Lecture 9: Eigenvalues and Eigenvectors in Classical Mechanics (See Section 3.12 in Boas)

Size: px
Start display at page:

Download "Lecture 9: Eigenvalues and Eigenvectors in Classical Mechanics (See Section 3.12 in Boas)"

Transcription

1 Lecture 9: Eigenvalues and Eigenvectors in Classical Mechanics (See Section 3 in Boas) As suggested in Lecture 8 the formalism of eigenvalues/eigenvectors has many applications in physics, especially in mechanics The basic issue is the choice of coordinates to describe a given system An arbitrary choice of coordinates (ie, of degrees of freedom) will typically lead to a complicated description of the system due to the coupling (ie, interaction) between these coordinates Choosing the coordinates to correspond to the eigenvectors of the system (ie, choosing the basis vectors or basis-functions to be the eigenvectors) ensures that there is no coupling In the eigen-basis the dynamics is diagonal, and the time evolution of the eigenvectors is very simple As we have earlier argued most systems near equilibrium can be described in terms of harmonic oscillators Generally the naïve choice of the coordinates to describe these oscillators will lead to coupling between the oscillators We want to illustrate these points by discussing some simple examples (see also those in the text and the examples in Appendix B) As a first example we consider Exercise 959 in Boas (Edition 3) The mechanical system consists of two pendulums of equal lengths (l ), with equal masses ( m ), whose naïve coordinates are the angles of the two pendulums, and, measured from the vertical in the same direction (see the figure to the right) If we first ignore the spring (eg, set k = ), the two coordinates will evolve independently in time (ie, just independent pendulums) For small angular displacements (, ) we can use our knowledge of series expansions to approximate the physics (sin ) and obtain linear equations of motion In this (small angle) approximation the motion of each pendulum is harmonic with the same frequency gl, ie, two harmonic oscillators with the same frequency To obtain a more interesting (and realistic) problem we now connect the two masses with a spring, which has spring constant k For notational simplicity we choose the spring constant to satisfy the equation kl mg We will assume that the spring is un-stretched at the point of lowest gravitational energy, Thus the energy stored in the spring as a function of and is given by (start with the full result and then take the small angle limit) Physics 7 Lecture 9 Autumn 8

2 k k Vk, x y l sin l sin l cos l cos kl kl cos kl cos,, (9) while the gravitational energy is (normalized to vanish at the lowest point) mgl Vg, mgl cos cos, (9) Thus for small angles (low total energy) the total potential energy of the system looks like V kl mgl (93) kl V,,, We can rewrite this expression in vector/matrix notation as T kl T V, A, kl A, (94) The essential feature is that, in the basis of the naïve coordinates and, the potential energy is not diagonal, corresponding to explicit coupling between the two oscillators The kinetic energy can be written in the same notation as T m m ml T, l l ml T, (95) Physics 7 Lecture 9 Autumn 8

3 which we note is proportional to the unit matrix and, in that sense, trivial To simplify the analysis of this system (always our goal) we want to find its eigenvalues, which are the characteristic (or normal) frequencies of oscillation, and the corresponding eigenvectors, which are the characteristic (or normal) modes of oscillation Since the kinetic energy is proportional to the unit matrix, it does not distinguish the different modes and we proceed by solving the eigen-problem corresponding to the potential energy in Eq (94) For now we can ignore the overall dimensionful factor kl and write A det A 3 Tr A 4 3 (96) To obtain these eigenvalues easily we have used the results of Eqs (85) and (87) (in Lecture 8) The actual frequencies come from including the ratio of the dimensionful factors, kl ml k m g l, kl ml 3k m 3g l 3 To see the connection to (the more familiar) Newton s equation first recall the situation for a single (small angle) pendulum (see the Appendix) where we have (97) ml mgl T, V dv d Newton: ml mgl g l (98) i t Employing our usual (complex) Ansatz t e we find g i cos t, e, l (99) where the (conserved) total energy is given by Physics 7 Lecture 9 3 Autumn 8

4 m E T V sin cos l t gl t mgl a constant (9) Note that in the equation of motion (Newton) the first term is the angular acceleration times the moment of inertia and the second terms is (minus) the torque due to gravity A formal treatment of this system in terms of scalar quantities follows from the techniques of Lagrange as described in Chapter 9 in Boas and in Lecture Looking ahead we will make use of the examples of the simple and coupled pendulums to introduce the new notation here The special scalar quantity is the Lagrangian defined as the kinetic energy minus the potential energy For the simple pendulum the Lagrangian (for small angular displacement) is given by ml mgl L T V (9) As we will derive in Lecture this scalar quantity is connected to the equation of motion via Lagrange s equation d L L d ml mgl dt dt g l (9) For the system of coupled pendulums the corresponding Lagrangian is (still in the small angle approximation) ml L T V kl (93) Now there is a Lagrange equation for each independent variable yielding two equations of motion (in the naïve coordinates), Physics 7 Lecture 9 4 Autumn 8

5 d L L V dt ml kl, d L L V dt ml kl (94) Again using our standard exponential ( e it,, ) Ansatz we obtain the coupled (matrix) equations (divide through by ml ) k (95) m Comparing to Eq (96) we diagonalize to find the eigen-frequencies in Eq (97),, 3 To find the eigenvectors for the two pendulums we solve the eigenvector equations, 3, 3 (96) where we have chosen a specific (but arbitrary) phase and to normalize as unit vectors Thus the first normal mode corresponds to the two pendulums moving in phase with the same amplitude, It should be no surprise that with this motion the spring plays no role ( x y ) and the eigen-frequency is the frequency of each pendulum separately For the second mode the pendulums have the same amplitude but opposite phases, Thus the spring plays a role to resist the oscillation and increase the frequency of oscillation, 3 Note that as expected for a Hermitian (real and symmetric) matrix the eigenvectors are orthogonal, T The matrix that diagonalizes the potential energy matrix is (with our choice of phases) Physics 7 Lecture 9 5 Autumn 8

6 C, (97) which, by comparison with Eq 843, corresponds to a rotation of the basis vectors by 4 We have C C a rotation by, 4 kl kl 3 AC kl kl kl D, C (98) Noting that the kinetic energy is still diagonal (as expected, all matrices commute with the unit matrix) ml ml C C, (99) we can write the energy in the new coordinates as T kl V, D 3, ml T ml T, ml kl E 3 (9) The corresponding equations of motion (Newton) are (obtained either from Newton or Lagrange as above, but with, as the coordinates) Physics 7 Lecture 9 6 Autumn 8

7 k g cos,, m l ml kl t t 3k 3g 3 cos, m l ml kl t t (9) Note the essential point that, once we have gone to the normal mode basis (the eigenbasis), the dynamics is diagonal (no cross terms) and we need only solve the familiar simple harmonic oscillator problem (twice) By a sensible choice of basis we have greatly simplified the problem We are lazy but smart! In terms of the original (intuitive) basis we have C t cos t cos t t cos t cos t (9) To complete the analysis of this system we solve for a specific choice of initial conditions For example, let s assume that one pendulum is displaced and then released from rest,,,, sin,, sin, Physics 7 Lecture 9 7 Autumn 8

8 , t cos t t cos t t cos t cos t k m 3k m k 3k m m k 3k m m t cos t cos t (93) The normal modes oscillate at the (fixed and different) characteristic frequencies while the physical modes oscillate as linear combinations of these two frequencies The time behavior of the two angles is plotted in the next figure for The solid (red) line is the angle and the dashed (blue) line is the angle Note that the initial energy in the one pendulum is first passed to the other pendulum and then passed back (This is exactly the mathematics of neutrino oscillation where it is probability that is passed back and forth) t Physics 7 Lecture 9 8 Autumn 8

MECHANICS LAB AM 317 EXP 8 FREE VIBRATION OF COUPLED PENDULUMS

MECHANICS LAB AM 317 EXP 8 FREE VIBRATION OF COUPLED PENDULUMS MECHANICS LAB AM 37 EXP 8 FREE VIBRATIN F CUPLED PENDULUMS I. BJECTIVES I. To observe the normal modes of oscillation of a two degree-of-freedom system. I. To determine the natural frequencies and mode

More information

Oscillations. Phys101 Lectures 28, 29. Key points: Simple Harmonic Motion (SHM) SHM Related to Uniform Circular Motion The Simple Pendulum

Oscillations. Phys101 Lectures 28, 29. Key points: Simple Harmonic Motion (SHM) SHM Related to Uniform Circular Motion The Simple Pendulum Phys101 Lectures 8, 9 Oscillations Key points: Simple Harmonic Motion (SHM) SHM Related to Uniform Circular Motion The Simple Pendulum Ref: 11-1,,3,4. Page 1 Oscillations of a Spring If an object oscillates

More information

!T = 2# T = 2! " The velocity and acceleration of the object are found by taking the first and second derivative of the position:

!T = 2# T = 2!  The velocity and acceleration of the object are found by taking the first and second derivative of the position: A pendulum swinging back and forth or a mass oscillating on a spring are two examples of (SHM.) SHM occurs any time the position of an object as a function of time can be represented by a sine wave. We

More information

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc.

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc. Chapter 13 Lecture Essential University Physics Richard Wolfson nd Edition Oscillatory Motion Slide 13-1 In this lecture you ll learn To describe the conditions under which oscillatory motion occurs To

More information

Mass on a Horizontal Spring

Mass on a Horizontal Spring Course- B.Sc. Applied Physical Science (Computer Science) Year- IInd, Sem- IVth Subject Physics Paper- XIVth, Electromagnetic Theory Lecture No. 22, Simple Harmonic Motion Introduction Hello friends in

More information

Chapter 6. Second order differential equations

Chapter 6. Second order differential equations Chapter 6. Second order differential equations A second order differential equation is of the form y = f(t, y, y ) where y = y(t). We shall often think of t as parametrizing time, y position. In this case

More information

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as 2 MODELING Once the control target is identified, which includes the state variable to be controlled (ex. speed, position, temperature, flow rate, etc), and once the system drives are identified (ex. force,

More information

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 20 JJ II. Home Page. Title Page.

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 20 JJ II. Home Page. Title Page. Rutgers University Department of Physics & Astronomy 01:750:271 Honors Physics Fall 2015 Lecture 20 Page 1 of 31 1. No quizzes during Thanksgiving week. There will be recitation according to the regular

More information

1.1 To observe the normal modes of oscillation of a two degree of freedom system.

1.1 To observe the normal modes of oscillation of a two degree of freedom system. I. BJECTIVES. To observe the normal modes of oscillation of a two degree of freedom system.. To determine the natural frequencies and mode shapes of the system from solution of the Eigenvalue problem..3

More information

! 4 4! o! +! h 4 o=0! ±= ± p i And back-substituting into the linear equations gave us the ratios of the amplitudes of oscillation:.»» = A p e i! +t»»

! 4 4! o! +! h 4 o=0! ±= ± p i And back-substituting into the linear equations gave us the ratios of the amplitudes of oscillation:.»» = A p e i! +t»» Topic 6: Coupled Oscillators and Normal Modes Reading assignment: Hand and Finch Chapter 9 We are going to be considering the general case of a system with N degrees of freedome close to one of its stable

More information

Simple and Physical Pendulums Challenge Problem Solutions

Simple and Physical Pendulums Challenge Problem Solutions Simple and Physical Pendulums Challenge Problem Solutions Problem 1 Solutions: For this problem, the answers to parts a) through d) will rely on an analysis of the pendulum motion. There are two conventional

More information

Harmonic Oscillator. Outline. Oscillatory Motion or Simple Harmonic Motion. Oscillatory Motion or Simple Harmonic Motion

Harmonic Oscillator. Outline. Oscillatory Motion or Simple Harmonic Motion. Oscillatory Motion or Simple Harmonic Motion Harmonic Oscillator Mass-Spring Oscillator Resonance The Pendulum Physics 109, Class Period 13 Experiment Number 11 in the Physics 121 Lab Manual (page 65) Outline Simple harmonic motion The vertical mass-spring

More information

Rigid bodies - general theory

Rigid bodies - general theory Rigid bodies - general theory Kinetic Energy: based on FW-26 Consider a system on N particles with all their relative separations fixed: it has 3 translational and 3 rotational degrees of freedom. Motion

More information

Coupled Oscillators Monday, 29 October 2012 normal mode Figure 1:

Coupled Oscillators Monday, 29 October 2012 normal mode Figure 1: Coupled Oscillators Monday, 29 October 2012 In which we count degrees of freedom and find the normal modes of a mess o masses and springs, which is a lovely model of a solid. Physics 111 θ 1 l m k θ 2

More information

14.4 Energy in Simple Harmonic Motion 14.5 Pendulum Motion.notebook January 25, 2018

14.4 Energy in Simple Harmonic Motion 14.5 Pendulum Motion.notebook January 25, 2018 The interplay between kinetic and potential energy is very important for understanding simple harmonic motion. Section 14.4 Energy in Simple Harmonic Motion For a mass on a spring, when the object is at

More information

Chapter 14: Periodic motion

Chapter 14: Periodic motion Chapter 14: Periodic motion Describing oscillations Simple harmonic motion Energy of simple harmonic motion Applications of simple harmonic motion Simple pendulum & physical pendulum Damped oscillations

More information

The distance of the object from the equilibrium position is m.

The distance of the object from the equilibrium position is m. Answers, Even-Numbered Problems, Chapter..4.6.8.0..4.6.8 (a) A = 0.0 m (b).60 s (c) 0.65 Hz Whenever the object is released from rest, its initial displacement equals the amplitude of its SHM. (a) so 0.065

More information

In which we count degrees of freedom and find the normal modes of a mess o masses and springs, which is a lovely model of a solid.

In which we count degrees of freedom and find the normal modes of a mess o masses and springs, which is a lovely model of a solid. Coupled Oscillators Wednesday, 26 October 2011 In which we count degrees of freedom and find the normal modes of a mess o masses and springs, which is a lovely model of a solid. Physics 111 θ 1 l k θ 2

More information

Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody

Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody Lecture 27. THE COMPOUND PENDULUM Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody diagram The term compound is used to distinguish the present

More information

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th )

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th ) Conceptual Q: 4 (7), 7 (), 8 (6) Physics 4 HW Set Chapter 5 Serway 8 th ( 7 th ) Q4(7) Answer (c). The equilibrium position is 5 cm below the starting point. The motion is symmetric about the equilibrium

More information

Periodic Motion. Periodic motion is motion of an object that. regularly repeats

Periodic Motion. Periodic motion is motion of an object that. regularly repeats Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A special kind of periodic motion occurs in mechanical systems

More information

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization Plan of the Lecture Review: control, feedback, etc Today s topic: state-space models of systems; linearization Goal: a general framework that encompasses all examples of interest Once we have mastered

More information

Chapter 11 Vibrations and Waves

Chapter 11 Vibrations and Waves Chapter 11 Vibrations and Waves If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system

More information

Constrained motion and generalized coordinates

Constrained motion and generalized coordinates Constrained motion and generalized coordinates based on FW-13 Often, the motion of particles is restricted by constraints, and we want to: work only with independent degrees of freedom (coordinates) k

More information

Small oscillations and normal modes

Small oscillations and normal modes Chapter 4 Small oscillations and normal modes 4.1 Linear oscillations Discuss a generalization of the harmonic oscillator problem: oscillations of a system of several degrees of freedom near the position

More information

Second quantization: where quantization and particles come from?

Second quantization: where quantization and particles come from? 110 Phys460.nb 7 Second quantization: where quantization and particles come from? 7.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system? 7.1.1.Lagrangian Lagrangian

More information

Harmonic Oscillator. Mass-Spring Oscillator Resonance The Pendulum. Physics 109 Experiment Number 12

Harmonic Oscillator. Mass-Spring Oscillator Resonance The Pendulum. Physics 109 Experiment Number 12 Harmonic Oscillator Mass-Spring Oscillator Resonance The Pendulum Physics 109 Experiment Number 12 Outline Simple harmonic motion The vertical mass-spring system Driven oscillations and resonance The pendulum

More information

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations.

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations. Outline of Multi-Degree-of-Freedom Systems Formulation of Equations of Motions. Newton s 2 nd Law Applied to Free Masses. D Alembert s Principle. Basic Equations of Motion for Forced Vibrations of Linear

More information

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx Chapter 1 Lecture Notes Chapter 1 Oscillatory Motion Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx When the mass is released, the spring will pull

More information

Chapter 5 Oscillatory Motion

Chapter 5 Oscillatory Motion Chapter 5 Oscillatory Motion Simple Harmonic Motion An object moves with simple harmonic motion whenever its acceleration is proportional to its displacement from some equilibrium position and is oppositely

More information

CHAPTER 12 OSCILLATORY MOTION

CHAPTER 12 OSCILLATORY MOTION CHAPTER 1 OSCILLATORY MOTION Before starting the discussion of the chapter s concepts it is worth to define some terms we will use frequently in this chapter: 1. The period of the motion, T, is the time

More information

Seminar 6: COUPLED HARMONIC OSCILLATORS

Seminar 6: COUPLED HARMONIC OSCILLATORS Seminar 6: COUPLED HARMONIC OSCILLATORS 1. Lagrangian Equations of Motion Let consider a system consisting of two harmonic oscillators that are coupled together. As a model, we will use two particles attached

More information

Normal modes. where. and. On the other hand, all such systems, if started in just the right way, will move in a simple way.

Normal modes. where. and. On the other hand, all such systems, if started in just the right way, will move in a simple way. Chapter 9. Dynamics in 1D 9.4. Coupled motions in 1D 491 only the forces from the outside; the interaction forces cancel because they come in equal and opposite (action and reaction) pairs. So we get:

More information

The object of this experiment is to study systems undergoing simple harmonic motion.

The object of this experiment is to study systems undergoing simple harmonic motion. Chapter 9 Simple Harmonic Motion 9.1 Purpose The object of this experiment is to study systems undergoing simple harmonic motion. 9.2 Introduction This experiment will develop your ability to perform calculations

More information

Newton s laws. Chapter 1. Not: Quantum Mechanics / Relativistic Mechanics

Newton s laws. Chapter 1. Not: Quantum Mechanics / Relativistic Mechanics PHYB54 Revision Chapter 1 Newton s laws Not: Quantum Mechanics / Relativistic Mechanics Isaac Newton 1642-1727 Classical mechanics breaks down if: 1) high speed, v ~ c 2) microscopic/elementary particles

More information

Unit 7: Oscillations

Unit 7: Oscillations Text: Chapter 15 Unit 7: Oscillations NAME: Problems (p. 405-412) #1: 1, 7, 13, 17, 24, 26, 28, 32, 35 (simple harmonic motion, springs) #2: 45, 46, 49, 51, 75 (pendulums) Vocabulary: simple harmonic motion,

More information

Chapter 15. Oscillatory Motion

Chapter 15. Oscillatory Motion Chapter 15 Oscillatory Motion Part 2 Oscillations and Mechanical Waves Periodic motion is the repeating motion of an object in which it continues to return to a given position after a fixed time interval.

More information

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top Physics 106a, Caltech 4 December, 2018 Lecture 18: Examples on Rigid Body Dynamics I go through a number of examples illustrating the methods of solving rigid body dynamics. In most cases, the problem

More information

OSCILLATIONS ABOUT EQUILIBRIUM

OSCILLATIONS ABOUT EQUILIBRIUM OSCILLATIONS ABOUT EQUILIBRIUM Chapter 13 Units of Chapter 13 Periodic Motion Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring

More information

Harmonic Oscillator - Model Systems

Harmonic Oscillator - Model Systems 3_Model Systems HarmonicOscillators.nb Chapter 3 Harmonic Oscillator - Model Systems 3.1 Mass on a spring in a gravitation field a 0.5 3.1.1 Force Method The two forces on the mass are due to the spring,

More information

7 Pendulum. Part II: More complicated situations

7 Pendulum. Part II: More complicated situations MATH 35, by T. Lakoba, University of Vermont 60 7 Pendulum. Part II: More complicated situations In this Lecture, we will pursue two main goals. First, we will take a glimpse at a method of Classical Mechanics

More information

Non-Linear Response of Test Mass to External Forces and Arbitrary Motion of Suspension Point

Non-Linear Response of Test Mass to External Forces and Arbitrary Motion of Suspension Point LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO- CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Technical Note LIGO-T980005-01- D 10/28/97 Non-Linear Response of Test

More information

Problem Solving Session 10 Simple Harmonic Oscillator Solutions

Problem Solving Session 10 Simple Harmonic Oscillator Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Problem Solving Session 10 Simple Harmonic Oscillator Solutions W13D3-0 Group Problem Gravitational Simple Harmonic Oscillator Two identical

More information

Assignment 6. Using the result for the Lagrangian for a double pendulum in Problem 1.22, we get

Assignment 6. Using the result for the Lagrangian for a double pendulum in Problem 1.22, we get Assignment 6 Goldstein 6.4 Obtain the normal modes of vibration for the double pendulum shown in Figure.4, assuming equal lengths, but not equal masses. Show that when the lower mass is small compared

More information

Chapter 14. Oscillations. Oscillations Introductory Terminology Simple Harmonic Motion:

Chapter 14. Oscillations. Oscillations Introductory Terminology Simple Harmonic Motion: Chapter 14 Oscillations Oscillations Introductory Terminology Simple Harmonic Motion: Kinematics Energy Examples of Simple Harmonic Oscillators Damped and Forced Oscillations. Resonance. Periodic Motion

More information

Oscillations. Oscillations and Simple Harmonic Motion

Oscillations. Oscillations and Simple Harmonic Motion Oscillations AP Physics C Oscillations and Simple Harmonic Motion 1 Equilibrium and Oscillations A marble that is free to roll inside a spherical bowl has an equilibrium position at the bottom of the bowl

More information

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums PHYS 101 Previous Exam Problems CHAPTER 15 Oscillations Simple harmonic motion Mass-spring system Energy in SHM Pendulums 1. The displacement of a particle oscillating along the x axis is given as a function

More information

Lecture 10: A (Brief) Introduction to Group Theory (See Chapter 3.13 in Boas, 3rd Edition)

Lecture 10: A (Brief) Introduction to Group Theory (See Chapter 3.13 in Boas, 3rd Edition) Lecture 0: A (Brief) Introduction to Group heory (See Chapter 3.3 in Boas, 3rd Edition) Having gained some new experience with matrices, which provide us with representations of groups, and because symmetries

More information

NORMAL MODES, WAVE MOTION AND THE WAVE EQUATION. Professor G.G.Ross. Oxford University Hilary Term 2009

NORMAL MODES, WAVE MOTION AND THE WAVE EQUATION. Professor G.G.Ross. Oxford University Hilary Term 2009 NORMAL MODES, WAVE MOTION AND THE WAVE EQUATION Professor G.G.Ross Oxford University Hilary Term 009 This course of twelve lectures covers material for the paper CP4: Differential Equations, Waves and

More information

Chapter 14 Periodic Motion

Chapter 14 Periodic Motion Chapter 14 Periodic Motion 1 Describing Oscillation First, we want to describe the kinematical and dynamical quantities associated with Simple Harmonic Motion (SHM), for example, x, v x, a x, and F x.

More information

Rotational Kinetic Energy

Rotational Kinetic Energy Lecture 17, Chapter 10: Rotational Energy and Angular Momentum 1 Rotational Kinetic Energy Consider a rigid body rotating with an angular velocity ω about an axis. Clearly every point in the rigid body

More information

Rotational motion of a rigid body spinning around a rotational axis ˆn;

Rotational motion of a rigid body spinning around a rotational axis ˆn; Physics 106a, Caltech 15 November, 2018 Lecture 14: Rotations The motion of solid bodies So far, we have been studying the motion of point particles, which are essentially just translational. Bodies with

More information

Fundamentals Physics. Chapter 15 Oscillations

Fundamentals Physics. Chapter 15 Oscillations Fundamentals Physics Tenth Edition Halliday Chapter 15 Oscillations 15-1 Simple Harmonic Motion (1 of 20) Learning Objectives 15.01 Distinguish simple harmonic motion from other types of periodic motion.

More information

Slide 1 / 70. Simple Harmonic Motion

Slide 1 / 70. Simple Harmonic Motion Slide 1 / 70 Simple Harmonic Motion Slide 2 / 70 SHM and Circular Motion There is a deep connection between Simple Harmonic Motion (SHM) and Uniform Circular Motion (UCM). Simple Harmonic Motion can be

More information

P321(b), Assignement 1

P321(b), Assignement 1 P31(b), Assignement 1 1 Exercise 3.1 (Fetter and Walecka) a) The problem is that of a point mass rotating along a circle of radius a, rotating with a constant angular velocity Ω. Generally, 3 coordinates

More information

Torque and Simple Harmonic Motion

Torque and Simple Harmonic Motion Torque and Simple Harmonic Motion Recall: Fixed Axis Rotation Angle variable Angular velocity Angular acceleration Mass element Radius of orbit Kinematics!! " d# / dt! " d 2 # / dt 2!m i Moment of inertia

More information

Physics Mechanics. Lecture 32 Oscillations II

Physics Mechanics. Lecture 32 Oscillations II Physics 170 - Mechanics Lecture 32 Oscillations II Gravitational Potential Energy A plot of the gravitational potential energy U g looks like this: Energy Conservation Total mechanical energy of an object

More information

Oscillatory Motion SHM

Oscillatory Motion SHM Chapter 15 Oscillatory Motion SHM Dr. Armen Kocharian Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A

More information

Flipping Physics Lecture Notes: Demonstrating Rotational Inertia (or Moment of Inertia)

Flipping Physics Lecture Notes: Demonstrating Rotational Inertia (or Moment of Inertia) Flipping Physics Lecture Notes: Demonstrating Rotational Inertia (or Moment of Inertia) Have you ever struggled to describe Rotational Inertia to your students? Even worse, have you ever struggled to understand

More information

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum Updated 2013 (Mathematica Version) M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are

More information

,, rectilinear,, spherical,, cylindrical. (6.1)

,, rectilinear,, spherical,, cylindrical. (6.1) Lecture 6 Review of Vectors Physics in more than one dimension (See Chapter 3 in Boas, but we try to take a more general approach and in a slightly different order) Recall that in the previous two lectures

More information

Contents. Contents. Contents

Contents. Contents. Contents Physics 121 for Majors Class 18 Linear Harmonic Last Class We saw how motion in a circle is mathematically similar to motion in a straight line. We learned that there is a centripetal acceleration (and

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator Simple Harmonic Motion Related to Uniform Circular Motion The Simple Pendulum The Physical

More information

Chapter 15 - Oscillations

Chapter 15 - Oscillations The pendulum of the mind oscillates between sense and nonsense, not between right and wrong. -Carl Gustav Jung David J. Starling Penn State Hazleton PHYS 211 Oscillatory motion is motion that is periodic

More information

PHYS 211 Lecture 9 - Examples of 3D motion 9-1

PHYS 211 Lecture 9 - Examples of 3D motion 9-1 PHYS 211 Lecture 9 - Examples of 3D motion 9-1 Lecture 9 - Examples of 3D motion Text: Fowles and Cassiday, Chap. 4 In one dimension, the equations of motion to be solved are functions of only one position

More information

Lagrange s Equations of Motion and the Generalized Inertia

Lagrange s Equations of Motion and the Generalized Inertia Lagrange s Equations of Motion and the Generalized Inertia The Generalized Inertia Consider the kinetic energy for a n degree of freedom mechanical system with coordinates q, q 2,... q n. If the system

More information

L = 1 2 a(q) q2 V (q).

L = 1 2 a(q) q2 V (q). Physics 3550, Fall 2011 Motion near equilibrium - Small Oscillations Relevant Sections in Text: 5.1 5.6 Motion near equilibrium 1 degree of freedom One of the most important situations in physics is motion

More information

Physics 101 Discussion Week 12 Explanation (2011)

Physics 101 Discussion Week 12 Explanation (2011) Physics 101 Discussion Week 12 Eplanation (2011) D12-1 Horizontal oscillation Q0. This is obviously about a harmonic oscillator. Can you write down Newton s second law in the (horizontal) direction? Let

More information

Classical Mechanics Comprehensive Exam Solution

Classical Mechanics Comprehensive Exam Solution Classical Mechanics Comprehensive Exam Solution January 31, 011, 1:00 pm 5:pm Solve the following six problems. In the following problems, e x, e y, and e z are unit vectors in the x, y, and z directions,

More information

A Physical Pendulum 2

A Physical Pendulum 2 A Physical Pendulum 2 Ian Jacobs, Physics Advisor, KVIS, Rayong, Thailand Introduction A physical pendulum rotates back and forth about a fixed axis and may be of any shape. All pendulums are driven by

More information

Chapter 12 Vibrations and Waves Simple Harmonic Motion page

Chapter 12 Vibrations and Waves Simple Harmonic Motion page Chapter 2 Vibrations and Waves 2- Simple Harmonic Motion page 438-45 Hooke s Law Periodic motion the object has a repeated motion that follows the same path, the object swings to and fro. Examples: a pendulum

More information

Video 2.1a Vijay Kumar and Ani Hsieh

Video 2.1a Vijay Kumar and Ani Hsieh Video 2.1a Vijay Kumar and Ani Hsieh Robo3x-1.3 1 Introduction to Lagrangian Mechanics Vijay Kumar and Ani Hsieh University of Pennsylvania Robo3x-1.3 2 Analytical Mechanics Aristotle Galileo Bernoulli

More information

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Introduction to vibration

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Introduction to vibration Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Introduction to vibration Module 15 Lecture 38 Vibration of Rigid Bodies Part-1 Today,

More information

Simple Harmonic Motion

Simple Harmonic Motion Chapter 9 Simple Harmonic Motion In This Chapter: Restoring Force Elastic Potential Energy Simple Harmonic Motion Period and Frequency Displacement, Velocity, and Acceleration Pendulums Restoring Force

More information

Oscillatory Motion. Solutions of Selected Problems

Oscillatory Motion. Solutions of Selected Problems Chapter 15 Oscillatory Motion. Solutions of Selected Problems 15.1 Problem 15.18 (In the text book) A block-spring system oscillates with an amplitude of 3.50 cm. If the spring constant is 250 N/m and

More information

Classical Mechanics. FIG. 1. Figure for (a), (b) and (c). FIG. 2. Figure for (d) and (e).

Classical Mechanics. FIG. 1. Figure for (a), (b) and (c). FIG. 2. Figure for (d) and (e). Classical Mechanics 1. Consider a cylindrically symmetric object with a total mass M and a finite radius R from the axis of symmetry as in the FIG. 1. FIG. 1. Figure for (a), (b) and (c). (a) Show that

More information

Lecture 18. In other words, if you double the stress, you double the resulting strain.

Lecture 18. In other words, if you double the stress, you double the resulting strain. Lecture 18 Stress and Strain and Springs Simple Harmonic Motion Cutnell+Johnson: 10.1-10.4,10.7-10.8 Stress and Strain and Springs So far we ve dealt with rigid objects. A rigid object doesn t change shape

More information

Simple Harmonic Motion Practice Problems PSI AP Physics B

Simple Harmonic Motion Practice Problems PSI AP Physics B Simple Harmonic Motion Practice Problems PSI AP Physics B Name Multiple Choice 1. A block with a mass M is attached to a spring with a spring constant k. The block undergoes SHM. Where is the block located

More information

AA 242B / ME 242B: Mechanical Vibrations (Spring 2016)

AA 242B / ME 242B: Mechanical Vibrations (Spring 2016) AA 242B / ME 242B: Mechanical Vibrations (Spring 206) Solution of Homework #3 Control Tab Figure : Schematic for the control tab. Inadequacy of a static-test A static-test for measuring θ would ideally

More information

Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class

Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class Homeworks VIII and IX both center on Lagrangian mechanics and involve many of the same skills. Therefore,

More information

Theoretical physics. Deterministic chaos in classical physics. Martin Scholtz

Theoretical physics. Deterministic chaos in classical physics. Martin Scholtz Theoretical physics Deterministic chaos in classical physics Martin Scholtz scholtzzz@gmail.com Fundamental physical theories and role of classical mechanics. Intuitive characteristics of chaos. Newton

More information

Lab M1: The Simple Pendulum

Lab M1: The Simple Pendulum Spring 2003 M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are usually regarded as

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations 14-1 Oscillations of a Spring If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The

More information

If the symmetry axes of a uniform symmetric body coincide with the coordinate axes, the products of inertia (Ixy etc.

If the symmetry axes of a uniform symmetric body coincide with the coordinate axes, the products of inertia (Ixy etc. Prof. O. B. Wright, Autumn 007 Mechanics Lecture 9 More on rigid bodies, coupled vibrations Principal axes of the inertia tensor If the symmetry axes of a uniform symmetric body coincide with the coordinate

More information

the EL equation for the x coordinate is easily seen to be (exercise)

the EL equation for the x coordinate is easily seen to be (exercise) Physics 6010, Fall 2016 Relevant Sections in Text: 1.3 1.6 Examples After all this formalism it is a good idea to spend some time developing a number of illustrative examples. These examples represent

More information

Oscillations Simple Harmonic Motion

Oscillations Simple Harmonic Motion Oscillations Simple Harmonic Motion Lana Sheridan De Anza College Dec 1, 2017 Overview oscillations simple harmonic motion (SHM) spring systems energy in SHM pendula damped oscillations Oscillations and

More information

Lab 10: Harmonic Motion and the Pendulum

Lab 10: Harmonic Motion and the Pendulum Lab 10 Harmonic Motion and the Pendulum 119 Name Date Partners Lab 10: Harmonic Motion and the Pendulum OVERVIEW A body is said to be in a position of stable equilibrium if, after displacement in any direction,

More information

Lecture 4. Alexey Boyarsky. October 6, 2015

Lecture 4. Alexey Boyarsky. October 6, 2015 Lecture 4 Alexey Boyarsky October 6, 2015 1 Conservation laws and symmetries 1.1 Ignorable Coordinates During the motion of a mechanical system, the 2s quantities q i and q i, (i = 1, 2,..., s) which specify

More information

Physics 161 Lecture 17 Simple Harmonic Motion. October 30, 2018

Physics 161 Lecture 17 Simple Harmonic Motion. October 30, 2018 Physics 161 Lecture 17 Simple Harmonic Motion October 30, 2018 1 Lecture 17: learning objectives Review from lecture 16 - Second law of thermodynamics. - In pv cycle process: ΔU = 0, Q add = W by gass

More information

CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS

CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS 7.1 Period and Frequency Anything that vibrates or repeats its motion regularly is said to have oscillatory motion (sometimes called harmonic

More information

5 Irreducible representations

5 Irreducible representations Physics 29b Lecture 9 Caltech, 2/5/9 5 Irreducible representations 5.9 Irreps of the circle group and charge We have been talking mostly about finite groups. Continuous groups are different, but their

More information

For a rigid body that is constrained to rotate about a fixed axis, the gravitational torque about the axis is

For a rigid body that is constrained to rotate about a fixed axis, the gravitational torque about the axis is Experiment 14 The Physical Pendulum The period of oscillation of a physical pendulum is found to a high degree of accuracy by two methods: theory and experiment. The values are then compared. Theory For

More information

Chapter 14 Oscillations

Chapter 14 Oscillations Chapter 14 Oscillations If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system is a

More information

QM and Angular Momentum

QM and Angular Momentum Chapter 5 QM and Angular Momentum 5. Angular Momentum Operators In your Introductory Quantum Mechanics (QM) course you learned about the basic properties of low spin systems. Here we want to review that

More information

spring mass equilibrium position +v max

spring mass equilibrium position +v max Lecture 20 Oscillations (Chapter 11) Review of Simple Harmonic Motion Parameters Graphical Representation of SHM Review of mass-spring pendulum periods Let s review Simple Harmonic Motion. Recall we used

More information

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One Advanced Vibrations Lecture One Elements of Analytical Dynamics By: H. Ahmadian ahmadian@iust.ac.ir Elements of Analytical Dynamics Newton's laws were formulated for a single particle Can be extended to

More information

Physics Waves & Oscillations. Mechanics Lesson: Circular Motion. Mechanics Lesson: Circular Motion 1/18/2016. Spring 2016 Semester Matthew Jones

Physics Waves & Oscillations. Mechanics Lesson: Circular Motion. Mechanics Lesson: Circular Motion 1/18/2016. Spring 2016 Semester Matthew Jones Physics 42200 Waves & Oscillations Lecture 5 French, Chapter 3 Spring 2016 Semester Matthew Jones Mechanics Lesson: Circular Motion Linear motion: Mass: Position: Velocity: / Momentum: Acceleration: /

More information

Quantum mechanics in one hour

Quantum mechanics in one hour Chapter 2 Quantum mechanics in one hour 2.1 Introduction The purpose of this chapter is to refresh your knowledge of quantum mechanics and to establish notation. Depending on your background you might

More information

2.003 Quiz #1 Review

2.003 Quiz #1 Review 2.003J Spring 2011: Dynamics and Control I Quiz #1 Review Massachusetts Institute of Technology March 5th, 2011 Department of Mechanical Engineering March 6th, 2011 1 Reference Frames 2.003 Quiz #1 Review

More information

Oscillations and Waves

Oscillations and Waves Oscillations and Waves Somnath Bharadwaj and S. Pratik Khastgir Department of Physics and Meteorology IIT Kharagpur Module : Oscillations Lecture : Oscillations Oscillations are ubiquitous. It would be

More information