is, as shown in (a). In order to attach the mass m, each spring must be

More information

Solutions 2: Simple Harmonic Oscillator and General Oscillations

Solutions 2: Simple Harmonic Oscillator and General Oscillations Massachusetts Institute of Technology MITES 2017 Physics III Solutions 2: Simple Harmonic Oscillator and General Oscillations Due Wednesday June 21, at 9AM under Rene García s door Preface: This problem

More information

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules Advanced Control State Regulator Scope design of controllers using pole placement and LQ design rules Keywords pole placement, optimal control, LQ regulator, weighting matrixes Prerequisites Contact state

More information

Introduction to Robotics

Introduction to Robotics J. Zhang, L. Einig 277 / 307 MIN Faculty Department of Informatics Lecture 8 Jianwei Zhang, Lasse Einig [zhang, einig]@informatik.uni-hamburg.de University of Hamburg Faculty of Mathematics, Informatics

More information

Math 1302, Week 8: Oscillations

Math 1302, Week 8: Oscillations Math 302, Week 8: Oscillations T y eq Y y = y eq + Y mg Figure : Simple harmonic motion. At equilibrium the string is of total length y eq. During the motion we let Y be the extension beyond equilibrium,

More information

Control Systems. Internal Stability - LTI systems. L. Lanari

Control Systems. Internal Stability - LTI systems. L. Lanari Control Systems Internal Stability - LTI systems L. Lanari definitions (AS) - A system S is said to be asymptotically stable if its state zeroinput response converges to the origin for any initial condition

More information

Robotics. Control Theory. Marc Toussaint U Stuttgart

Robotics. Control Theory. Marc Toussaint U Stuttgart Robotics Control Theory Topics in control theory, optimal control, HJB equation, infinite horizon case, Linear-Quadratic optimal control, Riccati equations (differential, algebraic, discrete-time), controllability,

More information

15. Hamiltonian Mechanics

15. Hamiltonian Mechanics University of Rhode Island DigitalCommons@URI Classical Dynamics Physics Course Materials 2015 15. Hamiltonian Mechanics Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License

More information

Analytical Mechanics: Variational Principles

Analytical Mechanics: Variational Principles Analytical Mechanics: Variational Principles Shinichi Hirai Dept. Robotics, Ritsumeikan Univ. Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 1 / 71 Agenda

More information

Inverted Pendulum. Objectives

Inverted Pendulum. Objectives Inverted Pendulum Objectives The objective of this lab is to experiment with the stabilization of an unstable system. The inverted pendulum problem is taken as an example and the animation program gives

More information

arxiv: v1 [nlin.ao] 26 Oct 2012

arxiv: v1 [nlin.ao] 26 Oct 2012 COMMENT ON THE ARTICLE DISTILLING FREE-FORM NATURAL LAWS FROM EXPERIMENTAL DATA CHRISTOPHER HILLAR AND FRIEDRICH T. SOMMER arxiv:1210.7273v1 [nlin.ao] 26 Oct 2012 1. Summary A paper by Schmi and Lipson

More information

Homework 11 Solution - AME 30315, Spring 2015

Homework 11 Solution - AME 30315, Spring 2015 1 Homework 11 Solution - AME 30315, Spring 2015 Problem 1 [10/10 pts] R + - K G(s) Y Gpsq Θpsq{Ipsq and we are interested in the closed-loop pole locations as the parameter k is varied. Θpsq Ipsq k ωn

More information

the EL equation for the x coordinate is easily seen to be (exercise)

the EL equation for the x coordinate is easily seen to be (exercise) Physics 6010, Fall 2016 Relevant Sections in Text: 1.3 1.6 Examples After all this formalism it is a good idea to spend some time developing a number of illustrative examples. These examples represent

More information

Lecture 9: Eigenvalues and Eigenvectors in Classical Mechanics (See Section 3.12 in Boas)

Lecture 9: Eigenvalues and Eigenvectors in Classical Mechanics (See Section 3.12 in Boas) Lecture 9: Eigenvalues and Eigenvectors in Classical Mechanics (See Section 3 in Boas) As suggested in Lecture 8 the formalism of eigenvalues/eigenvectors has many applications in physics, especially in

More information

AA242B: MECHANICAL VIBRATIONS

AA242B: MECHANICAL VIBRATIONS AA242B: MECHANICAL VIBRATIONS 1 / 50 AA242B: MECHANICAL VIBRATIONS Undamped Vibrations of n-dof Systems These slides are based on the recommended textbook: M. Géradin and D. Rixen, Mechanical Vibrations:

More information

Nonlinear Dynamic Systems Homework 1

Nonlinear Dynamic Systems Homework 1 Nonlinear Dynamic Systems Homework 1 1. A particle of mass m is constrained to travel along the path shown in Figure 1, which is described by the following function yx = 5x + 1x 4, 1 where x is defined

More information

The dynamics of a Mobile Inverted Pendulum (MIP)

The dynamics of a Mobile Inverted Pendulum (MIP) The dynamics of a Mobile Inverted Pendulum (MIP) 1 Introduction Saam Ostovari, Nick Morozovsky, Thomas Bewley UCSD Coordinated Robotics Lab In this document, a Mobile Inverted Pendulum (MIP) is a robotic

More information

Solutions: Homework 2 Biomedical Signal, Systems and Control (BME )

Solutions: Homework 2 Biomedical Signal, Systems and Control (BME ) Solutions: Homework 2 Biomedical Signal, Systems and Control (BE 580.222) Instructor: René Vidal, E-mail: rvidal@cis.jhu.edu TA: Donavan Cheng, E-mail: donavan.cheng@gmail.com TA: Ertan Cetingül, E-mail:

More information

CDS 101/110a: Lecture 2.1 Dynamic Behavior

CDS 101/110a: Lecture 2.1 Dynamic Behavior CDS 11/11a: Lecture.1 Dynamic Behavior Richard M. Murray 6 October 8 Goals: Learn to use phase portraits to visualize behavior of dynamical systems Understand different types of stability for an equilibrium

More information

Introductory Physics. Week 2015/05/29

Introductory Physics. Week 2015/05/29 2015/05/29 Part I Summary of week 6 Summary of week 6 We studied the motion of a projectile under uniform gravity, and constrained rectilinear motion, introducing the concept of constraint force. Then

More information

HW 6 Mathematics 503, Mathematical Modeling, CSUF, June 24, 2007

HW 6 Mathematics 503, Mathematical Modeling, CSUF, June 24, 2007 HW 6 Mathematics 503, Mathematical Modeling, CSUF, June 24, 2007 Nasser M. Abbasi June 15, 2014 Contents 1 Problem 1 (section 3.5,#9, page 197 1 2 Problem 1 (section 3.5,#9, page 197 7 1 Problem 1 (section

More information

A plane autonomous system is a pair of simultaneous first-order differential equations,

A plane autonomous system is a pair of simultaneous first-order differential equations, Chapter 11 Phase-Plane Techniques 11.1 Plane Autonomous Systems A plane autonomous system is a pair of simultaneous first-order differential equations, ẋ = f(x, y), ẏ = g(x, y). This system has an equilibrium

More information