13. The Cochran-Satterthwaite Approximation for Linear Combinations of Mean Squares

Size: px
Start display at page:

Download "13. The Cochran-Satterthwaite Approximation for Linear Combinations of Mean Squares"

Transcription

1 13. The Cochran-Satterthwaite Approximation for Linear Combinations of Mean Squares opyright c 2018 Dan Nettleton (Iowa State University) 13. Statistics / 18

2 Suppose M 1,..., M k are independent mean squares and that It follows that d i M i E(M i ) χ2 d i i = 1,..., k. [ ] [ ] di M i di M i E = d i, Var E(M i ) E(M i ) for all i = 1,..., k. = 2d i, and M i E(M i) χ 2 d d i i Copyright c 2018 Dan Nettleton (Iowa State University) 13. Statistics / 18

3 Consider the random variable M = a 1 M 1 + a 2 M a k M k, where a 1, a 2,..., a k are known constants in R. Note that M is a linear combination of scaled χ 2 random variables. The Cochran-Satterthwaite approximation works by assuming that M is approximately distributed as a scaled χ 2, just like each of the variables in the linear combination. dm E(M) χ 2 d M E(M) d χ2 d. What choice for d makes the approximation most reasonable? opyright c 2018 Dan Nettleton (Iowa State University) 13. Statistics / 18

4 If then Var(M) M E(M) d χ2 d, = ( ) 2 E(M) Var ( ) χ 2 d d ( ) 2 E(M) (2d) d = 2 [E(M)]2 d 2M2 d. Copyright c 2018 Dan Nettleton (Iowa State University) 13. Statistics / 18

5 Now note that Var(M) = a 2 1 Var(M 1) + + a 2 k Var(M K) = a 2 1 [ E(M1 ) d 1 = 2 k a 2 i [E(M i)] 2 i=1 d i ] 2 2d1 + + a 2 k [ E(Mk ) d k ] 2 2dk 2 k i=1 a2 i M 2 i /d i. Copyright c 2018 Dan Nettleton (Iowa State University) 13. Statistics / 18

6 Equating these two variance approximations yields 2M 2 d = 2 k a 2 i Mi 2 /d i. i=1 Solving for d yields d = M 2 k i=1 a2 i M2 i /d i = ( k ) 2 i=1 a im i k i=1 a2 i M2 i /d. i This is the Cochran-Satterthwaite formula for the approximate degrees of freedom associated with the linear combination of mean squares defined by M. Copyright c 2018 Dan Nettleton (Iowa State University) 13. Statistics / 18

7 Recall the first example from the last slide set. y = y 111 y 121 y 211 y 212, X = , Z = X 1 = 1, X 2 = X, X 3 = Z y (P 2 P 1 )y + y (P 3 P 2 )y + y (I P 3 )y = y (I P 1 )y opyright c 2018 Dan Nettleton (Iowa State University) 13. Statistics / 18

8 Expected Mean Squares SOURCE EMS trt 1.5σ 2 u + σ 2 e + (τ 1 τ 2 ) 2 xu(trt) ou(xu, trt) σ 2 u + σ 2 e σ 2 e E(1.5MS xu(trt) 0.5MS ou(xu,trt) ) = 1.5(σu 2 + σe) 2 0.5σe 2 = 1.5σu 2 + σe 2 Copyright c 2018 Dan Nettleton (Iowa State University) 13. Statistics / 18

9 An Approximate F Test The statistic F = MS trt 1.5MS xu(trt) 0.5MS ou(xu,trt) is approximately F distributed with 1 numerator degree of freedom and denominator degrees freedom approximated by the Cochran-Satterthwaite Method: d = (1.5MS xu(trt) 0.5MS ou(xu,trt) ) 2 (1.5) 2 [ MS xu(trt) ] 2 + ( 0.5) 2 [ MS ou(xu,trt) ] 2. Copyright c 2018 Dan Nettleton (Iowa State University) 13. Statistics / 18

10 SAS Code for Example data d; input trt xu y; cards; ; run; opyright c 2018 Dan Nettleton (Iowa State University) 13. Statistics / 18

11 SAS Code for Example proc mixed method=type1; class trt xu; model y=trt / ddfm=satterthwaite; random xu(trt); run; opyright c 2018 Dan Nettleton (Iowa State University) 13. Statistics / 18

12 The Mixed Procedure Model Information Data Set WORK.D Dependent Variable y Covariance Structure Variance Components Estimation Method Type 1 Residual Variance Method Factor Fixed Effects SE Method Model-Based Degrees of Freedom Method Satterthwaite Class Level Information Class Levels Values trt xu Copyright c 2018 Dan Nettleton (Iowa State University) 13. Statistics / 18

13 Dimensions Covariance Parameters 2 Columns in X 3 Columns in Z 3 Subjects 1 Max Obs Per Subject 4 Number of Observations Number of Observations Read 4 Number of Observations Used 4 Number of Observations Not Used 0 opyright c 2018 Dan Nettleton (Iowa State University) 13. Statistics / 18

14 Type 1 Analysis of Variance Sum of Source DF Squares Mean Square trt xu(trt) Residual Source Expected Mean Square Error Term trt Var(Residual) MS(xu(trt)) Var(xu(trt))+Q(trt) MS(Residual) xu(trt) Var(Residual)+Var(xu(trt)) MS(Residual) Residual Var(Residual). opyright c 2018 Dan Nettleton (Iowa State University) 13. Statistics / 18

15 Degrees of Freedom for Satterthwaite Approximation d = (1.5MS xu(trt) 0.5MS ou(xu,trt) ) 2 (1.5) 2 [ MS xu(trt) ] 2 + ( 0.5) 2 [ MS ou(xu,trt) ] 2 = ( ) 2 (1.5) 2 [2.42] 2 + ( 0.5) 2 [0.18] 2 = Copyright c 2018 Dan Nettleton (Iowa State University) 13. Statistics / 18

16 Type 1 Analysis of Variance Error Source DF F Value Pr > F trt xu(trt) Residual... Covariance Parameter Estimates Cov Parm Estimate xu(trt) Residual Copyright c 2018 Dan Nettleton (Iowa State University) 13. Statistics / 18

17 Concluding Remarks This example was chosen to be small so that we could write out all the data and see how each observation was involved in the analysis. Because of the very low sample size, it would be surprising if the approximate F test worked well for this example. It would be difficult to draw any meaningful conclusions with 4 observations of the response on 3 experimental units. We will see more practically relevant examples where the samples sizes are larger and the approximate F-based inferences may be reasonable. Copyright c 2018 Dan Nettleton (Iowa State University) 13. Statistics / 18

18 Concluding Remarks In more complicated examples, there may be more than one linear combination of mean squares with the desired expectation. In such cases, linear combinations with non-negative coefficients are recommended over those with a mix of positive and negative coefficients. opyright c 2018 Dan Nettleton (Iowa State University) 13. Statistics / 18

THE ANOVA APPROACH TO THE ANALYSIS OF LINEAR MIXED EFFECTS MODELS

THE ANOVA APPROACH TO THE ANALYSIS OF LINEAR MIXED EFFECTS MODELS THE ANOVA APPROACH TO THE ANALYSIS OF LINEAR MIXED EFFECTS MODELS We begin with a relatively simple special case. Suppose y ijk = µ + τ i + u ij + e ijk, (i = 1,..., t; j = 1,..., n; k = 1,..., m) β =

More information

3. The F Test for Comparing Reduced vs. Full Models. opyright c 2018 Dan Nettleton (Iowa State University) 3. Statistics / 43

3. The F Test for Comparing Reduced vs. Full Models. opyright c 2018 Dan Nettleton (Iowa State University) 3. Statistics / 43 3. The F Test for Comparing Reduced vs. Full Models opyright c 2018 Dan Nettleton (Iowa State University) 3. Statistics 510 1 / 43 Assume the Gauss-Markov Model with normal errors: y = Xβ + ɛ, ɛ N(0, σ

More information

Lecture 4. Random Effects in Completely Randomized Design

Lecture 4. Random Effects in Completely Randomized Design Lecture 4. Random Effects in Completely Randomized Design Montgomery: 3.9, 13.1 and 13.7 1 Lecture 4 Page 1 Random Effects vs Fixed Effects Consider factor with numerous possible levels Want to draw inference

More information

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model Topic 17 - Single Factor Analysis of Variance - Fall 2013 One way ANOVA Cell means model Factor effects model Outline Topic 17 2 One-way ANOVA Response variable Y is continuous Explanatory variable is

More information

Lecture 10: Experiments with Random Effects

Lecture 10: Experiments with Random Effects Lecture 10: Experiments with Random Effects Montgomery, Chapter 13 1 Lecture 10 Page 1 Example 1 A textile company weaves a fabric on a large number of looms. It would like the looms to be homogeneous

More information

17. Example SAS Commands for Analysis of a Classic Split-Plot Experiment 17. 1

17. Example SAS Commands for Analysis of a Classic Split-Plot Experiment 17. 1 17 Example SAS Commands for Analysis of a Classic SplitPlot Experiment 17 1 DELIMITED options nocenter nonumber nodate ls80; Format SCREEN OUTPUT proc import datafile"c:\data\simulatedsplitplotdatatxt"

More information

REPEATED MEASURES. Copyright c 2012 (Iowa State University) Statistics / 29

REPEATED MEASURES. Copyright c 2012 (Iowa State University) Statistics / 29 REPEATED MEASURES Copyright c 2012 (Iowa State University) Statistics 511 1 / 29 Repeated Measures Example In an exercise therapy study, subjects were assigned to one of three weightlifting programs i=1:

More information

Topic 25 - One-Way Random Effects Models. Outline. Random Effects vs Fixed Effects. Data for One-way Random Effects Model. One-way Random effects

Topic 25 - One-Way Random Effects Models. Outline. Random Effects vs Fixed Effects. Data for One-way Random Effects Model. One-way Random effects Topic 5 - One-Way Random Effects Models One-way Random effects Outline Model Variance component estimation - Fall 013 Confidence intervals Topic 5 Random Effects vs Fixed Effects Consider factor with numerous

More information

ANOVA Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 32

ANOVA Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 32 ANOVA Variance Component Estimation Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 32 We now consider the ANOVA approach to variance component estimation. The ANOVA approach

More information

Chapter 11. Analysis of Variance (One-Way)

Chapter 11. Analysis of Variance (One-Way) Chapter 11 Analysis of Variance (One-Way) We now develop a statistical procedure for comparing the means of two or more groups, known as analysis of variance or ANOVA. These groups might be the result

More information

The Random Effects Model Introduction

The Random Effects Model Introduction The Random Effects Model Introduction Sometimes, treatments included in experiment are randomly chosen from set of all possible treatments. Conclusions from such experiment can then be generalized to other

More information

ANOVA Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 32

ANOVA Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 32 ANOVA Variance Component Estimation Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 32 We now consider the ANOVA approach to variance component estimation. The ANOVA approach

More information

Lecture 11: Nested and Split-Plot Designs

Lecture 11: Nested and Split-Plot Designs Lecture 11: Nested and Split-Plot Designs Montgomery, Chapter 14 1 Lecture 11 Page 1 Crossed vs Nested Factors Factors A (a levels)and B (b levels) are considered crossed if Every combinations of A and

More information

Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study

Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study 1.4 0.0-6 7 8 9 10 11 12 13 14 15 16 17 18 19 age Model 1: A simple broken stick model with knot at 14 fit with

More information

2. A Review of Some Key Linear Models Results. Copyright c 2018 Dan Nettleton (Iowa State University) 2. Statistics / 28

2. A Review of Some Key Linear Models Results. Copyright c 2018 Dan Nettleton (Iowa State University) 2. Statistics / 28 2. A Review of Some Key Linear Models Results Copyright c 2018 Dan Nettleton (Iowa State University) 2. Statistics 510 1 / 28 A General Linear Model (GLM) Suppose y = Xβ + ɛ, where y R n is the response

More information

Topic 32: Two-Way Mixed Effects Model

Topic 32: Two-Way Mixed Effects Model Topic 3: Two-Way Mixed Effects Model Outline Two-way mixed models Three-way mixed models Data for two-way design Y is the response variable Factor A with levels i = 1 to a Factor B with levels j = 1 to

More information

A Generalized Linear Model for Binomial Response Data. Copyright c 2017 Dan Nettleton (Iowa State University) Statistics / 46

A Generalized Linear Model for Binomial Response Data. Copyright c 2017 Dan Nettleton (Iowa State University) Statistics / 46 A Generalized Linear Model for Binomial Response Data Copyright c 2017 Dan Nettleton (Iowa State University) Statistics 510 1 / 46 Now suppose that instead of a Bernoulli response, we have a binomial response

More information

STAT 8200 Design of Experiments for Research Workers Lab 11 Due: Friday, Nov. 22, 2013

STAT 8200 Design of Experiments for Research Workers Lab 11 Due: Friday, Nov. 22, 2013 Example: STAT 8200 Design of Experiments for Research Workers Lab 11 Due: Friday, Nov. 22, 2013 An experiment is designed to study pigment dispersion in paint. Four different methods of mixing a particular

More information

Linear Mixed-Effects Models. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 34

Linear Mixed-Effects Models. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 34 Linear Mixed-Effects Models Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 34 The Linear Mixed-Effects Model y = Xβ + Zu + e X is an n p design matrix of known constants β R

More information

Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is

Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is Q = (Y i β 0 β 1 X i1 β 2 X i2 β p 1 X i.p 1 ) 2, which in matrix notation is Q = (Y Xβ) (Y

More information

Preliminaries. Copyright c 2018 Dan Nettleton (Iowa State University) Statistics / 38

Preliminaries. Copyright c 2018 Dan Nettleton (Iowa State University) Statistics / 38 Preliminaries Copyright c 2018 Dan Nettleton (Iowa State University) Statistics 510 1 / 38 Notation for Scalars, Vectors, and Matrices Lowercase letters = scalars: x, c, σ. Boldface, lowercase letters

More information

11. Linear Mixed-Effects Models. Copyright c 2018 Dan Nettleton (Iowa State University) 11. Statistics / 49

11. Linear Mixed-Effects Models. Copyright c 2018 Dan Nettleton (Iowa State University) 11. Statistics / 49 11. Linear Mixed-Effects Models Copyright c 2018 Dan Nettleton (Iowa State University) 11. Statistics 510 1 / 49 The Linear Mixed-Effects Model y = Xβ + Zu + e X is an n p matrix of known constants β R

More information

Estimating Estimable Functions of β. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 17

Estimating Estimable Functions of β. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 17 Estimating Estimable Functions of β Copyright c 202 Dan Nettleton (Iowa State University) Statistics 5 / 7 The Response Depends on β Only through Xβ In the Gauss-Markov or Normal Theory Gauss-Markov Linear

More information

Single Factor Experiments

Single Factor Experiments Single Factor Experiments Bruce A Craig Department of Statistics Purdue University STAT 514 Topic 4 1 Analysis of Variance Suppose you are interested in comparing either a different treatments a levels

More information

Inferential Statistical Analysis of Microarray Experiments 2007 Arizona Microarray Workshop

Inferential Statistical Analysis of Microarray Experiments 2007 Arizona Microarray Workshop Inferential Statistical Analysis of Microarray Experiments 007 Arizona Microarray Workshop μ!! Robert J Tempelman Department of Animal Science tempelma@msuedu HYPOTHESIS TESTING (as if there was only one

More information

Comparison of a Population Means

Comparison of a Population Means Analysis of Variance Interested in comparing Several treatments Several levels of one treatment Comparison of a Population Means Could do numerous two-sample t-tests but... ANOVA provides method of joint

More information

SAS Syntax and Output for Data Manipulation:

SAS Syntax and Output for Data Manipulation: CLP 944 Example 5 page 1 Practice with Fixed and Random Effects of Time in Modeling Within-Person Change The models for this example come from Hoffman (2015) chapter 5. We will be examining the extent

More information

Randomized Complete Block Designs

Randomized Complete Block Designs Randomized Complete Block Designs David Allen University of Kentucky February 23, 2016 1 Randomized Complete Block Design There are many situations where it is impossible to use a completely randomized

More information

SAS Syntax and Output for Data Manipulation: CLDP 944 Example 3a page 1

SAS Syntax and Output for Data Manipulation: CLDP 944 Example 3a page 1 CLDP 944 Example 3a page 1 From Between-Person to Within-Person Models for Longitudinal Data The models for this example come from Hoffman (2015) chapter 3 example 3a. We will be examining the extent to

More information

Lecture 10: Factorial Designs with Random Factors

Lecture 10: Factorial Designs with Random Factors Lecture 10: Factorial Designs with Random Factors Montgomery, Section 13.2 and 13.3 1 Lecture 10 Page 1 Factorial Experiments with Random Effects Lecture 9 has focused on fixed effects Always use MSE in

More information

STA441: Spring Multiple Regression. This slide show is a free open source document. See the last slide for copyright information.

STA441: Spring Multiple Regression. This slide show is a free open source document. See the last slide for copyright information. STA441: Spring 2018 Multiple Regression This slide show is a free open source document. See the last slide for copyright information. 1 Least Squares Plane 2 Statistical MODEL There are p-1 explanatory

More information

The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization.

The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization. 1 Chapter 1: Research Design Principles The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization. 2 Chapter 2: Completely Randomized Design

More information

Repeated Measures Design. Advertising Sales Example

Repeated Measures Design. Advertising Sales Example STAT:5201 Anaylsis/Applied Statistic II Repeated Measures Design Advertising Sales Example A company is interested in comparing the success of two different advertising campaigns. It has 10 test markets,

More information

Topic 20: Single Factor Analysis of Variance

Topic 20: Single Factor Analysis of Variance Topic 20: Single Factor Analysis of Variance Outline Single factor Analysis of Variance One set of treatments Cell means model Factor effects model Link to linear regression using indicator explanatory

More information

The Gauss-Markov Model. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

The Gauss-Markov Model. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61 The Gauss-Markov Model Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 61 Recall that Cov(u, v) = E((u E(u))(v E(v))) = E(uv) E(u)E(v) Var(u) = Cov(u, u) = E(u E(u)) 2 = E(u 2

More information

Workshop 9.3a: Randomized block designs

Workshop 9.3a: Randomized block designs -1- Workshop 93a: Randomized block designs Murray Logan November 23, 16 Table of contents 1 Randomized Block (RCB) designs 1 2 Worked Examples 12 1 Randomized Block (RCB) designs 11 RCB design Simple Randomized

More information

General Linear Model (Chapter 4)

General Linear Model (Chapter 4) General Linear Model (Chapter 4) Outcome variable is considered continuous Simple linear regression Scatterplots OLS is BLUE under basic assumptions MSE estimates residual variance testing regression coefficients

More information

Correlation and the Analysis of Variance Approach to Simple Linear Regression

Correlation and the Analysis of Variance Approach to Simple Linear Regression Correlation and the Analysis of Variance Approach to Simple Linear Regression Biometry 755 Spring 2009 Correlation and the Analysis of Variance Approach to Simple Linear Regression p. 1/35 Correlation

More information

Time-Invariant Predictors in Longitudinal Models

Time-Invariant Predictors in Longitudinal Models Time-Invariant Predictors in Longitudinal Models Today s Topics: What happens to missing predictors Effects of time-invariant predictors Fixed vs. systematically varying vs. random effects Model building

More information

Lecture 3. Experiments with a Single Factor: ANOVA Montgomery 3-1 through 3-3

Lecture 3. Experiments with a Single Factor: ANOVA Montgomery 3-1 through 3-3 Lecture 3. Experiments with a Single Factor: ANOVA Montgomery 3-1 through 3-3 Page 1 Tensile Strength Experiment Investigate the tensile strength of a new synthetic fiber. The factor is the weight percent

More information

MIXED MODELS FOR REPEATED (LONGITUDINAL) DATA PART 2 DAVID C. HOWELL 4/1/2010

MIXED MODELS FOR REPEATED (LONGITUDINAL) DATA PART 2 DAVID C. HOWELL 4/1/2010 MIXED MODELS FOR REPEATED (LONGITUDINAL) DATA PART 2 DAVID C. HOWELL 4/1/2010 Part 1 of this document can be found at http://www.uvm.edu/~dhowell/methods/supplements/mixed Models for Repeated Measures1.pdf

More information

Differences of Least Squares Means

Differences of Least Squares Means STAT:5201 Homework 9 Solutions 1. We have a model with two crossed random factors operator and machine. There are 4 operators, 8 machines, and 3 observations from each operator/machine combination. (a)

More information

General Linear Test of a General Linear Hypothesis. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 35

General Linear Test of a General Linear Hypothesis. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 35 General Linear Test of a General Linear Hypothesis Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 35 Suppose the NTGMM holds so that y = Xβ + ε, where ε N(0, σ 2 I). opyright

More information

Sample Size / Power Calculations

Sample Size / Power Calculations Sample Size / Power Calculations A Simple Example Goal: To study the effect of cold on blood pressure (mmhg) in rats Use a Completely Randomized Design (CRD): 12 rats are randomly assigned to one of two

More information

over Time line for the means). Specifically, & covariances) just a fixed variance instead. PROC MIXED: to 1000 is default) list models with TYPE=VC */

over Time line for the means). Specifically, & covariances) just a fixed variance instead. PROC MIXED: to 1000 is default) list models with TYPE=VC */ CLP 944 Example 4 page 1 Within-Personn Fluctuation in Symptom Severity over Time These data come from a study of weekly fluctuation in psoriasis severity. There was no intervention and no real reason

More information

EXST Regression Techniques Page 1. We can also test the hypothesis H :" œ 0 versus H :"

EXST Regression Techniques Page 1. We can also test the hypothesis H : œ 0 versus H : EXST704 - Regression Techniques Page 1 Using F tests instead of t-tests We can also test the hypothesis H :" œ 0 versus H :" Á 0 with an F test.! " " " F œ MSRegression MSError This test is mathematically

More information

Estimable Functions and Their Least Squares Estimators. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 51

Estimable Functions and Their Least Squares Estimators. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 51 Estimable Functions and Their Least Squares Estimators Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 51 Consider the GLM y = n p X β + ε, where E(ε) = 0. p 1 n 1 n 1 Suppose

More information

Parametric Modelling of Over-dispersed Count Data. Part III / MMath (Applied Statistics) 1

Parametric Modelling of Over-dispersed Count Data. Part III / MMath (Applied Statistics) 1 Parametric Modelling of Over-dispersed Count Data Part III / MMath (Applied Statistics) 1 Introduction Poisson regression is the de facto approach for handling count data What happens then when Poisson

More information

The Aitken Model. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

The Aitken Model. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41 The Aitken Model Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 41 The Aitken Model (AM): Suppose where y = Xβ + ε, E(ε) = 0 and Var(ε) = σ 2 V for some σ 2 > 0 and some known

More information

Contrasting Marginal and Mixed Effects Models Recall: two approaches to handling dependence in Generalized Linear Models:

Contrasting Marginal and Mixed Effects Models Recall: two approaches to handling dependence in Generalized Linear Models: Contrasting Marginal and Mixed Effects Models Recall: two approaches to handling dependence in Generalized Linear Models: Marginal models: based on the consequences of dependence on estimating model parameters.

More information

Linear models and their mathematical foundations: Simple linear regression

Linear models and their mathematical foundations: Simple linear regression Linear models and their mathematical foundations: Simple linear regression Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/21 Introduction

More information

Hypothesis Testing hypothesis testing approach

Hypothesis Testing hypothesis testing approach Hypothesis Testing In this case, we d be trying to form an inference about that neighborhood: Do people there shop more often those people who are members of the larger population To ascertain this, we

More information

This is a Randomized Block Design (RBD) with a single factor treatment arrangement (2 levels) which are fixed.

This is a Randomized Block Design (RBD) with a single factor treatment arrangement (2 levels) which are fixed. EXST3201 Chapter 13c Geaghan Fall 2005: Page 1 Linear Models Y ij = µ + βi + τ j + βτij + εijk This is a Randomized Block Design (RBD) with a single factor treatment arrangement (2 levels) which are fixed.

More information

Assessing Model Adequacy

Assessing Model Adequacy Assessing Model Adequacy A number of assumptions were made about the model, and these need to be verified in order to use the model for inferences. In cases where some assumptions are violated, there are

More information

Time-Invariant Predictors in Longitudinal Models

Time-Invariant Predictors in Longitudinal Models Time-Invariant Predictors in Longitudinal Models Today s Class (or 3): Summary of steps in building unconditional models for time What happens to missing predictors Effects of time-invariant predictors

More information

ML and REML Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 58

ML and REML Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 58 ML and REML Variance Component Estimation Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 58 Suppose y = Xβ + ε, where ε N(0, Σ) for some positive definite, symmetric matrix Σ.

More information

Lecture 3. Experiments with a Single Factor: ANOVA Montgomery 3.1 through 3.3

Lecture 3. Experiments with a Single Factor: ANOVA Montgomery 3.1 through 3.3 Lecture 3. Experiments with a Single Factor: ANOVA Montgomery 3.1 through 3.3 Fall, 2013 Page 1 Tensile Strength Experiment Investigate the tensile strength of a new synthetic fiber. The factor is the

More information

Time-Invariant Predictors in Longitudinal Models

Time-Invariant Predictors in Longitudinal Models Time-Invariant Predictors in Longitudinal Models Topics: What happens to missing predictors Effects of time-invariant predictors Fixed vs. systematically varying vs. random effects Model building strategies

More information

Lecture 3: Inference in SLR

Lecture 3: Inference in SLR Lecture 3: Inference in SLR STAT 51 Spring 011 Background Reading KNNL:.1.6 3-1 Topic Overview This topic will cover: Review of hypothesis testing Inference about 1 Inference about 0 Confidence Intervals

More information

Outline. Topic 19 - Inference. The Cell Means Model. Estimates. Inference for Means Differences in cell means Contrasts. STAT Fall 2013

Outline. Topic 19 - Inference. The Cell Means Model. Estimates. Inference for Means Differences in cell means Contrasts. STAT Fall 2013 Topic 19 - Inference - Fall 2013 Outline Inference for Means Differences in cell means Contrasts Multiplicity Topic 19 2 The Cell Means Model Expressed numerically Y ij = µ i + ε ij where µ i is the theoretical

More information

Mixed Model: Split plot with two whole-plot factors, one split-plot factor, and CRD at the whole-plot level (e.g. fancier split-plot p.

Mixed Model: Split plot with two whole-plot factors, one split-plot factor, and CRD at the whole-plot level (e.g. fancier split-plot p. 22s:173 Combining multiple factors into a single superfactor Mixed Model: Split plot with two whole-plot factors, one split-plot factor, and CRD at the whole-plot level (e.g. fancier split-plot p.422 Oehlert)

More information

IX. Complete Block Designs (CBD s)

IX. Complete Block Designs (CBD s) IX. Complete Block Designs (CBD s) A.Background Noise Factors nuisance factors whose values can be controlled within the context of the experiment but not outside the context of the experiment Covariates

More information

Lab 11. Multilevel Models. Description of Data

Lab 11. Multilevel Models. Description of Data Lab 11 Multilevel Models Henian Chen, M.D., Ph.D. Description of Data MULTILEVEL.TXT is clustered data for 386 women distributed across 40 groups. ID: 386 women, id from 1 to 386, individual level (level

More information

STAT 115:Experimental Designs

STAT 115:Experimental Designs STAT 115:Experimental Designs Josefina V. Almeda 2013 Multisample inference: Analysis of Variance 1 Learning Objectives 1. Describe Analysis of Variance (ANOVA) 2. Explain the Rationale of ANOVA 3. Compare

More information

Determinants. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 25

Determinants. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 25 Determinants opyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 25 Notation The determinant of a square matrix n n A is denoted det(a) or A. opyright c 2012 Dan Nettleton (Iowa State

More information

Lecture 4: Heteroskedasticity

Lecture 4: Heteroskedasticity Lecture 4: Heteroskedasticity Econometric Methods Warsaw School of Economics (4) Heteroskedasticity 1 / 24 Outline 1 What is heteroskedasticity? 2 Testing for heteroskedasticity White Goldfeld-Quandt Breusch-Pagan

More information

STOR 455 STATISTICAL METHODS I

STOR 455 STATISTICAL METHODS I STOR 455 STATISTICAL METHODS I Jan Hannig Mul9variate Regression Y=X β + ε X is a regression matrix, β is a vector of parameters and ε are independent N(0,σ) Es9mated parameters b=(x X) - 1 X Y Predicted

More information

Statistics 512: Applied Linear Models. Topic 9

Statistics 512: Applied Linear Models. Topic 9 Topic Overview Statistics 51: Applied Linear Models Topic 9 This topic will cover Random vs. Fixed Effects Using E(MS) to obtain appropriate tests in a Random or Mixed Effects Model. Chapter 5: One-way

More information

Properties of the least squares estimates

Properties of the least squares estimates Properties of the least squares estimates 2019-01-18 Warmup Let a and b be scalar constants, and X be a scalar random variable. Fill in the blanks E ax + b) = Var ax + b) = Goal Recall that the least squares

More information

Testing Indirect Effects for Lower Level Mediation Models in SAS PROC MIXED

Testing Indirect Effects for Lower Level Mediation Models in SAS PROC MIXED Testing Indirect Effects for Lower Level Mediation Models in SAS PROC MIXED Here we provide syntax for fitting the lower-level mediation model using the MIXED procedure in SAS as well as a sas macro, IndTest.sas

More information

Two-Color Microarray Experimental Design Notation. Simple Examples of Analysis for a Single Gene. Microarray Experimental Design Notation

Two-Color Microarray Experimental Design Notation. Simple Examples of Analysis for a Single Gene. Microarray Experimental Design Notation Simple Examples of Analysis for a Single Gene wo-olor Microarray Experimental Design Notation /3/0 opyright 0 Dan Nettleton Microarray Experimental Design Notation Microarray Experimental Design Notation

More information

Introduction to SAS proc mixed

Introduction to SAS proc mixed Faculty of Health Sciences Introduction to SAS proc mixed Analysis of repeated measurements, 2017 Julie Forman Department of Biostatistics, University of Copenhagen 2 / 28 Preparing data for analysis The

More information

Distributions of Quadratic Forms. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 31

Distributions of Quadratic Forms. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 31 Distributions of Quadratic Forms Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 31 Under the Normal Theory GMM (NTGMM), y = Xβ + ε, where ε N(0, σ 2 I). By Result 5.3, the NTGMM

More information

Topic 23: Diagnostics and Remedies

Topic 23: Diagnostics and Remedies Topic 23: Diagnostics and Remedies Outline Diagnostics residual checks ANOVA remedial measures Diagnostics Overview We will take the diagnostics and remedial measures that we learned for regression and

More information

Bayesian inference for sample surveys. Roderick Little Module 2: Bayesian models for simple random samples

Bayesian inference for sample surveys. Roderick Little Module 2: Bayesian models for simple random samples Bayesian inference for sample surveys Roderick Little Module : Bayesian models for simple random samples Superpopulation Modeling: Estimating parameters Various principles: least squares, method of moments,

More information

Estimation of the Response Mean. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 27

Estimation of the Response Mean. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 27 Estimation of the Response Mean Copyright c 202 Dan Nettleton (Iowa State University) Statistics 5 / 27 The Gauss-Markov Linear Model y = Xβ + ɛ y is an n random vector of responses. X is an n p matrix

More information

Constraints on Solutions to the Normal Equations. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

Constraints on Solutions to the Normal Equations. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41 Constraints on Solutions to the Normal Equations Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 41 If rank( n p X) = r < p, there are infinitely many solutions to the NE X Xb

More information

Likelihood Ratio Test of a General Linear Hypothesis. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

Likelihood Ratio Test of a General Linear Hypothesis. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42 Likelihood Ratio Test of a General Linear Hypothesis Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 42 Consider the Likelihood Ratio Test of H 0 : Cβ = d vs H A : Cβ d. Suppose

More information

ST 512-Practice Exam I - Osborne Directions: Answer questions as directed. For true/false questions, circle either true or false.

ST 512-Practice Exam I - Osborne Directions: Answer questions as directed. For true/false questions, circle either true or false. ST 512-Practice Exam I - Osborne Directions: Answer questions as directed. For true/false questions, circle either true or false. 1. A study was carried out to examine the relationship between the number

More information

EXST 7015 Fall 2014 Lab 11: Randomized Block Design and Nested Design

EXST 7015 Fall 2014 Lab 11: Randomized Block Design and Nested Design EXST 7015 Fall 2014 Lab 11: Randomized Block Design and Nested Design OBJECTIVES: The objective of an experimental design is to provide the maximum amount of reliable information at the minimum cost. In

More information

Generalized Linear Mixed-Effects Models. Copyright c 2015 Dan Nettleton (Iowa State University) Statistics / 58

Generalized Linear Mixed-Effects Models. Copyright c 2015 Dan Nettleton (Iowa State University) Statistics / 58 Generalized Linear Mixed-Effects Models Copyright c 2015 Dan Nettleton (Iowa State University) Statistics 510 1 / 58 Reconsideration of the Plant Fungus Example Consider again the experiment designed to

More information

RCB - Example. STA305 week 10 1

RCB - Example. STA305 week 10 1 RCB - Example An accounting firm wants to select training program for its auditors who conduct statistical sampling as part of their job. Three training methods are under consideration: home study, presentations

More information

Introduction to SAS proc mixed

Introduction to SAS proc mixed Faculty of Health Sciences Introduction to SAS proc mixed Analysis of repeated measurements, 2017 Julie Forman Department of Biostatistics, University of Copenhagen Outline Data in wide and long format

More information

Split-plot Designs. Bruce A Craig. Department of Statistics Purdue University. STAT 514 Topic 21 1

Split-plot Designs. Bruce A Craig. Department of Statistics Purdue University. STAT 514 Topic 21 1 Split-plot Designs Bruce A Craig Department of Statistics Purdue University STAT 514 Topic 21 1 Randomization Defines the Design Want to study the effect of oven temp (3 levels) and amount of baking soda

More information

Lecture 7 Randomized Complete Block Design (RCBD) [ST&D sections (except 9.6) and section 15.8]

Lecture 7 Randomized Complete Block Design (RCBD) [ST&D sections (except 9.6) and section 15.8] Lecture 7 Randomized Complete Block Design () [ST&D sections 9.1 9.7 (except 9.6) and section 15.8] The Completely Randomized Design () 1. It is assumed that all experimental units (EU's) are uniform..

More information

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression.

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression. 10/3/011 Functional Connectivity Correlation and Regression Variance VAR = Standard deviation Standard deviation SD = Unbiased SD = 1 10/3/011 Standard error Confidence interval SE = CI = = t value for

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 6 Sampling and Sampling Distributions Ch. 6-1 6.1 Tools of Business Statistics n Descriptive statistics n Collecting, presenting, and describing data n Inferential

More information

If you believe in things that you don t understand then you suffer. Stevie Wonder, Superstition

If you believe in things that you don t understand then you suffer. Stevie Wonder, Superstition If you believe in things that you don t understand then you suffer Stevie Wonder, Superstition For Slovenian municipality i, i = 1,, 192, we have SIR i = (observed stomach cancers 1995-2001 / expected

More information

Random Intercept Models

Random Intercept Models Random Intercept Models Edps/Psych/Soc 589 Carolyn J. Anderson Department of Educational Psychology c Board of Trustees, University of Illinois Spring 2019 Outline A very simple case of a random intercept

More information

Mixed Model: Split plot with two whole-plot factors, one split-plot factor, and CRD at the whole-plot level (e.g. fancier split-plot p.

Mixed Model: Split plot with two whole-plot factors, one split-plot factor, and CRD at the whole-plot level (e.g. fancier split-plot p. STAT:5201 Applied Statistic II Mixed Model: Split plot with two whole-plot factors, one split-plot factor, and CRD at the whole-plot level (e.g. fancier split-plot p.422 OLRT) Hamster example with three

More information

Section 9.4. Notation. Requirements. Definition. Inferences About Two Means (Matched Pairs) Examples

Section 9.4. Notation. Requirements. Definition. Inferences About Two Means (Matched Pairs) Examples Objective Section 9.4 Inferences About Two Means (Matched Pairs) Compare of two matched-paired means using two samples from each population. Hypothesis Tests and Confidence Intervals of two dependent means

More information

Analysis of Variance

Analysis of Variance Statistical Techniques II EXST7015 Analysis of Variance 15a_ANOVA_Introduction 1 Design The simplest model for Analysis of Variance (ANOVA) is the CRD, the Completely Randomized Design This model is also

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Econ 325: Introduction to Empirical Economics Lecture 6 Sampling and Sampling Distributions Ch. 6-1 Populations and Samples A Population is the set of all items or individuals of interest Examples: All

More information

Biostat 2065 Analysis of Incomplete Data

Biostat 2065 Analysis of Incomplete Data Biostat 2065 Analysis of Incomplete Data Gong Tang Dept of Biostatistics University of Pittsburgh October 20, 2005 1. Large-sample inference based on ML Let θ is the MLE, then the large-sample theory implies

More information

Some comments on Partitioning

Some comments on Partitioning Some comments on Partitioning Dipankar Bandyopadhyay Department of Biostatistics, Virginia Commonwealth University BIOS 625: Categorical Data & GLM 1/30 Partitioning Chi-Squares We have developed tests

More information

Scheffé s Method. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 37

Scheffé s Method. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 37 Scheffé s Method opyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 37 Scheffé s Method: Suppose where Let y = Xβ + ε, ε N(0, σ 2 I). c 1β,..., c qβ be q estimable functions, where

More information

CHAPTER 11 ASDA ANALYSIS EXAMPLES REPLICATION

CHAPTER 11 ASDA ANALYSIS EXAMPLES REPLICATION CHAPTER 11 ASDA ANALYSIS EXAMPLES REPLICATION GENERAL NOTES ABOUT ANALYSIS EXAMPLES REPLICATION These examples are intended to provide guidance on how to use the commands/procedures for analysis of complex

More information

Answer to exercise: Blood pressure lowering drugs

Answer to exercise: Blood pressure lowering drugs Answer to exercise: Blood pressure lowering drugs The data set bloodpressure.txt contains data from a cross-over trial, involving three different formulations of a drug for lowering of blood pressure:

More information

Testing Independence

Testing Independence Testing Independence Dipankar Bandyopadhyay Department of Biostatistics, Virginia Commonwealth University BIOS 625: Categorical Data & GLM 1/50 Testing Independence Previously, we looked at RR = OR = 1

More information