PHY6426/Fall 07: CLASSICAL MECHANICS HOMEWORK ASSIGNMENT #1 due by 9:35 a.m. Wed 09/05 Instructor: D. L. Maslov Rm.

Size: px
Start display at page:

Download "PHY6426/Fall 07: CLASSICAL MECHANICS HOMEWORK ASSIGNMENT #1 due by 9:35 a.m. Wed 09/05 Instructor: D. L. Maslov Rm."

Transcription

1 PHY646/Fall 07: CLASSICAL MECHANICS HOMEWORK ASSIGNMENT # due by 9:35 a.m. Wed 09/05 Instructor: D. L. Maslov maslov@phys.ufl.edu Rm. 4 Please help your instructor by doing your work neatly.. Goldstein, Problem.4 Note that the rod can be at an arbitrary angle to the plane.) 0 points) Solution: or, in reverse, See Figure for notations. Introducing the c.o.m and relative coordinates we obtain for the kinetic energy R = r + r r = r r, r = R + r/ r = R r/, Now, T = m ṙ ) + ) m ṙ ) = m Ṙ + 4 m ṙ). ) Ṙ = a Φ) whereas r = sin θ cos φ, sin θ sin φ, cos θ) and Finally, ) ṙ = l θ cos θ cos φ sin θ φ sin φ, θ cos θ sin φ + sin θ φ cos φ, sin θ θ ) ) ṙ) = l θ + sin θ φ. ) T = ma ) ) Φ + 4 ml θ + sin θ φ. If the rode is constrained to move in the plane θ = π/, θ = 0), this expression simplifies to ) T = ma Φ ) + 4 ml φ.. A geodesic is a line that represents the shortest path between any two points when the path is restricted to a particular surface. Show that the geodesic on the surface of a right cylinder is a segment of a helix. Hint: The equation of a helix is z = Cφ, where C is a constant. 0 points) Solution: The element of distance along the surface is ds = dx + dy + dz. )

2 Φ θ φ FIG. : In cylindrical coordinates, x = ρ cos φ, y = ρ sin φ, z = z from which dx = ρ sin φdφ ) dy = ρ cos φdφ dz = dz. Substituting ) into ) and integrating along the entire path between points and, we find s = ρ dφ + dz = φ φ dφ ρ + ż, where ż = dz/dφ. If s is to be minimum, the function f = ρ + ż must satisfy the Euler equation because f z or = 0. Thus d d f dφ ż = f z = 0, f dφ ż = d ż dφ ρ + ż = 0 ż ρ + ż = C=constant Solving for ż, we find Since ρ is a constant, it means that ż = where A is a constant. This is the equation for a helix. C C ρ. z = Aφ,

3 3 3. Goldstein, Problem. 0 points) Solution: T = m x = l sin φ y = l cos φ x = l sin φ + l sin φ y = l cos φ + l cos φ U = m gl sin φ ẋ ) + ẏ ) ] = ) m l φ T = m U = m gl sin φ ẋ ) + ẏ ) ] = ) ) ] m l φ + l φ + l l φ φ cos φ φ ) Equations of motion L = T + T U U = m + m ) l m ) φ + l φ + m l l φ φ cos φ φ ) + m + m ) gl cos φ + m gl cos φ. m + m ) l φ + m l φ cos φ φ ) φ φ φ ) ] sin φ φ ) + m l φ φ sin φ φ ) + m + m ) g sin φ = 0 ) ] m + m ) l φ + m l φ cos φ φ ) + φ sin φ φ ) + m + m ) g sin φ = 0 and m l φ + m l l φ cos φ φ ) φ φ φ ) ] sin φ φ ) ml l φ φ sin φ φ ) + m gl sin φ = 0 l φ + l φ cos φ φ ) φ ) sinφ φ )] + g sin φ = 0. Linearizing the exact equations of motion for a double plane pendulum, obtained in the previous problem, find the characteristic frequencies of small oscillations. 0 points) olution: Approximating sin φ φ and cos φ in Eqs.??,??), we obtain m + m ) l φ + m l φ + m + m ) gφ = 0 l φ + l φ + gφ = 0 Substituting φ = A e iωt φ = A e iωt, we obtain a characteristic equation A m + m ) g ω ) l m l ω A = 0 A l ω + A m g l ω ) = 0

4 4 φ φ FIG. : The condition that the determinant is equal to zero yields { } g ω = m + m ) l + l ) ± m + m ) m + m ) l + l ) 4m l l ]. m l l. a) Goldstein, Problem.4. 5 points) Variational solution: Notations: distance to the center of mass of the hoop is ρ, the angular position of the c.o.m. os θ, and the angular position of a point on the rim is φ. Lagrangian L = m ρ) + ) mρ θ ) + mr φ mgρ cos θ Constraints: ρ = r + R 3) ρθ = rφ 4) The second constraint is the no-slipping condition ρ θ = r φ, integrated over time. Indeed, a general condition of a no-slipping contact of two bodies is that the velocities at the contact point are the same. When one of the bodies is stationary cylinder), this implies that the contact point is stationary as well. The velocity of the contact point is the sum of the velocity of the center of mass and the linear velocity of the rim. At the contact point, these two velocities are anti-parallel, hence On the other hand, Hence, and Eq.4). 0 = v c.m. r φ. v c.m. = ρ θ. ρ θ = r φ, Correspondingly, there are two constraint functions f f = ρ r R = ρθ rφ Since neither of the constraints functions depends on the velocities, only the spatial derivatives f α / q j appear. Lagrange s equations d L dt ρ L ρ = λ f ρ + λ f ρ = λ + λ θ

5 5 or d L L dt θ θ = λ f θ + λ d L L dt φ φ = λ f φ = λ r f θ = λ ρ Differentiating Eqs.3) and 4) over time, we find Eq.7) then gives m ρ mρ θ) + mg cos θ = λ + λ θ 5) d ) mρ θ mgρ sin θ = λ ρ dt 6) mr φ = rλ 7) ρ = ρ = 0 8) ρ θ = r φ. Substuting λ from the last equation into??), we find that Recalling that mρ θ) + mg cos θ = λ + λ θ 9) ρ θ g sin θ = λ /m 0) mρ θ = λ ) θ = g sin θ. ρ θ = d dθ θ and integrating the resulting equation with the initial conditions θ t = 0) = 0 and θ t = 0) = 0, we obtain Substuting this into Eq.9) θ = g cos θ). ρ mg cos θ mg = λ + λ θ The physical meaning of λ + λ θ is the normal force. λ + λ θ = 0 or when The hoop looses contact with the cylinder, when cos θ = θ = 60. b) Repeat Problem.4 for an object with inertia I rolling down the cylinder. In which limit does the answer reduce to the case of a point mass sliding down the cylinder? 5 points) SolutionThe variational solution can be carried out in the same way. Just to do things differently this time, I will solve this problem using energy conservation and nd Law. Once the constraint v c.m. = ωr, where ω is the angular velocity of rolling, is resolved, the kinetic energy can be written as for an object with inertia I T = mv c.m. + Iω = mv c.m. + I v c.m. r. The kinetic energy is equal to the change in the potential energy U = mgρ cos θ)

6 6 and Second law for the center of mass of the hoop says mv c.m. + I v c.m. r = mgρ cos θ). mv c.m. ρ = mg cos θ N, where N is the normal force. Condition N = 0, when the hoop loses the contact with the cylinder, correspond to or mv c.m. ρ = mg cos θ, mv c.m. = mgρ cos θ. Substituting the last relation into the energy conservation, we find For a hoop, I = mr and mgρ cos θ + I/mr ) = mgρ cos θ) cos θ = 3 + I/mr. cos θ = /. The limit I 0 correspond to a non-rolling object. In this case we recover cos θ = /3

Problem Goldstein 2-12

Problem Goldstein 2-12 Problem Goldstein -1 The Rolling Constraint: A small circular hoop of radius r and mass m hoop rolls without slipping on a stationary cylinder of radius R. The only external force is that of gravity. Let

More information

Marion and Thornton. Tyler Shendruk October 1, Hamilton s Principle - Lagrangian and Hamiltonian dynamics.

Marion and Thornton. Tyler Shendruk October 1, Hamilton s Principle - Lagrangian and Hamiltonian dynamics. Marion and Thornton Tyler Shendruk October 1, 2010 1 Marion and Thornton Chapter 7 Hamilton s Principle - Lagrangian and Hamiltonian dynamics. 1.1 Problem 6.4 s r z θ Figure 1: Geodesic on circular cylinder

More information

Assignment 2. Goldstein 2.3 Prove that the shortest distance between two points in space is a straight line.

Assignment 2. Goldstein 2.3 Prove that the shortest distance between two points in space is a straight line. Assignment Goldstein.3 Prove that the shortest distance between two points in space is a straight line. The distance between two points is given by the integral of the infinitesimal arclength: s = = =

More information

Variation Principle in Mechanics

Variation Principle in Mechanics Section 2 Variation Principle in Mechanics Hamilton s Principle: Every mechanical system is characterized by a Lagrangian, L(q i, q i, t) or L(q, q, t) in brief, and the motion of he system is such that

More information

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017 CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS Prof. N. Harnew University of Oxford TT 2017 1 OUTLINE : CP1 REVISION LECTURE 3 : INTRODUCTION TO CLASSICAL MECHANICS 1. Angular velocity and

More information

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod)

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) 28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) θ + ω 2 sin θ = 0. Indicate the stable equilibrium points as well as the unstable equilibrium points.

More information

Question 1: A particle starts at rest and moves along a cycloid whose equation is. 2ay y a

Question 1: A particle starts at rest and moves along a cycloid whose equation is. 2ay y a Stephen Martin PHYS 10 Homework #1 Question 1: A particle starts at rest and moves along a cycloid whose equation is [ ( ) a y x = ± a cos 1 + ] ay y a There is a gravitational field of strength g in the

More information

SOLUTIONS, PROBLEM SET 11

SOLUTIONS, PROBLEM SET 11 SOLUTIONS, PROBLEM SET 11 1 In this problem we investigate the Lagrangian formulation of dynamics in a rotating frame. Consider a frame of reference which we will consider to be inertial. Suppose that

More information

HW3 Physics 311 Mechanics

HW3 Physics 311 Mechanics HW3 Physics 311 Mechanics FA L L 2 0 1 5 P H Y S I C S D E PA R T M E N T U N I V E R S I T Y O F W I S C O N S I N, M A D I S O N I N S T R U C T O R : P R O F E S S O R S T E F A N W E S T E R H O F

More information

Phys 7221 Homework # 8

Phys 7221 Homework # 8 Phys 71 Homework # 8 Gabriela González November 15, 6 Derivation 5-6: Torque free symmetric top In a torque free, symmetric top, with I x = I y = I, the angular velocity vector ω in body coordinates with

More information

Massachusetts Institute of Technology Department of Physics. Final Examination December 17, 2004

Massachusetts Institute of Technology Department of Physics. Final Examination December 17, 2004 Massachusetts Institute of Technology Department of Physics Course: 8.09 Classical Mechanics Term: Fall 004 Final Examination December 17, 004 Instructions Do not start until you are told to do so. Solve

More information

Physics 351, Spring 2015, Homework #5. Due at start of class, Friday, February 20, 2015 Course info is at positron.hep.upenn.

Physics 351, Spring 2015, Homework #5. Due at start of class, Friday, February 20, 2015 Course info is at positron.hep.upenn. Physics 351, Spring 2015, Homework #5. Due at start of class, Friday, February 20, 2015 Course info is at positron.hep.upenn.edu/p351 When you finish this homework, remember to visit the feedback page

More information

Part 8: Rigid Body Dynamics

Part 8: Rigid Body Dynamics Document that contains homework problems. Comment out the solutions when printing off for students. Part 8: Rigid Body Dynamics Problem 1. Inertia review Find the moment of inertia for a thin uniform rod

More information

Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class

Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class Homeworks VIII and IX both center on Lagrangian mechanics and involve many of the same skills. Therefore,

More information

PHY 5246: Theoretical Dynamics, Fall September 28 th, 2015 Midterm Exam # 1

PHY 5246: Theoretical Dynamics, Fall September 28 th, 2015 Midterm Exam # 1 Name: SOLUTIONS PHY 5246: Theoretical Dynamics, Fall 2015 September 28 th, 2015 Mierm Exam # 1 Always remember to write full work for what you do. This will help your grade in case of incomplete or wrong

More information

Physics 351, Spring 2017, Homework #12. Due at start of class, Friday, April 14, 2017

Physics 351, Spring 2017, Homework #12. Due at start of class, Friday, April 14, 2017 Physics 351, Spring 2017, Homework #12. Due at start of class, Friday, April 14, 2017 Course info is at positron.hep.upenn.edu/p351 When you finish this homework, remember to visit the feedback page at

More information

3 Space curvilinear motion, motion in non-inertial frames

3 Space curvilinear motion, motion in non-inertial frames 3 Space curvilinear motion, motion in non-inertial frames 3.1 In-class problem A rocket of initial mass m i is fired vertically up from earth and accelerates until its fuel is exhausted. The residual mass

More information

P321(b), Assignement 1

P321(b), Assignement 1 P31(b), Assignement 1 1 Exercise 3.1 (Fetter and Walecka) a) The problem is that of a point mass rotating along a circle of radius a, rotating with a constant angular velocity Ω. Generally, 3 coordinates

More information

Solution Set Two. 1 Problem #1: Projectile Motion Cartesian Coordinates Polar Coordinates... 3

Solution Set Two. 1 Problem #1: Projectile Motion Cartesian Coordinates Polar Coordinates... 3 : Solution Set Two Northwestern University, Classical Mechanics Classical Mechanics, Third Ed.- Goldstein October 7, 2015 Contents 1 Problem #1: Projectile Motion. 2 1.1 Cartesian Coordinates....................................

More information

Rotational motion problems

Rotational motion problems Rotational motion problems. (Massive pulley) Masses m and m 2 are connected by a string that runs over a pulley of radius R and moment of inertia I. Find the acceleration of the two masses, as well as

More information

ESM 3124 Intermediate Dynamics 2012, HW6 Solutions. (1 + f (x) 2 ) We can first write the constraint y = f(x) in the form of a constraint

ESM 3124 Intermediate Dynamics 2012, HW6 Solutions. (1 + f (x) 2 ) We can first write the constraint y = f(x) in the form of a constraint ESM 314 Intermediate Dynamics 01, HW6 Solutions Roller coaster. A bead of mass m can slide without friction, under the action of gravity, on a smooth rigid wire which has the form y = f(x). (a) Find the

More information

7 Kinematics and kinetics of planar rigid bodies II

7 Kinematics and kinetics of planar rigid bodies II 7 Kinematics and kinetics of planar rigid bodies II 7.1 In-class A rigid circular cylinder of radius a and length h has a hole of radius 0.5a cut out. The density of the cylinder is ρ. Assume that the

More information

HW 6 Mathematics 503, Mathematical Modeling, CSUF, June 24, 2007

HW 6 Mathematics 503, Mathematical Modeling, CSUF, June 24, 2007 HW 6 Mathematics 503, Mathematical Modeling, CSUF, June 24, 2007 Nasser M. Abbasi June 15, 2014 Contents 1 Problem 1 (section 3.5,#9, page 197 1 2 Problem 1 (section 3.5,#9, page 197 7 1 Problem 1 (section

More information

Physics 351, Spring 2017, Homework #4. Due at start of class, Friday, February 10, 2017

Physics 351, Spring 2017, Homework #4. Due at start of class, Friday, February 10, 2017 Physics 351, Spring 2017, Homework #4. Due at start of class, Friday, February 10, 2017 Course info is at positron.hep.upenn.edu/p351 When you finish this homework, remember to visit the feedback page

More information

Oscillatory Motion. Solutions of Selected Problems

Oscillatory Motion. Solutions of Selected Problems Chapter 15 Oscillatory Motion. Solutions of Selected Problems 15.1 Problem 15.18 (In the text book) A block-spring system oscillates with an amplitude of 3.50 cm. If the spring constant is 250 N/m and

More information

Constraints. Noninertial coordinate systems

Constraints. Noninertial coordinate systems Chapter 8 Constraints. Noninertial codinate systems 8.1 Constraints Oftentimes we encounter problems with constraints. F example, f a ball rolling on a flo without slipping, there is a constraint linking

More information

Physics 351, Spring 2015, Final Exam.

Physics 351, Spring 2015, Final Exam. Physics 351, Spring 2015, Final Exam. This closed-book exam has (only) 25% weight in your course grade. You can use one sheet of your own hand-written notes. Please show your work on these pages. The back

More information

Solutions to homework assignment #3 Math 119B UC Davis, Spring = 12x. The Euler-Lagrange equation is. 2q (x) = 12x. q(x) = x 3 + x.

Solutions to homework assignment #3 Math 119B UC Davis, Spring = 12x. The Euler-Lagrange equation is. 2q (x) = 12x. q(x) = x 3 + x. 1. Find the stationary points of the following functionals: (a) 1 (q (x) + 1xq(x)) dx, q() =, q(1) = Solution. The functional is 1 L(q, q, x) where L(q, q, x) = q + 1xq. We have q = q, q = 1x. The Euler-Lagrange

More information

Classical Mechanics III (8.09) Fall 2014 Assignment 3

Classical Mechanics III (8.09) Fall 2014 Assignment 3 Classical Mechanics III (8.09) Fall 2014 Assignment 3 Massachusetts Institute of Technology Physics Department Due September 29, 2014 September 22, 2014 6:00pm Announcements This week we continue our discussion

More information

Physical Dynamics (PHY-304)

Physical Dynamics (PHY-304) Physical Dynamics (PHY-304) Gabriele Travaglini March 31, 2012 1 Review of Newtonian Mechanics 1.1 One particle Lectures 1-2. Frame, velocity, acceleration, number of degrees of freedom, generalised coordinates.

More information

Goldstein Problem 2.17 (3 rd ed. # 2.18)

Goldstein Problem 2.17 (3 rd ed. # 2.18) Goldstein Problem.7 (3 rd ed. #.8) The geometry of the problem: A particle of mass m is constrained to move on a circular hoop of radius a that is vertically oriented and forced to rotate about the vertical

More information

Physics 8, Fall 2011, equation sheet work in progress

Physics 8, Fall 2011, equation sheet work in progress 1 year 3.16 10 7 s Physics 8, Fall 2011, equation sheet work in progress circumference of earth 40 10 6 m speed of light c = 2.9979 10 8 m/s mass of proton or neutron 1 amu ( atomic mass unit ) = 1 1.66

More information

N mg N Mg N Figure : Forces acting on particle m and inclined plane M. (b) The equations of motion are obtained by applying the momentum principles to

N mg N Mg N Figure : Forces acting on particle m and inclined plane M. (b) The equations of motion are obtained by applying the momentum principles to .004 MDEING DNMIS ND NTR I I Spring 00 Solutions for Problem Set 5 Problem. Particle slides down movable inclined plane. The inclined plane of mass M is constrained to move parallel to the -axis, and the

More information

M2A2 Problem Sheet 3 - Hamiltonian Mechanics

M2A2 Problem Sheet 3 - Hamiltonian Mechanics MA Problem Sheet 3 - Hamiltonian Mechanics. The particle in a cone. A particle slides under gravity, inside a smooth circular cone with a vertical axis, z = k x + y. Write down its Lagrangian in a) Cartesian,

More information

Forces of Rolling. 1) Ifobjectisrollingwith a com =0 (i.e.no netforces), then v com =ωr = constant (smooth roll)

Forces of Rolling. 1) Ifobjectisrollingwith a com =0 (i.e.no netforces), then v com =ωr = constant (smooth roll) Physics 2101 Section 3 March 12 rd : Ch. 10 Announcements: Mid-grades posted in PAW Quiz today I will be at the March APS meeting the week of 15-19 th. Prof. Rich Kurtz will help me. Class Website: http://www.phys.lsu.edu/classes/spring2010/phys2101-3/

More information

Classical Mechanics Comprehensive Exam Solution

Classical Mechanics Comprehensive Exam Solution Classical Mechanics Comprehensive Exam Solution January 31, 011, 1:00 pm 5:pm Solve the following six problems. In the following problems, e x, e y, and e z are unit vectors in the x, y, and z directions,

More information

Constrained motion and generalized coordinates

Constrained motion and generalized coordinates Constrained motion and generalized coordinates based on FW-13 Often, the motion of particles is restricted by constraints, and we want to: work only with independent degrees of freedom (coordinates) k

More information

Physics 8, Fall 2013, equation sheet work in progress

Physics 8, Fall 2013, equation sheet work in progress (Chapter 1: foundations) 1 year 3.16 10 7 s Physics 8, Fall 2013, equation sheet work in progress circumference of earth 40 10 6 m speed of light c = 2.9979 10 8 m/s mass of proton or neutron 1 amu ( atomic

More information

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration 1 Handout 6: Rotational motion and moment of inertia Angular velocity and angular acceleration In Figure 1, a particle b is rotating about an axis along a circular path with radius r. The radius sweeps

More information

Classical Mechanics. FIG. 1. Figure for (a), (b) and (c). FIG. 2. Figure for (d) and (e).

Classical Mechanics. FIG. 1. Figure for (a), (b) and (c). FIG. 2. Figure for (d) and (e). Classical Mechanics 1. Consider a cylindrically symmetric object with a total mass M and a finite radius R from the axis of symmetry as in the FIG. 1. FIG. 1. Figure for (a), (b) and (c). (a) Show that

More information

Final Review Worksheet

Final Review Worksheet Score: Name: Final Review Worksheet Math 2110Q Fall 2014 Professor Hohn Answers (in no particular order): f(x, y) = e y + xe xy + C; 2; 3; e y cos z, e z cos x, e x cos y, e x sin y e y sin z e z sin x;

More information

PHY321 Homework Set 10

PHY321 Homework Set 10 PHY321 Homework Set 10 1. [5 pts] A small block of mass m slides without friction down a wedge-shaped block of mass M and of opening angle α. Thetriangular block itself slides along a horizontal floor,

More information

Energy and Angular Momentum

Energy and Angular Momentum Chapter 3 Energy and Angular Momentum In this chapter, we generalize the discussion of Chapter 2 to the case of motion in two or three dimensions. Throughout this chapter, we shall be concerned with the

More information

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Chapter 1: Rotation of Rigid Bodies Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Translational vs Rotational / / 1/ m x v dx dt a dv dt F ma p mv KE mv Work Fd P Fv / / 1/ I

More information

Chapter 10. Rotation of a Rigid Object about a Fixed Axis

Chapter 10. Rotation of a Rigid Object about a Fixed Axis Chapter 10 Rotation of a Rigid Object about a Fixed Axis Angular Position Axis of rotation is the center of the disc Choose a fixed reference line. Point P is at a fixed distance r from the origin. A small

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 9, 2017 11:00AM to 1:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

More information

COMPLETE ALL ROUGH WORKINGS IN THE ANSWER BOOK AND CROSS THROUGH ANY WORK WHICH IS NOT TO BE ASSESSED.

COMPLETE ALL ROUGH WORKINGS IN THE ANSWER BOOK AND CROSS THROUGH ANY WORK WHICH IS NOT TO BE ASSESSED. BSc/MSci EXAMINATION PHY-304 Time Allowed: Physical Dynamics 2 hours 30 minutes Date: 28 th May 2009 Time: 10:00 Instructions: Answer ALL questions in section A. Answer ONLY TWO questions from section

More information

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2)

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) We will limit our study of planar kinetics to rigid bodies that are symmetric with respect to a fixed reference plane. As discussed in Chapter 16, when

More information

the EL equation for the x coordinate is easily seen to be (exercise)

the EL equation for the x coordinate is easily seen to be (exercise) Physics 6010, Fall 2016 Relevant Sections in Text: 1.3 1.6 Examples After all this formalism it is a good idea to spend some time developing a number of illustrative examples. These examples represent

More information

Analytical Dynamics: Lagrange s Equation and its Application A Brief Introduction

Analytical Dynamics: Lagrange s Equation and its Application A Brief Introduction Analytical Dynamics: Lagrange s Equation and its Application A Brief Introduction D. S. Stutts, Ph.D. Associate Professor of Mechanical Engineering Missouri University of Science and Technology Rolla,

More information

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1 Physics 201 p. 1/1 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/1 Rotational Kinematics and Energy Rotational Kinetic Energy, Moment of Inertia All elements inside the rigid

More information

Chapter 9 Notes. x cm =

Chapter 9 Notes. x cm = Chapter 9 Notes Chapter 8 begins the discussion of rigid bodies, a system of particles with fixed relative positions. Previously we have dealt with translation of a particle: if a rigid body does not rotate

More information

7 Pendulum. Part II: More complicated situations

7 Pendulum. Part II: More complicated situations MATH 35, by T. Lakoba, University of Vermont 60 7 Pendulum. Part II: More complicated situations In this Lecture, we will pursue two main goals. First, we will take a glimpse at a method of Classical Mechanics

More information

Part II. Classical Dynamics. Year

Part II. Classical Dynamics. Year Part II Year 28 27 26 25 24 23 22 21 20 2009 2008 2007 2006 2005 28 Paper 1, Section I 8B Derive Hamilton s equations from an action principle. 22 Consider a two-dimensional phase space with the Hamiltonian

More information

The Principle of Least Action

The Principle of Least Action The Principle of Least Action In their never-ending search for general principles, from which various laws of Physics could be derived, physicists, and most notably theoretical physicists, have often made

More information

Angular Displacement. θ i. 1rev = 360 = 2π rads. = "angular displacement" Δθ = θ f. π = circumference. diameter

Angular Displacement. θ i. 1rev = 360 = 2π rads. = angular displacement Δθ = θ f. π = circumference. diameter Rotational Motion Angular Displacement π = circumference diameter π = circumference 2 radius circumference = 2πr Arc length s = rθ, (where θ in radians) θ 1rev = 360 = 2π rads Δθ = θ f θ i = "angular displacement"

More information

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION I. Moment of Inertia: Since a body has a definite size and shape, an applied nonconcurrent force system may cause the body to both translate and rotate.

More information

PHY 5246: Theoretical Dynamics, Fall Assignment # 9, Solutions. y CM (θ = 0) = 2 ρ m

PHY 5246: Theoretical Dynamics, Fall Assignment # 9, Solutions. y CM (θ = 0) = 2 ρ m PHY 546: Theoretical Dnamics, Fall 5 Assignment # 9, Solutions Graded Problems Problem (.a) l l/ l/ CM θ x In order to find the equation of motion of the triangle, we need to write the Lagrangian, with

More information

Two dimensional oscillator and central forces

Two dimensional oscillator and central forces Two dimensional oscillator and central forces September 4, 04 Hooke s law in two dimensions Consider a radial Hooke s law force in -dimensions, F = kr where the force is along the radial unit vector and

More information

Dynamics 4600:203 Homework 09 Due: April 04, 2008 Name:

Dynamics 4600:203 Homework 09 Due: April 04, 2008 Name: Dynamics 4600:03 Homework 09 Due: April 04, 008 Name: Please denote your answers clearly, i.e., box in, star, etc., and write neatly. There are no points for small, messy, unreadable work... please use

More information

Assignment 2. Tyler Shendruk October 8, Hamilton s Principle - Lagrangian and Hamiltonian dynamics.

Assignment 2. Tyler Shendruk October 8, Hamilton s Principle - Lagrangian and Hamiltonian dynamics. Assignent Tyler Shendruk October 8, 010 1 Marion and Thornton Chapter 7 Hailton s Principle - Lagrangian and Hailtonian dynaics. 1.1 Proble 7.9 y z x l θ α Figure 1: A disk rolling down an incline plane.

More information

PHYSICS 200A : CLASSICAL MECHANICS SOLUTION SET #2

PHYSICS 200A : CLASSICAL MECHANICS SOLUTION SET #2 PHYSICS 200A : CLASSICAL MECHANICS SOLUTION SET #2 [1] [José and Saletan problem 3.11] Consider a three-dimensional one-particle system whose potential energy in cylindrical polar coordinates {ρ,φ,z} is

More information

Nonholonomic Constraints Examples

Nonholonomic Constraints Examples Nonholonomic Constraints Examples Basilio Bona DAUIN Politecnico di Torino July 2009 B. Bona (DAUIN) Examples July 2009 1 / 34 Example 1 Given q T = [ x y ] T check that the constraint φ(q) = (2x + siny

More information

Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as:

Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as: Coordinator: Dr.. Naqvi Monday, January 05, 015 Page: 1 Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as: ) (1/) MV, where M is the

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 14, 2019 10:00AM to 12:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion

More information

Lagrangian for Central Potentials

Lagrangian for Central Potentials Physics 411 Lecture 2 Lagrangian for Central Potentials Lecture 2 Physics 411 Classical Mechanics II August 29th 2007 Here we will review the Lagrange formulation in preparation for the study of the central

More information

2-D Motion of Rigid Bodies - Kinematics

2-D Motion of Rigid Bodies - Kinematics 1 2.003J/1.053J Dynamics and Control I, Spring 2007 Professor Thomas Peacock 2/28/2007 Lecture 7 2-D Motion of Rigid Bodies - Kinematics Kinematics of Rigid Bodies Williams 3-3 (No method of instant centers)

More information

Problem Set 2 Solution

Problem Set 2 Solution Problem Set Solution Friday, September 13 Physics 111 Problem 1 Tautochrone A particle slides without friction on a cycloidal track given by x = a(θ sinθ y = a(1 cosθ where y is oriented vertically downward

More information

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as 2 MODELING Once the control target is identified, which includes the state variable to be controlled (ex. speed, position, temperature, flow rate, etc), and once the system drives are identified (ex. force,

More information

Physics 5153 Classical Mechanics. Solution by Quadrature-1

Physics 5153 Classical Mechanics. Solution by Quadrature-1 October 14, 003 11:47:49 1 Introduction Physics 5153 Classical Mechanics Solution by Quadrature In the previous lectures, we have reduced the number o eective degrees o reedom that are needed to solve

More information

I. HARTLE CHAPTER 8, PROBLEM 2 (8 POINTS) where here an overdot represents d/dλ, must satisfy the geodesic equation (see 3 on problem set 4)

I. HARTLE CHAPTER 8, PROBLEM 2 (8 POINTS) where here an overdot represents d/dλ, must satisfy the geodesic equation (see 3 on problem set 4) Physics 445 Solution for homework 5 Fall 2004 Cornell University 41 points) Steve Drasco 1 NOTE From here on, unless otherwise indicated we will use the same conventions as in the last two solutions: four-vectors

More information

Phys 7221, Fall 2006: Midterm exam

Phys 7221, Fall 2006: Midterm exam Phys 7221, Fall 2006: Midterm exam October 20, 2006 Problem 1 (40 pts) Consider a spherical pendulum, a mass m attached to a rod of length l, as a constrained system with r = l, as shown in the figure.

More information

Rigid Body Dynamics, SG2150 Solutions to Exam,

Rigid Body Dynamics, SG2150 Solutions to Exam, KTH Mechanics 011 10 Calculational problems Rigid Body Dynamics, SG150 Solutions to Eam, 011 10 Problem 1: A slender homogeneous rod of mass m and length a can rotate in a vertical plane about a fied smooth

More information

Rotation. Rotational Variables

Rotation. Rotational Variables Rotation Rigid Bodies Rotation variables Constant angular acceleration Rotational KE Rotational Inertia Rotational Variables Rotation of a rigid body About a fixed rotation axis. Rigid Body an object that

More information

VIBRATING BASE PENDULUM. Math 485 Project team Thomas Bello Emily Huang Fabian Lopez Kellin Rumsey Tao Tao

VIBRATING BASE PENDULUM. Math 485 Project team Thomas Bello Emily Huang Fabian Lopez Kellin Rumsey Tao Tao VIBRATING BASE PENDULUM Math 485 Project team Thomas Bello Emily Huang Fabian Lopez Kellin Rumsey Tao Tao Agenda Midterm Recap Equation of Motion & Energy Modeling Effective Potential Stability Analysis

More information

DEPARTMENT OF PHYSICS. University at Albany State University of New York. Comprehensive Field Examination. Classical. Monday, May 21, 2018

DEPARTMENT OF PHYSICS. University at Albany State University of New York. Comprehensive Field Examination. Classical. Monday, May 21, 2018 DEPARTMENT OF PHYSICS University at Albany State University of New York Comprehensive Field Examination Classical Monday, May 21, 218 1: AM - 1: PM Instruction: Answer any four out of five questions Please

More information

Relating Translational and Rotational Variables

Relating Translational and Rotational Variables Relating Translational and Rotational Variables Rotational position and distance moved s = θ r (only radian units) Rotational and translational speed d s v = dt v = ω r = ds dt = d θ dt r Relating period

More information

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt Jim Lambers MAT 28 ummer emester 212-1 Practice Final Exam olution 1. Evaluate the line integral xy dx + e y dy + xz dz, where is given by r(t) t 4, t 2, t, t 1. olution From r (t) 4t, 2t, t 2, we obtain

More information

14. Rotational Kinematics and Moment of Inertia

14. Rotational Kinematics and Moment of Inertia 14. Rotational Kinematics and Moment of nertia A) Overview n this unit we will introduce rotational motion. n particular, we will introduce the angular kinematic variables that are used to describe the

More information

Forces of Constraint & Lagrange Multipliers

Forces of Constraint & Lagrange Multipliers Lectures 30 April 21, 2006 Written or last updated: April 21, 2006 P442 Analytical Mechanics - II Forces of Constraint & Lagrange Multipliers c Alex R. Dzierba Generalized Coordinates Revisited Consider

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 14, 2013 3:10PM to 5:10PM Classical Physics Section 2. Electricity, Magnetism & Electrodynamics Two hours are permitted

More information

Lecture 27: Generalized Coordinates and Lagrange s Equations of Motion

Lecture 27: Generalized Coordinates and Lagrange s Equations of Motion Lecture 27: Generalize Coorinates an Lagrange s Equations of Motion Calculating T an V in terms of generalize coorinates. Example: Penulum attache to a movable support 6 Cartesian Coorinates: (X, Y, Z)

More information

HW 3 Solution Key. Classical Mechanics I HW # 3 Solution Key

HW 3 Solution Key. Classical Mechanics I HW # 3 Solution Key Classical Mechanics I HW # 3 Solution Key HW 3 Solution Key 1. (10 points) Suppose a system has a potential energy: U = A(x 2 R 2 ) 2 where A is a constant and R is me fixed distance from the origin (on

More information

Lecture 4. Alexey Boyarsky. October 6, 2015

Lecture 4. Alexey Boyarsky. October 6, 2015 Lecture 4 Alexey Boyarsky October 6, 2015 1 Conservation laws and symmetries 1.1 Ignorable Coordinates During the motion of a mechanical system, the 2s quantities q i and q i, (i = 1, 2,..., s) which specify

More information

Analytical Mechanics - Extra Problems

Analytical Mechanics - Extra Problems Analytical Mechanics - Extra Problems Physics 105, F17 (R) are review problems. Review problems are those that have already been covered in prior courses, mostly Intro to Physics I and II. Some are math

More information

1.1. Rotational Kinematics Description Of Motion Of A Rotating Body

1.1. Rotational Kinematics Description Of Motion Of A Rotating Body PHY 19- PHYSICS III 1. Moment Of Inertia 1.1. Rotational Kinematics Description Of Motion Of A Rotating Body 1.1.1. Linear Kinematics Consider the case of linear kinematics; it concerns the description

More information

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a

More information

Torque. Introduction. Torque. PHY torque - J. Hedberg

Torque. Introduction. Torque. PHY torque - J. Hedberg Torque PHY 207 - torque - J. Hedberg - 2017 1. Introduction 2. Torque 1. Lever arm changes 3. Net Torques 4. Moment of Rotational Inertia 1. Moment of Inertia for Arbitrary Shapes 2. Parallel Axis Theorem

More information

PHYS2330 Intermediate Mechanics Fall Final Exam Tuesday, 21 Dec 2010

PHYS2330 Intermediate Mechanics Fall Final Exam Tuesday, 21 Dec 2010 Name: PHYS2330 Intermediate Mechanics Fall 2010 Final Exam Tuesday, 21 Dec 2010 This exam has two parts. Part I has 20 multiple choice questions, worth two points each. Part II consists of six relatively

More information

is conserved, calculating E both at θ = 0 and θ = π/2 we find that this happens for a value ω = ω given by: 2g

is conserved, calculating E both at θ = 0 and θ = π/2 we find that this happens for a value ω = ω given by: 2g UNIVERSITETET I STAVANGER Institutt for matematikk og naturvitenskap Suggested solutions, FYS 500 Classical Mechanics Theory 2016 fall Set 5 for 23. September 2016 Problem 27: A string can only support

More information

Math 265 (Butler) Practice Midterm III B (Solutions)

Math 265 (Butler) Practice Midterm III B (Solutions) Math 265 (Butler) Practice Midterm III B (Solutions). Set up (but do not evaluate) an integral for the surface area of the surface f(x, y) x 2 y y over the region x, y 4. We have that the surface are is

More information

where x 0 is arbitrary.

where x 0 is arbitrary. The forces internal to a system are of two types. Conservative forces, such as gravity; and dissipative forces such as friction. Internal forces arise from the natural dynamics of the system in contract

More information

CANONICAL EQUATIONS. Application to the study of the equilibrium of flexible filaments and brachistochrone curves. By A.

CANONICAL EQUATIONS. Application to the study of the equilibrium of flexible filaments and brachistochrone curves. By A. Équations canoniques. Application a la recherche de l équilibre des fils flexibles et des courbes brachystochrones, Mem. Acad. Sci de Toulouse (8) 7 (885), 545-570. CANONICAL EQUATIONS Application to the

More information

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction) Kinematics (special case) a = constant 1D motion 2D projectile Uniform circular Dynamics gravity, tension, elastic, normal, friction Motion with a = constant Newton s Laws F = m a F 12 = F 21 Time & Position

More information

Physical Dynamics (SPA5304) Lecture Plan 2018

Physical Dynamics (SPA5304) Lecture Plan 2018 Physical Dynamics (SPA5304) Lecture Plan 2018 The numbers on the left margin are approximate lecture numbers. Items in gray are not covered this year 1 Advanced Review of Newtonian Mechanics 1.1 One Particle

More information

Connection between angular and linear speed

Connection between angular and linear speed Connection between angular and linear speed If a point-like object is in motion on a circular path of radius R at an instantaneous speed v, then its instantaneous angular speed ω is v = ω R Example: A

More information

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work Translational vs Rotational / / 1/ Δ m x v dx dt a dv dt F ma p mv KE mv Work Fd / / 1/ θ ω θ α ω τ α ω ω τθ Δ I d dt d dt I L I KE I Work / θ ω α τ Δ Δ c t s r v r a v r a r Fr L pr Connection Translational

More information

Homework 1. Due Thursday, January 21

Homework 1. Due Thursday, January 21 Homework 1. Due Thursday, January 21 Problem 1. Rising Snake A snake of length L and linear mass density ρ rises from the table. It s head is moving straight up with the constant velocity v. What force

More information

Lecture D10 - Angular Impulse and Momentum

Lecture D10 - Angular Impulse and Momentum J. Peraire 6.07 Dynamics Fall 2004 Version.2 Lecture D0 - Angular Impulse and Momentum In addition to the equations of linear impulse and momentum considered in the previous lecture, there is a parallel

More information

Homework 1. Due Tuesday, January 29.

Homework 1. Due Tuesday, January 29. Homework 1. Due Tuesday, January 29. Problem 1. An ideal rope (no friction) lying on a table slides from its edge down to a scales lying on the floor. The table s height is h. Find a stationary velocity

More information