Physics 5153 Classical Mechanics. Solution by Quadrature-1

Size: px
Start display at page:

Download "Physics 5153 Classical Mechanics. Solution by Quadrature-1"

Transcription

1 October 14, :47:49 1 Introduction Physics 5153 Classical Mechanics Solution by Quadrature In the previous lectures, we have reduced the number o eective degrees o reedom that are needed to solve the equations o motion. This was done by inding integrals (constants) o the motion. The irst step was to determine which variables are cyclic, since these lead to conserved momenta. Once the initial conditions are speciied or the problem, the momenta are known or all time. I the system is conservative, we ound that the Jacobi integral (T T 0 + V = h) is also an integral (constant) o the motion. In cases where all the variables are cyclic except or one, the Jacobi integral can be directly integrated q = (q) dt = dq (q) and the time dependence o the remaining generalized coordinate determined. In this case we say that the solution is ound by quadratures. That is, the solution is given as an indeinite integral o a single variable. Our goal in this lecture is to determine when an equation o motion is separable, and can be put into a number o equations o the orm o Eq. 1, that is we would like to know when an equation o motion can be solved by quadratures. 1.1 Liouville System First recall that a system having n degrees o reedom requires n integrals (constants) o the motion or the complete solution o the equations o motion. These n integrals o motion are eectively the initial conditions or the second order dierential equation o motion. As stated in the introduction, is n 1 variables are cyclic, then the variables can be removed by use o the Routhian method. This leaves us with an equation o motion in one variable. Furthermore, is the system is conservative, then the equation is solved directly by quadratures. Let s assume that we have a conservative holonomic system. In addition, assume that there are not enough cyclic variables to guarantee separability as given above. It may still be separable, i it is an orthogonal system, that is, it is a natural system and there are no cross terms ( q i q j i j) in the kinetic energy. Let s consider the ollowing general example, which we will show is separable, that is, solvable by quadratures. Assume that the kinetic and potential energies are given in the ollowing orms T = 1 q i V = 1 v i (q i ) () where = (1) i (q i ) > 0 (3) Let s consider the Lagrange equations in the ollowing orm ( ) d T T + V = 0 (4) dt q i q i q i Solution by Quadrature-1

2 October 14, :47:49 Substituting the kinetic and potential energies rom Eq. into Lagrange s equation gives the ollowing equation d dt ( q i) 1 i q j + 1 v i V i = 0 (5) q i q i q i Since this is a natural system, the Jacobi (energy) integral is given by T + V = 1 j=1 q j + V = h 1 j=1 Next substitute Eq 6 into Eq. 5 and simpliy Now multiply this equation by q i and obtain j=1 q j = 1 (h V ) (6) d dt ( q i) h i + 1 v i = 0 (7) q i q i d dt ( q i ) h i q i q i + v i q i q i = 0 d dt ( q i ) = d dt (h i v i ) (8) where the right hand side o the second term is a total derivative since each term only depends on q i. Integrating, the result is q i = [h i v i + c i ] (9) Next sum over i, where we ind the ollowing c i = 0 (10) which can be shown using Eqs., 6 and 9. Hence the c i and h together orm n independent constants o the motion. (Note that there are only n 1 independent c i, otherwise all the c i would have to be zero.) The remaining n constants o the motion, can be derived using Eq. 9 in the ollowing orm dq i dt = (hi v i + c i ) (11) which implies dq 1 (h1 v 1 + c 1 ) = dq (h v + c ) = = dq n (hn v n + c n ) = dt dτ (1) where τ is a time-like parameter. Each dierential expression is a unction o a single q i, so the problem is reduced to quadratures. Integrating these equations produces the remaining constants o the motion. This system can be generalized to become a Liouville system, replacing dq i with M i (q i )dq i to obtain T = 1 M i (q i ) q i (13) Solution by Quadrature-

3 October 14, :47:49 where we assume that M i (q i ) > 0. The potential energy (V ) remains as beore. A natural system having the kinetic and potential energies in this orm is called a Liouville system. By making the transormation q i M i (q i ) q i, the solutions or a Liouville system are as in Eq. 1 given by where dq 1 φ1 (q 1 ) = dq φ (q ) = = dq n φn (q n ) = dt = dτ (14) φ i (q i ) = M i (h i v i + c i ) (i = 1,,..., n) (15) Using Eq. 3, multiplying Eq. 14 by i, and summing over i, we obtain i dq i φi (q i ) = dt i dq i φi (q i ) = t β 1 (16) Similarly, taking dierences o the indeinite integrals o Eq. 14, we have dq 1 φ1 (q 1 ) dq j φj (q j ) = β j (j = 1,,..., n) (17) where the irst integral is chosen arbitrarily as a reerence. Thus, these two sets o equations provide n independent constant the β 1, β,..., β n, which, with the previous n 1 c i and h, constitute the required n independent constants o the motion. In evaluating the integrals o Eqs. 16 and 17, a question arises concerning the sign o φ i (q i ). Since is positive, we rom Eq. 14 ind that φ i (q i ) has the same sign as dq i. This is important in the study o libration motions, that is, motions in which one or more q s oscillate between ixed limiting values. 1. Example As an example, let s consider the spherical pendulum shown in Fig. 1. Reduce the problem to quadratures and obtain the integrals o the motion. Beore attempting the solution, we determine the kinetic and potential energies using an appropriate set o generalized coordinates. We start by writing the Lagrangian in Cartesian coordinates L = 1 m(ẋ + ẏ + ż ) mgz (18) Beore speciying the point transormation to an appropriate set o generalized coordinates, we must determine the number o degrees o reedom. The Lagrangian as given above has 3 coordinates, but there is a constraint among the coordinates (x +y +z l = 0). Hence, there are degrees o reedom. The point transormations that are required to express the Lagrangian in the generalized coordinates (, φ) given in the Fig. 1 are x = l sin cos φ y = l sin sin φ z = l cos ẋ = l cos cos φ φl sin sin φ ẏ = l cos sin φ + φl sin cos φ ż = l sin (19) Solution by Quadrature-3

4 October 14, :47:49 z PSrag replacements x φ l y Figure 1: Spherical pendulum along with coordinate system. where the constraint has been taken into account. Hence, the Lagrangian is transormed to the ollowing orm We can now solve the problem using two dierent methods Method 1 L = 1 ml ( + φ sin ) mgl cos (0) In this method, the problem will be solved by removing the cyclic variables rom the Lagrangian by using the Routhian method. We use the Lagrangian given in Eq. 0 L = 1 ml ( + φ sin ) mgl cos (1) Note that the Lagrangian has a single cyclic coordinate φ, with the associated generalized momentum given by L φ = ml φ sin = α φ () where α φ is the constant momentum in the φ direction. Next we calculate the Routhian R = L α φ φ = 1 ml αφ ml sin mgl cos (3) where φ has been eliminated as expected. Notice, that the Routhian can be written as a natural system T = 1 ml V αφ R = T V (4) = ml sin + mgl cos Hence, we can immediately write down the (Jacobi) energy integral h = T + V = 1 ml + αφ ml sin + mgl cos (5) Solution by Quadrature-4

5 October 14, :47:49 This can be solved or the velocity = ml (h mgl cos α φ /(ml ) sin ) (6) which can be written as ollows This equation can be integrated to give ml sin d dt = ml sin (h mgl cos ) αφ t t 0 = 0 ml sin d ml sin (h mgl cos ) α φ The sign o the square root should be the same as d stated earlier, since any change in d causes a positive change in dt. Next we calculate φ(). Start with the generalized momentum Next substitute or dt integrating this equation gives dφ = dt ml sin αφ dφ = d sin ml sin (h mgl cos ) αφ φ φ 0 = 0 α φ d sin ml sin (h mgl cos ) αφ Thus, we have obtained the 4 constants o the motion α φ, h, t 0, and φ Method We will express the system as a Liouville system. The kinetic and potential energies in the generalized coordinates shown in Fig. 1 are (7) (8) (9) (30) (31) T = 1 ml ( + φ sin ) V = mgl cos (3) Notice that the system is orthogonal, since the kinetic energy depends only on the square o the generalized velocities and there are no cross terms. The standard orm o the Liouville problem, T = 1 M i (q i ) q i V = 1 v i (q i ) with = i (q i ) > 0 (33) Writing the kinetic and potential energies in this orm we get T = 1 ( ml sin ) { } 1 sin + φ 1 { V = m ml sin gl 3 sin cos } (34) Solution by Quadrature-5

6 October 14, :47:49 Thereore, we ind the coeicients to be () = ml sin M () = 1 sin v () = m ql 3 sin cos (35) φ (φ) = 0 M φ (φ) = 1 v φ (φ) = 0 Next, we give the φ i (q i ) or this problem φ i (q i ) = M i (h i v i + c i ) { φ = sin [ml sin (h mgl cos ) + c ] φ φ = c φ and using Eq. 10, we ind the c i to be Finally, we arrive at the result c φ = c = [ ml φ sin ] = α φ (36) 0 ml sin d φ () = t t 0 and 0 d φ φ () = dφ cφ φ 0 0 α φ d φ () = φ φ 0 (37) which ater substituting or φ i (q i ), we ind the same result as using the other method. Notice that we have arrived at the 4 constant need, c, c φ, φ 0, and t 0, which all given by the initial conditions. Solution by Quadrature-6

Definition: Let f(x) be a function of one variable with continuous derivatives of all orders at a the point x 0, then the series.

Definition: Let f(x) be a function of one variable with continuous derivatives of all orders at a the point x 0, then the series. 2.4 Local properties o unctions o several variables In this section we will learn how to address three kinds o problems which are o great importance in the ield o applied mathematics: how to obtain the

More information

8. INTRODUCTION TO STATISTICAL THERMODYNAMICS

8. INTRODUCTION TO STATISTICAL THERMODYNAMICS n * D n d Fluid z z z FIGURE 8-1. A SYSTEM IS IN EQUILIBRIUM EVEN IF THERE ARE VARIATIONS IN THE NUMBER OF MOLECULES IN A SMALL VOLUME, SO LONG AS THE PROPERTIES ARE UNIFORM ON A MACROSCOPIC SCALE 8. INTRODUCTION

More information

Feedback Linearization

Feedback Linearization Feedback Linearization Peter Al Hokayem and Eduardo Gallestey May 14, 2015 1 Introduction Consider a class o single-input-single-output (SISO) nonlinear systems o the orm ẋ = (x) + g(x)u (1) y = h(x) (2)

More information

! " k x 2k$1 # $ k x 2k. " # p $ 1! px! p " p 1 # !"#$%&'"()'*"+$",&-('./&-/. !"#$%&'()"*#%+!'",' -./#")'.,&'+.0#.1)2,'!%)2%! !"#$%&'"%(")*$+&#,*$,#

!  k x 2k$1 # $ k x 2k.  # p $ 1! px! p  p 1 # !#$%&'()'*+$,&-('./&-/. !#$%&'()*#%+!',' -./#)'.,&'+.0#.1)2,'!%)2%! !#$%&'%()*$+&#,*$,# "#$%&'()"*#%+'",' -./#")'.,&'+.0#.1)2,' %)2% "#$%&'"()'*"+$",&-('./&-/. Taylor Series o a unction at x a is " # a k " # " x a# k k0 k It is a Power Series centered at a. Maclaurin Series o a unction is

More information

0,0 B 5,0 C 0, 4 3,5. y x. Recitation Worksheet 1A. 1. Plot these points in the xy plane: A

0,0 B 5,0 C 0, 4 3,5. y x. Recitation Worksheet 1A. 1. Plot these points in the xy plane: A Math 13 Recitation Worksheet 1A 1 Plot these points in the y plane: A 0,0 B 5,0 C 0, 4 D 3,5 Without using a calculator, sketch a graph o each o these in the y plane: A y B 3 Consider the unction a Evaluate

More information

06. Lagrangian Mechanics II

06. Lagrangian Mechanics II University of Rhode Island DigitalCommons@URI Classical Dynamics Physics Course Materials 2015 06. Lagrangian Mechanics II Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License

More information

Optimal Control. with. Aerospace Applications. James M. Longuski. Jose J. Guzman. John E. Prussing

Optimal Control. with. Aerospace Applications. James M. Longuski. Jose J. Guzman. John E. Prussing Optimal Control with Aerospace Applications by James M. Longuski Jose J. Guzman John E. Prussing Published jointly by Microcosm Press and Springer 2014 Copyright Springer Science+Business Media New York

More information

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve.

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve. Dierentiation The main problem o dierential calculus deals with inding the slope o the tangent line at a point on a curve. deinition() : The slope o a curve at a point p is the slope, i it eists, o the

More information

7 Pendulum. Part II: More complicated situations

7 Pendulum. Part II: More complicated situations MATH 35, by T. Lakoba, University of Vermont 60 7 Pendulum. Part II: More complicated situations In this Lecture, we will pursue two main goals. First, we will take a glimpse at a method of Classical Mechanics

More information

Curve Sketching. The process of curve sketching can be performed in the following steps:

Curve Sketching. The process of curve sketching can be performed in the following steps: Curve Sketching So ar you have learned how to ind st and nd derivatives o unctions and use these derivatives to determine where a unction is:. Increasing/decreasing. Relative extrema 3. Concavity 4. Points

More information

1 Relative degree and local normal forms

1 Relative degree and local normal forms THE ZERO DYNAMICS OF A NONLINEAR SYSTEM 1 Relative degree and local normal orms The purpose o this Section is to show how single-input single-output nonlinear systems can be locally given, by means o a

More information

( x) f = where P and Q are polynomials.

( x) f = where P and Q are polynomials. 9.8 Graphing Rational Functions Lets begin with a deinition. Deinition: Rational Function A rational unction is a unction o the orm ( ) ( ) ( ) P where P and Q are polynomials. Q An eample o a simple rational

More information

Solutions for Homework #8. Landing gear

Solutions for Homework #8. Landing gear Solutions or Homewor #8 PROBEM. (P. 9 on page 78 in the note) An airplane is modeled as a beam with masses as shown below: m m m m π [rad/sec] anding gear m m.5 Find the stiness and mass matrices. Find

More information

Module 27: Rigid Body Dynamics: Rotation and Translation about a Fixed Axis

Module 27: Rigid Body Dynamics: Rotation and Translation about a Fixed Axis Module 27: Rigid Body Dynamics: Rotation and Translation about a Fixed Axis 27.1 Introduction We shall analyze the motion o systems o particles and rigid bodies that are undergoing translational and rotational

More information

Lecture 25: Heat and The 1st Law of Thermodynamics Prof. WAN, Xin

Lecture 25: Heat and The 1st Law of Thermodynamics Prof. WAN, Xin General Physics I Lecture 5: Heat and he 1st Law o hermodynamics Pro. WAN, Xin xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Latent Heat in Phase Changes Latent Heat he latent heat o vaporization or

More information

Lecture : Feedback Linearization

Lecture : Feedback Linearization ecture : Feedbac inearization Niola Misovic, dipl ing and Pro Zoran Vuic June 29 Summary: This document ollows the lectures on eedbac linearization tought at the University o Zagreb, Faculty o Electrical

More information

15. Hamiltonian Mechanics

15. Hamiltonian Mechanics University of Rhode Island DigitalCommons@URI Classical Dynamics Physics Course Materials 2015 15. Hamiltonian Mechanics Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License

More information

Solution Set Two. 1 Problem #1: Projectile Motion Cartesian Coordinates Polar Coordinates... 3

Solution Set Two. 1 Problem #1: Projectile Motion Cartesian Coordinates Polar Coordinates... 3 : Solution Set Two Northwestern University, Classical Mechanics Classical Mechanics, Third Ed.- Goldstein October 7, 2015 Contents 1 Problem #1: Projectile Motion. 2 1.1 Cartesian Coordinates....................................

More information

Lecture 13: Forces in the Lagrangian Approach

Lecture 13: Forces in the Lagrangian Approach Lecture 3: Forces in the Lagrangian Approach In regular Cartesian coordinates, the Lagrangian for a single particle is: 3 L = T U = m x ( ) l U xi l= Given this, we can readily interpret the physical significance

More information

Asymptote. 2 Problems 2 Methods

Asymptote. 2 Problems 2 Methods Asymptote Problems Methods Problems Assume we have the ollowing transer unction which has a zero at =, a pole at = and a pole at =. We are going to look at two problems: problem is where >> and problem

More information

PHY6426/Fall 07: CLASSICAL MECHANICS HOMEWORK ASSIGNMENT #1 due by 9:35 a.m. Wed 09/05 Instructor: D. L. Maslov Rm.

PHY6426/Fall 07: CLASSICAL MECHANICS HOMEWORK ASSIGNMENT #1 due by 9:35 a.m. Wed 09/05 Instructor: D. L. Maslov Rm. PHY646/Fall 07: CLASSICAL MECHANICS HOMEWORK ASSIGNMENT # due by 9:35 a.m. Wed 09/05 Instructor: D. L. Maslov maslov@phys.ufl.edu 39-053 Rm. 4 Please help your instructor by doing your work neatly.. Goldstein,

More information

arxiv: v1 [gr-qc] 30 Aug 2018

arxiv: v1 [gr-qc] 30 Aug 2018 Coleman-de Luccia Tunneling Wave Function J. Kristiano, R. D. Lambaga, and H. S. Ramadhan Departemen Fisika, FMIPA, Universitas Indonesia, Depok 1424, Indonesia Dated: August 31, 2018) arxiv:1808.10110v1

More information

Spatial Vector Algebra

Spatial Vector Algebra A Short Course on The Easy Way to do Rigid Body Dynamics Roy Featherstone Dept. Inormation Engineering, RSISE The Australian National University Spatial vector algebra is a concise vector notation or describing

More information

Physics 5153 Classical Mechanics. Canonical Transformations-1

Physics 5153 Classical Mechanics. Canonical Transformations-1 1 Introduction Physics 5153 Classical Mechanics Canonical Transformations The choice of generalized coordinates used to describe a physical system is completely arbitrary, but the Lagrangian is invariant

More information

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017 CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS Prof. N. Harnew University of Oxford TT 2017 1 OUTLINE : CP1 REVISION LECTURE 3 : INTRODUCTION TO CLASSICAL MECHANICS 1. Angular velocity and

More information

ELEG 3143 Probability & Stochastic Process Ch. 4 Multiple Random Variables

ELEG 3143 Probability & Stochastic Process Ch. 4 Multiple Random Variables Department o Electrical Engineering University o Arkansas ELEG 3143 Probability & Stochastic Process Ch. 4 Multiple Random Variables Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Two discrete random variables

More information

Fluctuationlessness Theorem and its Application to Boundary Value Problems of ODEs

Fluctuationlessness Theorem and its Application to Boundary Value Problems of ODEs Fluctuationlessness Theorem and its Application to Boundary Value Problems o ODEs NEJLA ALTAY İstanbul Technical University Inormatics Institute Maslak, 34469, İstanbul TÜRKİYE TURKEY) nejla@be.itu.edu.tr

More information

Two Constants of Motion in the Generalized Damped Oscillator

Two Constants of Motion in the Generalized Damped Oscillator Advanced Studies in Theoretical Physics Vol. 10, 2016, no. 2, 57-65 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/astp.2016.511107 Two Constants o Motion in the Generalized Damped Oscillator

More information

Physics 235 Chapter 7. Chapter 7 Hamilton's Principle - Lagrangian and Hamiltonian Dynamics

Physics 235 Chapter 7. Chapter 7 Hamilton's Principle - Lagrangian and Hamiltonian Dynamics Chapter 7 Hamilton's Principle - Lagrangian and Hamiltonian Dynamics Many interesting physics systems describe systems of particles on which many forces are acting. Some of these forces are immediately

More information

9.3 Graphing Functions by Plotting Points, The Domain and Range of Functions

9.3 Graphing Functions by Plotting Points, The Domain and Range of Functions 9. Graphing Functions by Plotting Points, The Domain and Range o Functions Now that we have a basic idea o what unctions are and how to deal with them, we would like to start talking about the graph o

More information

Constraints. Noninertial coordinate systems

Constraints. Noninertial coordinate systems Chapter 8 Constraints. Noninertial codinate systems 8.1 Constraints Oftentimes we encounter problems with constraints. F example, f a ball rolling on a flo without slipping, there is a constraint linking

More information

Forces of Constraint & Lagrange Multipliers

Forces of Constraint & Lagrange Multipliers Lectures 30 April 21, 2006 Written or last updated: April 21, 2006 P442 Analytical Mechanics - II Forces of Constraint & Lagrange Multipliers c Alex R. Dzierba Generalized Coordinates Revisited Consider

More information

Exponential and Logarithmic. Functions CHAPTER The Algebra of Functions; Composite

Exponential and Logarithmic. Functions CHAPTER The Algebra of Functions; Composite CHAPTER 9 Exponential and Logarithmic Functions 9. The Algebra o Functions; Composite Functions 9.2 Inverse Functions 9.3 Exponential Functions 9.4 Exponential Growth and Decay Functions 9.5 Logarithmic

More information

Chapter 11 Collision Theory

Chapter 11 Collision Theory Chapter Collision Theory Introduction. Center o Mass Reerence Frame Consider two particles o masses m and m interacting ia some orce. Figure. Center o Mass o a system o two interacting particles Choose

More information

M2A2 Problem Sheet 3 - Hamiltonian Mechanics

M2A2 Problem Sheet 3 - Hamiltonian Mechanics MA Problem Sheet 3 - Hamiltonian Mechanics. The particle in a cone. A particle slides under gravity, inside a smooth circular cone with a vertical axis, z = k x + y. Write down its Lagrangian in a) Cartesian,

More information

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top Physics 106a, Caltech 4 December, 2018 Lecture 18: Examples on Rigid Body Dynamics I go through a number of examples illustrating the methods of solving rigid body dynamics. In most cases, the problem

More information

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions RATIONAL FUNCTIONS Finding Asymptotes..347 The Domain....350 Finding Intercepts.....35 Graphing Rational Functions... 35 345 Objectives The ollowing is a list o objectives or this section o the workbook.

More information

REVIEW. Hamilton s principle. based on FW-18. Variational statement of mechanics: (for conservative forces) action Equivalent to Newton s laws!

REVIEW. Hamilton s principle. based on FW-18. Variational statement of mechanics: (for conservative forces) action Equivalent to Newton s laws! Hamilton s principle Variational statement of mechanics: (for conservative forces) action Equivalent to Newton s laws! based on FW-18 REVIEW the particle takes the path that minimizes the integrated difference

More information

Classical Mechanics and Electrodynamics

Classical Mechanics and Electrodynamics Classical Mechanics and Electrodynamics Lecture notes FYS 3120 Jon Magne Leinaas Department of Physics, University of Oslo December 2009 2 Preface These notes are prepared for the physics course FYS 3120,

More information

RESOLUTION MSC.362(92) (Adopted on 14 June 2013) REVISED RECOMMENDATION ON A STANDARD METHOD FOR EVALUATING CROSS-FLOODING ARRANGEMENTS

RESOLUTION MSC.362(92) (Adopted on 14 June 2013) REVISED RECOMMENDATION ON A STANDARD METHOD FOR EVALUATING CROSS-FLOODING ARRANGEMENTS (Adopted on 4 June 203) (Adopted on 4 June 203) ANNEX 8 (Adopted on 4 June 203) MSC 92/26/Add. Annex 8, page THE MARITIME SAFETY COMMITTEE, RECALLING Article 28(b) o the Convention on the International

More information

Received: 30 July 2017; Accepted: 29 September 2017; Published: 8 October 2017

Received: 30 July 2017; Accepted: 29 September 2017; Published: 8 October 2017 mathematics Article Least-Squares Solution o Linear Dierential Equations Daniele Mortari ID Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA; mortari@tamu.edu; Tel.: +1-979-845-734

More information

Classical Mechanics Comprehensive Exam Solution

Classical Mechanics Comprehensive Exam Solution Classical Mechanics Comprehensive Exam Solution January 31, 011, 1:00 pm 5:pm Solve the following six problems. In the following problems, e x, e y, and e z are unit vectors in the x, y, and z directions,

More information

Lecture 27: Generalized Coordinates and Lagrange s Equations of Motion

Lecture 27: Generalized Coordinates and Lagrange s Equations of Motion Lecture 27: Generalize Coorinates an Lagrange s Equations of Motion Calculating T an V in terms of generalize coorinates. Example: Penulum attache to a movable support 6 Cartesian Coorinates: (X, Y, Z)

More information

Additional exercises in Stationary Stochastic Processes

Additional exercises in Stationary Stochastic Processes Mathematical Statistics, Centre or Mathematical Sciences Lund University Additional exercises 8 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

More information

Rolling without slipping Angular Momentum Conservation of Angular Momentum. Physics 201: Lecture 19, Pg 1

Rolling without slipping Angular Momentum Conservation of Angular Momentum. Physics 201: Lecture 19, Pg 1 Physics 131: Lecture Today s Agenda Rolling without slipping Angular Momentum Conservation o Angular Momentum Physics 01: Lecture 19, Pg 1 Rolling Without Slipping Rolling is a combination o rotation and

More information

Introduction to Simulation - Lecture 2. Equation Formulation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy

Introduction to Simulation - Lecture 2. Equation Formulation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Introduction to Simulation - Lecture Equation Formulation Methods Jacob White Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Outline Formulating Equations rom Schematics Struts and Joints

More information

Lecture 4. Alexey Boyarsky. October 6, 2015

Lecture 4. Alexey Boyarsky. October 6, 2015 Lecture 4 Alexey Boyarsky October 6, 2015 1 Conservation laws and symmetries 1.1 Ignorable Coordinates During the motion of a mechanical system, the 2s quantities q i and q i, (i = 1, 2,..., s) which specify

More information

Digital Image Processing. Lecture 6 (Enhancement) Bu-Ali Sina University Computer Engineering Dep. Fall 2009

Digital Image Processing. Lecture 6 (Enhancement) Bu-Ali Sina University Computer Engineering Dep. Fall 2009 Digital Image Processing Lecture 6 (Enhancement) Bu-Ali Sina University Computer Engineering Dep. Fall 009 Outline Image Enhancement in Spatial Domain Spatial Filtering Smoothing Filters Median Filter

More information

Question 1: Spherical Pendulum

Question 1: Spherical Pendulum Question 1: Spherical Pendulum Consider a two-dimensional pendulum of length l with mass M at its end. It is easiest to use spherical coordinates centered at the pivot since the magnitude of the position

More information

P321(b), Assignement 1

P321(b), Assignement 1 P31(b), Assignement 1 1 Exercise 3.1 (Fetter and Walecka) a) The problem is that of a point mass rotating along a circle of radius a, rotating with a constant angular velocity Ω. Generally, 3 coordinates

More information

Numerical Solution of Ordinary Differential Equations in Fluctuationlessness Theorem Perspective

Numerical Solution of Ordinary Differential Equations in Fluctuationlessness Theorem Perspective Numerical Solution o Ordinary Dierential Equations in Fluctuationlessness Theorem Perspective NEJLA ALTAY Bahçeşehir University Faculty o Arts and Sciences Beşiktaş, İstanbul TÜRKİYE TURKEY METİN DEMİRALP

More information

MISS DISTANCE GENERALIZED VARIANCE NON-CENTRAL CHI DISTRIBUTION. Ken Chan ABSTRACT

MISS DISTANCE GENERALIZED VARIANCE NON-CENTRAL CHI DISTRIBUTION. Ken Chan   ABSTRACT MISS DISTANCE GENERALIZED VARIANCE NON-CENTRAL CI DISTRIBUTION en Chan E-Mail: ChanAerospace@verizon.net ABSTRACT In many current practical applications, the probability o collision is oten considered

More information

Feedback Optimal Control for Inverted Pendulum Problem by Using the Generating Function Technique

Feedback Optimal Control for Inverted Pendulum Problem by Using the Generating Function Technique (IJACSA) International Journal o Advanced Computer Science Applications Vol. 5 No. 11 14 Feedback Optimal Control or Inverted Pendulum Problem b Using the Generating Function echnique Han R. Dwidar Astronom

More information

ENERGY ANALYSIS: CLOSED SYSTEM

ENERGY ANALYSIS: CLOSED SYSTEM ENERGY ANALYSIS: CLOSED SYSTEM A closed system can exchange energy with its surroundings through heat and work transer. In other words, work and heat are the orms that energy can be transerred across the

More information

Answer Key-Math 11- Optional Review Homework For Exam 2

Answer Key-Math 11- Optional Review Homework For Exam 2 Answer Key-Math - Optional Review Homework For Eam 2. Compute the derivative or each o the ollowing unctions: Please do not simpliy your derivatives here. I simliied some, only in the case that you want

More information

Variation Principle in Mechanics

Variation Principle in Mechanics Section 2 Variation Principle in Mechanics Hamilton s Principle: Every mechanical system is characterized by a Lagrangian, L(q i, q i, t) or L(q, q, t) in brief, and the motion of he system is such that

More information

Lecture 9: Eigenvalues and Eigenvectors in Classical Mechanics (See Section 3.12 in Boas)

Lecture 9: Eigenvalues and Eigenvectors in Classical Mechanics (See Section 3.12 in Boas) Lecture 9: Eigenvalues and Eigenvectors in Classical Mechanics (See Section 3 in Boas) As suggested in Lecture 8 the formalism of eigenvalues/eigenvectors has many applications in physics, especially in

More information

Least-Squares Spectral Analysis Theory Summary

Least-Squares Spectral Analysis Theory Summary Least-Squares Spectral Analysis Theory Summary Reerence: Mtamakaya, J. D. (2012). Assessment o Atmospheric Pressure Loading on the International GNSS REPRO1 Solutions Periodic Signatures. Ph.D. dissertation,

More information

Variable Structure Control of Pendulum-driven Spherical Mobile Robots

Variable Structure Control of Pendulum-driven Spherical Mobile Robots rd International Conerence on Computer and Electrical Engineering (ICCEE ) IPCSIT vol. 5 () () IACSIT Press, Singapore DOI:.776/IPCSIT..V5.No..6 Variable Structure Control o Pendulum-driven Spherical Mobile

More information

NONLINEAR CONTROL OF POWER NETWORK MODELS USING FEEDBACK LINEARIZATION

NONLINEAR CONTROL OF POWER NETWORK MODELS USING FEEDBACK LINEARIZATION NONLINEAR CONTROL OF POWER NETWORK MODELS USING FEEDBACK LINEARIZATION Steven Ball Science Applications International Corporation Columbia, MD email: sball@nmtedu Steve Schaer Department o Mathematics

More information

Sliding Mode Control and Feedback Linearization for Non-regular Systems

Sliding Mode Control and Feedback Linearization for Non-regular Systems Sliding Mode Control and Feedback Linearization or Non-regular Systems Fu Zhang Benito R. Fernández Pieter J. Mosterman Timothy Josserand The MathWorks, Inc. Natick, MA, 01760 University o Texas at Austin,

More information

Global Weak Solution of Planetary Geostrophic Equations with Inviscid Geostrophic Balance

Global Weak Solution of Planetary Geostrophic Equations with Inviscid Geostrophic Balance Global Weak Solution o Planetary Geostrophic Equations with Inviscid Geostrophic Balance Jian-Guo Liu 1, Roger Samelson 2, Cheng Wang 3 Communicated by R. Temam) Abstract. A reormulation o the planetary

More information

FINAL EXAM GROUND RULES

FINAL EXAM GROUND RULES PHYSICS 507 Fall 2011 FINAL EXAM Room: ARC-108 Time: Wednesday, December 21, 10am-1pm GROUND RULES There are four problems based on the above-listed material. Closed book Closed notes Partial credit will

More information

9.1 The Square Root Function

9.1 The Square Root Function Section 9.1 The Square Root Function 869 9.1 The Square Root Function In this section we turn our attention to the square root unction, the unction deined b the equation () =. (1) We begin the section

More information

HAMILTON S PRINCIPLE

HAMILTON S PRINCIPLE HAMILTON S PRINCIPLE In our previous derivation of Lagrange s equations we started from the Newtonian vector equations of motion and via D Alembert s Principle changed coordinates to generalised coordinates

More information

Integration of Basic Functions. Session 7 : 9/23 1

Integration of Basic Functions. Session 7 : 9/23 1 Integration o Basic Fnctions Session 7 : 9/3 Antiderivation Integration Deinition: Taking the antiderivative, or integral, o some nction F(), reslts in the nction () i ()F() Pt simply: i yo take the integral

More information

3. Several Random Variables

3. Several Random Variables . Several Random Variables. Two Random Variables. Conditional Probabilit--Revisited. Statistical Independence.4 Correlation between Random Variables. Densit unction o the Sum o Two Random Variables. Probabilit

More information

Modern Ab-initio Calculations Based on Tomas-Fermi-Dirac Theory with High-Pressure Environment

Modern Ab-initio Calculations Based on Tomas-Fermi-Dirac Theory with High-Pressure Environment American Journal o Quantum Chemistry and Molecular Spectroscopy 016; 1(1): 7-1 http://www.sciencepublishinggroup.com/j/ajqcms doi: 10.11648/j.ajqcms.0160101.1 Modern Ab-initio Calculations Based on Tomas-Fermi-Dirac

More information

Constrained motion and generalized coordinates

Constrained motion and generalized coordinates Constrained motion and generalized coordinates based on FW-13 Often, the motion of particles is restricted by constraints, and we want to: work only with independent degrees of freedom (coordinates) k

More information

Classical Mechanics and Electrodynamics

Classical Mechanics and Electrodynamics Classical Mechanics and Electrodynamics Lecture notes FYS 3120 Jon Magne Leinaas Department of Physics, University of Oslo 2 Preface FYS 3120 is a course in classical theoretical physics, which covers

More information

Introduction to Inflation

Introduction to Inflation QFT in Curved Spacetime May 05 Introduction to Inlation Oscar García, Nils Fischer Universität Heidelberg Abstract In cosmology, we strive to understand how the entire universe evolves. We will now ocus

More information

Modeling and Control of Casterboard Robot

Modeling and Control of Casterboard Robot 9th IFAC Symposium on Nonlinear Control Systems Toulouse, France, September 4-6, 23 FrB2.3 Modeling and Control o Casterboard Robot Kazuki KINUGASA Masato ISHIKAWA Yasuhiro SUGIMOTO Koichi OSUKA Department

More information

Review D: Potential Energy and the Conservation of Mechanical Energy

Review D: Potential Energy and the Conservation of Mechanical Energy MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics 8. Spring 4 Review D: Potential Energy and the Conservation o Mechanical Energy D.1 Conservative and Non-conservative Force... D.1.1 Introduction...

More information

Pendulum with a vibrating base

Pendulum with a vibrating base Pendulum with a vibrating base Chennai, March 14, 2006 1 1 Fast perturbations- rapidly oscillating perturbations We consider perturbations of a Hamiltonian perturbed by rapid oscillations. Later we apply

More information

The Ascent Trajectory Optimization of Two-Stage-To-Orbit Aerospace Plane Based on Pseudospectral Method

The Ascent Trajectory Optimization of Two-Stage-To-Orbit Aerospace Plane Based on Pseudospectral Method Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 00 (014) 000 000 www.elsevier.com/locate/procedia APISAT014, 014 Asia-Paciic International Symposium on Aerospace Technology,

More information

Lagrangian and Hamiltonian Mechanics (Symon Chapter Nine)

Lagrangian and Hamiltonian Mechanics (Symon Chapter Nine) Lagrangian and Hamiltonian Mechanics (Symon Chapter Nine Physics A301 Spring 2005 Contents 1 Lagrangian Mechanics 3 1.1 Derivation of the Lagrange Equations...................... 3 1.1.1 Newton s Second

More information

MHF 4U Unit 7: Combining Functions May 29, Review Solutions

MHF 4U Unit 7: Combining Functions May 29, Review Solutions MHF 4U Unit 7: Combining Functions May 9, 008. Review Solutions Use the ollowing unctions to answer questions 5, ( ) g( ), h( ) sin, w {(, ), (3, ), (4, 7)}, r, and l ) log ( ) + (, ) Determine: a) + w

More information

CHAPTER 5 Reactor Dynamics. Table of Contents

CHAPTER 5 Reactor Dynamics. Table of Contents 1 CHAPTER 5 Reactor Dynamics prepared by Eleodor Nichita, UOIT and Benjamin Rouben, 1 & 1 Consulting, Adjunct Proessor, McMaster & UOIT Summary: This chapter addresses the time-dependent behaviour o nuclear

More information

Classical Mechanics Review (Louisiana State University Qualifier Exam)

Classical Mechanics Review (Louisiana State University Qualifier Exam) Review Louisiana State University Qualifier Exam Jeff Kissel October 22, 2006 A particle of mass m. at rest initially, slides without friction on a wedge of angle θ and and mass M that can move without

More information

Lecture 8 Optimization

Lecture 8 Optimization 4/9/015 Lecture 8 Optimization EE 4386/5301 Computational Methods in EE Spring 015 Optimization 1 Outline Introduction 1D Optimization Parabolic interpolation Golden section search Newton s method Multidimensional

More information

Lagrange s Equations of Motion and the Generalized Inertia

Lagrange s Equations of Motion and the Generalized Inertia Lagrange s Equations of Motion and the Generalized Inertia The Generalized Inertia Consider the kinetic energy for a n degree of freedom mechanical system with coordinates q, q 2,... q n. If the system

More information

Math 754 Chapter III: Fiber bundles. Classifying spaces. Applications

Math 754 Chapter III: Fiber bundles. Classifying spaces. Applications Math 754 Chapter III: Fiber bundles. Classiying spaces. Applications Laurențiu Maxim Department o Mathematics University o Wisconsin maxim@math.wisc.edu April 18, 2018 Contents 1 Fiber bundles 2 2 Principle

More information

NIU PHYS 500, Fall 2006 Classical Mechanics Solutions for HW6. Solutions

NIU PHYS 500, Fall 2006 Classical Mechanics Solutions for HW6. Solutions NIU PHYS 500, Fall 006 Classical Mechanics Solutions for HW6 Assignment: HW6 [40 points] Assigned: 006/11/10 Due: 006/11/17 Solutions P6.1 [4 + 3 + 3 = 10 points] Consider a particle of mass m moving in

More information

ME 328 Machine Design Vibration handout (vibrations is not covered in text)

ME 328 Machine Design Vibration handout (vibrations is not covered in text) ME 38 Machine Design Vibration handout (vibrations is not covered in text) The ollowing are two good textbooks or vibrations (any edition). There are numerous other texts o equal quality. M. L. James,

More information

Mathematical Notation Math Calculus & Analytic Geometry III

Mathematical Notation Math Calculus & Analytic Geometry III Mathematical Notation Math 221 - alculus & Analytic Geometry III Use Word or WordPerect to recreate the ollowing documents. Each article is worth 10 points and should be emailed to the instructor at james@richland.edu.

More information

COMPLETE DESCRIPTION OF POLARIZATION EFFECTS IN TOP QUARK DECAYS INCLUDING HIGHER ORDER QCD CORRECTIONS a

COMPLETE DESCRIPTION OF POLARIZATION EFFECTS IN TOP QUARK DECAYS INCLUDING HIGHER ORDER QCD CORRECTIONS a COMPLETE DESCRIPTION OF POLARIZATION EFFECTS IN TOP QUARK DECAYS INCLUDING HIGHER ORDER QCD CORRECTIONS a BODO LAMPE Department o Physics, University o Munich, Theresienstrasse 37, D 80333 Munich E-mail:

More information

A new Control Strategy for Trajectory Tracking of Fire Rescue Turntable Ladders

A new Control Strategy for Trajectory Tracking of Fire Rescue Turntable Ladders Proceedings o the 17th World Congress The International Federation o Automatic Control Seoul, Korea, July 6-11, 28 A new Control Strategy or Trajectory Tracking o Fire Rescue Turntable Ladders N. Zimmert,

More information

Fs (30.0 N)(50.0 m) The magnitude of the force that the shopper exerts is f 48.0 N cos 29.0 cos 29.0 b. The work done by the pushing force F is

Fs (30.0 N)(50.0 m) The magnitude of the force that the shopper exerts is f 48.0 N cos 29.0 cos 29.0 b. The work done by the pushing force F is Chapter 6: Problems 5, 6, 8, 38, 43, 49 & 53 5. ssm Suppose in Figure 6. that +1.1 1 3 J o work is done by the orce F (magnitude 3. N) in moving the suitcase a distance o 5. m. At what angle θ is the orce

More information

Lab on Taylor Polynomials. This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor.

Lab on Taylor Polynomials. This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor. Lab on Taylor Polynomials This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor. In this Lab we will approimate complicated unctions by simple unctions. The

More information

Telescoping Decomposition Method for Solving First Order Nonlinear Differential Equations

Telescoping Decomposition Method for Solving First Order Nonlinear Differential Equations Telescoping Decomposition Method or Solving First Order Nonlinear Dierential Equations 1 Mohammed Al-Reai 2 Maysem Abu-Dalu 3 Ahmed Al-Rawashdeh Abstract The Telescoping Decomposition Method TDM is a new

More information

Objectives. By the time the student is finished with this section of the workbook, he/she should be able

Objectives. By the time the student is finished with this section of the workbook, he/she should be able FUNCTIONS Quadratic Functions......8 Absolute Value Functions.....48 Translations o Functions..57 Radical Functions...61 Eponential Functions...7 Logarithmic Functions......8 Cubic Functions......91 Piece-Wise

More information

Question 1: A particle starts at rest and moves along a cycloid whose equation is. 2ay y a

Question 1: A particle starts at rest and moves along a cycloid whose equation is. 2ay y a Stephen Martin PHYS 10 Homework #1 Question 1: A particle starts at rest and moves along a cycloid whose equation is [ ( ) a y x = ± a cos 1 + ] ay y a There is a gravitational field of strength g in the

More information

Curves in the configuration space Q or in the velocity phase space Ω satisfying the Euler-Lagrange (EL) equations,

Curves in the configuration space Q or in the velocity phase space Ω satisfying the Euler-Lagrange (EL) equations, Physics 6010, Fall 2010 Hamiltonian Formalism: Hamilton s equations. Conservation laws. Reduction. Poisson Brackets. Relevant Sections in Text: 8.1 8.3, 9.5 The Hamiltonian Formalism We now return to formal

More information

Phys 7221 Homework # 8

Phys 7221 Homework # 8 Phys 71 Homework # 8 Gabriela González November 15, 6 Derivation 5-6: Torque free symmetric top In a torque free, symmetric top, with I x = I y = I, the angular velocity vector ω in body coordinates with

More information

Function Operations. I. Ever since basic math, you have been combining numbers by using addition, subtraction, multiplication, and division.

Function Operations. I. Ever since basic math, you have been combining numbers by using addition, subtraction, multiplication, and division. Function Operations I. Ever since basic math, you have been combining numbers by using addition, subtraction, multiplication, and division. Add: 5 + Subtract: 7 Multiply: (9)(0) Divide: (5) () or 5 II.

More information

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 1. Extreme points

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 1. Extreme points Roberto s Notes on Dierential Calculus Chapter 8: Graphical analysis Section 1 Extreme points What you need to know already: How to solve basic algebraic and trigonometric equations. All basic techniques

More information

Chem 406 Biophysical Chemistry Lecture 1 Transport Processes, Sedimentation & Diffusion

Chem 406 Biophysical Chemistry Lecture 1 Transport Processes, Sedimentation & Diffusion Chem 406 Biophysical Chemistry Lecture 1 Transport Processes, Sedimentation & Diusion I. Introduction A. There are a group o biophysical techniques that are based on transport processes. 1. Transport processes

More information

One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s

One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s v x t Position x Meters Speed v m/s v t Length l Meters

More information

Physics 121. Tuesday, February 19, Physics 121. Tuesday, February 19, Physics 121. Course announcements. Topics:

Physics 121. Tuesday, February 19, Physics 121. Tuesday, February 19, Physics 121. Course announcements. Topics: Physics 121. Tuesday, ebruary 19, 2008. avy Lt. Ron Candiloro's /A-18 Hornet creates a shock wave as he breaks the sound barrier July 7. The shock wave is visible as a large cloud o condensation ormed

More information

«Develop a better understanding on Partial fractions»

«Develop a better understanding on Partial fractions» «Develop a better understanding on Partial ractions» ackground inormation: The topic on Partial ractions or decomposing actions is irst introduced in O level dditional Mathematics with its applications

More information