The Gauss-Markov Model. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

Size: px
Start display at page:

Download "The Gauss-Markov Model. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61"

Transcription

1 The Gauss-Markov Model Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

2 Recall that Cov(u, v) = E((u E(u))(v E(v))) = E(uv) E(u)E(v) Var(u) = Cov(u, u) = E(u E(u)) 2 = E(u 2 ) (E(u)) 2. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

3 If u and v are random vectors, then m 1 n 1 Cov(u, v) = [Cov(u i, v j )] m n Var(u) = [Cov(u i, u j )] m m. and Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

4 It follows that Cov(u, v) = E((u E(u))(v E(v)) ) = E(uv ) E(u)E(v ) Var(u) = E((u E(u))(u E(u)) ) = E(uu ) E(u)E(u ). (Note that if Z = [z ij ], then E(Z) [E(z ij )]; i.e., the expected value of a matrix is defined to be the matrix of the expected values of the elements in the original matrix.) opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

5 From these basis definitions, it is straightforward to show the following: If a, b, A, B are fixed and u, v are random, then Cov(a + Au, b + Bv) = ACov(u, v)b. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

6 Some common special cases are Cov(Au, Bv) = ACov(u, v)b Cov(Au, Bu) = ACov(u, u)b = AVar(u)B Var(Au) = Cov(Au, Au) = ACov(u, u)a = AVar(u)A. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

7 The Gauss-Markov Model where y = Xβ + ε, E(ε) = 0 and Var(ε) = σ 2 I for some unknown σ 2. Mean zero, constant variance, uncorrelated errors. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

8 More succinct statement of Gauss-Markov Model: E(y) = Xβ, Var(y) = σ 2 I or E(y) C(X), Var(y) = σ 2 I. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

9 Note that the Gauss-Markov Model (GMM) is a special case of the GLM that we have been studying. Hence, all previous results for the GLM apply to the GMM. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

10 Suppose c β is an estimable function. Find Var(c ˆβ), the variance of the LSE of c β. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

11 Example: Two-treatment ANCOVA y ij = µ + τ i + γx ij + ε ij i = 1, 2; j = 1,..., m E(ε ij ) = 0 i = 1, 2; j = 1,..., m 0 if (i, j) (s, t) Cov(ε ij, ε st ) = σ 2 if (i, j) = (s, t). x ij is the known value of a covariate for treatment i and observation j (i = 1, 2; j = 1,..., m). opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

12 Under what conditions is γ estimable? γ is estimable? Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

13 [ ] x1 To find the LSE of γ, recall X =. Thus x 2 2m m m x X m m 0 x 1 X =. m 0 m x 2 x x 1 x 2 x x Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

14 ([ ]) 1 0 When x is not in C, rank(x) = rank(x X) = 3. Thus, a GI of 0 1 X X is 1 0 m 0 x , where A = 0 A 0 m x x 1 x 2 x x Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

15 m 0 x 1 Because 0 m x 2 is not so easy to invert, let s consider a x 1 x 2 x x different strategy. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

16 To find LSE of γ and its variance in an alternative way, consider [ ] 1 0 x1 x 1 1 W =. 0 1 x 2 x 2 1 This matrix arises by dropping the first column of X and applying GS orthogonalization to remaining columns. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

17 X T = W [ ] [ ] x1 1 0 x x1 x 1 1 = x x x 2 x Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

18 [ ] x 1 [ ] 1 0 x1 x x 2 x x = x x W S = X opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

19 [ ] [ ] 1 0 W x1 x x1 x 1 1 W = 0 1 x 2 x x 2 x 2 1 m 0 1 x 1 x = 0 m 1 x 2 x x 1 x x 2 x m i=1 j=1 (x ij x i ) 2 Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

20 m 0 0 = 0 m m i=1 j=1 (x ij x i ) 2 1 m 0 0 (W W) 1 = 1 0 m i=1 m j=1 (x ij x i ) 2. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

21 [ ] [ ] 1 0 W x1 x 1 1 y1 y = 0 1 x 2 x 2 1 y 2 = 2 i=1 y 1 y 2. m j=1 y ij(x ij x i ) Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

22 ˆα = (W W) W y = ȳ 1 ȳ 2 2 m i=1 j=1 y ij(x ij x i ) 2 m i=1 j=1 (x ij x i ) 2. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

23 Recall that E(y) = Xβ = Wα = WSβ = XTα. c β estimable c Tα is estimable with LSE c T ˆα. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

24 Thus, LSE of β is c T ˆα [ ] 1 0 x x ȳ 1 ȳ 2 2 m i=1 j=1 y ij(x ij x i ) 2 m i=1 j=1 (x ij x i ) 2 = 2 m i=1 j=1 y ij(x ij x i ) 2 m i=1 j=1 (x ij x. i ) 2 Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

25 Note that in this case ] c ˆβ = [0 0 1 ˆα = ˆα 3. ] ) Var(c ˆβ) = Var ([0 0 1 ˆα [ ] = σ (W W) 1 = σ i=1 m j=1 (x ij x i ) opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

26 Theorem 4.1 (Gauss-Markov Theorem): Suppose the GMM holds. If c β is estimable, then the LSE c ˆβ is the best (minimum variance) linear unbiased estimator (BLUE) of c β. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

27 Proof of Theorem 4.1: c β is estimable c = a X for some vector a. The LSE of c β is c ˆβ = a Xˆβ = a X(X X) X y = a P X y. Now suppose u + v y is any other linear unbiased estimator of c β. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

28 Then E(u + v y) = c β β R p u + v Xβ = c β β R p u = 0 and v X = c. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

29 Var(u + v y) = Var(v y) = Var(v y c ˆβ + c ˆβ) = Var(v y a P X y + c ˆβ) = Var((v a P X )y + c ˆβ) = Var(c ˆβ) + Var((v a P X )y) + 2Cov((v a P X )y, c ˆβ). opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

30 Now Cov((v a P X )y, c ˆβ) = Cov((v a P X )y, a P X y) = (v a P X )Var(y)P X a = σ 2 (v a P X )P X a = σ 2 (v a P X )X(X X) X a = σ 2 (v X a P X X)(X X) X a = σ 2 (v X a X)(X X) X a = 0 v X = c = a X. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

31 we have Var(u + v y) = Var(c ˆβ) + Var((v a P X )y). It follows that with equality iff Var(c ˆβ) Var(u + v y) Var((v a P X )y) = 0; opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

32 i.e., iff σ 2 (v a P X )(v P X a) = σ 2 (v P X a) (v P X a) = σ 2 v P X a 2 = 0; i.e., iff i.e., iff v = P X a; u + v y is a P X y = c ˆβ, the LSE of c β. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

33 Result 4.1: The BLUE of an estimable c β is uncorrelated with all linear unbiased estimators of zero. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

34 Suppose c 1 β,..., c qβ are q estimable functions c 1,..., c q are LI. Let C = c 1. c q. Note that rank( C ) = q. q p Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

35 c 1 β Cβ =. is a vector of estimable functions. c qβ The vector of BLUEs is the vector of LSEs c ˆβ 1. = Cˆβ. c ˆβ q Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

36 Because c 1 β,..., c qβ are estimable, If we let A = a 1 a i X a i = c i i = 1,..., q.., then AX = C. a q Find Var(Cˆβ). opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

37 Find rank(var(cˆβ)). Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

38 Note Var(Cˆβ) = σ 2 C(X X) C is a q q matrix of rank q and is thus nonsingular. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

39 We know that each component of Cˆβ is the BLUE of each corresponding component of Cβ; i.e., c i ˆβ is the BLUE of c iβ i = 1,..., q. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

40 Likewise, we can show that Cˆβ is the BLUE of Cβ in the sense that Var(s + Ty) Var(Cˆβ) is nonnegative definite for all unbiased linear estimators s + Ty of Cβ. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

41 Nonnegative Definite and Positive Definite Matrices A symmetric matrix n n A is nonnegative definite (NND) if and only if x Ax 0 x R n. A symmetric matrix n n A is positive definite (PD) if and only if x Ax > 0 x R n \ {0}. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

42 Proof that Var(s + Ty) Var(Cˆβ) is NND: s + Ty is a linear unbiased estimator of Cβ E(s + Ty) = Cβ β R p s + TXβ = Cβ β R p s = 0 and TX = C. Thus, we may write any linear unbiased estimators of Cβ as Ty where TX = C. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

43 Now w R q consider w [Var(Ty) Var(Cˆβ)]w = w Var(Ty)w w Var(Cˆβ)w = Var(w Ty) Var(w Cˆβ) 0 by Gauss-Markov Theorem because... opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

44 (i) w Cβ is an estimable function: w C = w AX X A w = C w C w C(X ). (ii) w Ty is a linear unbiased estimator of w Cβ : E(w Ty) = w TXβ = w Cβ β R p. (iii) w Cˆβ is the LSE of w Cβ and is thus the BLUE of w Cβ. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

45 We have shown w [Var(Ty) Var(Cˆβ)]w 0, w R p. Thus, Var(Ty) Var(Cˆβ) is nonnegative definite (NND). Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

46 Is it true that Var(Ty) Var(Cˆβ) is positive definite if Ty is a linear unbiased estimator of Cβ that is not the BLUE of Cˆβ? opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

Estimating Estimable Functions of β. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 17

Estimating Estimable Functions of β. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 17 Estimating Estimable Functions of β Copyright c 202 Dan Nettleton (Iowa State University) Statistics 5 / 7 The Response Depends on β Only through Xβ In the Gauss-Markov or Normal Theory Gauss-Markov Linear

More information

The Aitken Model. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

The Aitken Model. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41 The Aitken Model Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 41 The Aitken Model (AM): Suppose where y = Xβ + ε, E(ε) = 0 and Var(ε) = σ 2 V for some σ 2 > 0 and some known

More information

Estimable Functions and Their Least Squares Estimators. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 51

Estimable Functions and Their Least Squares Estimators. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 51 Estimable Functions and Their Least Squares Estimators Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 51 Consider the GLM y = n p X β + ε, where E(ε) = 0. p 1 n 1 n 1 Suppose

More information

General Linear Test of a General Linear Hypothesis. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 35

General Linear Test of a General Linear Hypothesis. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 35 General Linear Test of a General Linear Hypothesis Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 35 Suppose the NTGMM holds so that y = Xβ + ε, where ε N(0, σ 2 I). opyright

More information

2. A Review of Some Key Linear Models Results. Copyright c 2018 Dan Nettleton (Iowa State University) 2. Statistics / 28

2. A Review of Some Key Linear Models Results. Copyright c 2018 Dan Nettleton (Iowa State University) 2. Statistics / 28 2. A Review of Some Key Linear Models Results Copyright c 2018 Dan Nettleton (Iowa State University) 2. Statistics 510 1 / 28 A General Linear Model (GLM) Suppose y = Xβ + ɛ, where y R n is the response

More information

Estimation of the Response Mean. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 27

Estimation of the Response Mean. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 27 Estimation of the Response Mean Copyright c 202 Dan Nettleton (Iowa State University) Statistics 5 / 27 The Gauss-Markov Linear Model y = Xβ + ɛ y is an n random vector of responses. X is an n p matrix

More information

Constraints on Solutions to the Normal Equations. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

Constraints on Solutions to the Normal Equations. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41 Constraints on Solutions to the Normal Equations Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 41 If rank( n p X) = r < p, there are infinitely many solutions to the NE X Xb

More information

Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = The errors are uncorrelated with common variance:

Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = The errors are uncorrelated with common variance: 8. PROPERTIES OF LEAST SQUARES ESTIMATES 1 Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = 0. 2. The errors are uncorrelated with common variance: These assumptions

More information

Scheffé s Method. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 37

Scheffé s Method. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 37 Scheffé s Method opyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 37 Scheffé s Method: Suppose where Let y = Xβ + ε, ε N(0, σ 2 I). c 1β,..., c qβ be q estimable functions, where

More information

ML and REML Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 58

ML and REML Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 58 ML and REML Variance Component Estimation Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 58 Suppose y = Xβ + ε, where ε N(0, Σ) for some positive definite, symmetric matrix Σ.

More information

Xβ is a linear combination of the columns of X: Copyright c 2010 Dan Nettleton (Iowa State University) Statistics / 25 X =

Xβ is a linear combination of the columns of X: Copyright c 2010 Dan Nettleton (Iowa State University) Statistics / 25 X = The Gauss-Markov Linear Model y Xβ + ɛ y is an n random vector of responses X is an n p matrix of constants with columns corresponding to explanatory variables X is sometimes referred to as the design

More information

Likelihood Ratio Test of a General Linear Hypothesis. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

Likelihood Ratio Test of a General Linear Hypothesis. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42 Likelihood Ratio Test of a General Linear Hypothesis Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 42 Consider the Likelihood Ratio Test of H 0 : Cβ = d vs H A : Cβ d. Suppose

More information

ANOVA Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 32

ANOVA Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 32 ANOVA Variance Component Estimation Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 32 We now consider the ANOVA approach to variance component estimation. The ANOVA approach

More information

Preliminaries. Copyright c 2018 Dan Nettleton (Iowa State University) Statistics / 38

Preliminaries. Copyright c 2018 Dan Nettleton (Iowa State University) Statistics / 38 Preliminaries Copyright c 2018 Dan Nettleton (Iowa State University) Statistics 510 1 / 38 Notation for Scalars, Vectors, and Matrices Lowercase letters = scalars: x, c, σ. Boldface, lowercase letters

More information

When is the OLSE the BLUE? Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 40

When is the OLSE the BLUE? Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 40 When is the OLSE the BLUE? Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 40 When is the Ordinary Least Squares Estimator (OLSE) the Best Linear Unbiased Estimator (BLUE)? Copyright

More information

THE ANOVA APPROACH TO THE ANALYSIS OF LINEAR MIXED EFFECTS MODELS

THE ANOVA APPROACH TO THE ANALYSIS OF LINEAR MIXED EFFECTS MODELS THE ANOVA APPROACH TO THE ANALYSIS OF LINEAR MIXED EFFECTS MODELS We begin with a relatively simple special case. Suppose y ijk = µ + τ i + u ij + e ijk, (i = 1,..., t; j = 1,..., n; k = 1,..., m) β =

More information

ANOVA Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 32

ANOVA Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 32 ANOVA Variance Component Estimation Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 32 We now consider the ANOVA approach to variance component estimation. The ANOVA approach

More information

Linear Mixed-Effects Models. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 34

Linear Mixed-Effects Models. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 34 Linear Mixed-Effects Models Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 34 The Linear Mixed-Effects Model y = Xβ + Zu + e X is an n p design matrix of known constants β R

More information

Distributions of Quadratic Forms. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 31

Distributions of Quadratic Forms. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 31 Distributions of Quadratic Forms Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 31 Under the Normal Theory GMM (NTGMM), y = Xβ + ε, where ε N(0, σ 2 I). By Result 5.3, the NTGMM

More information

11. Linear Mixed-Effects Models. Copyright c 2018 Dan Nettleton (Iowa State University) 11. Statistics / 49

11. Linear Mixed-Effects Models. Copyright c 2018 Dan Nettleton (Iowa State University) 11. Statistics / 49 11. Linear Mixed-Effects Models Copyright c 2018 Dan Nettleton (Iowa State University) 11. Statistics 510 1 / 49 The Linear Mixed-Effects Model y = Xβ + Zu + e X is an n p matrix of known constants β R

More information

3. The F Test for Comparing Reduced vs. Full Models. opyright c 2018 Dan Nettleton (Iowa State University) 3. Statistics / 43

3. The F Test for Comparing Reduced vs. Full Models. opyright c 2018 Dan Nettleton (Iowa State University) 3. Statistics / 43 3. The F Test for Comparing Reduced vs. Full Models opyright c 2018 Dan Nettleton (Iowa State University) 3. Statistics 510 1 / 43 Assume the Gauss-Markov Model with normal errors: y = Xβ + ɛ, ɛ N(0, σ

More information

STAT 100C: Linear models

STAT 100C: Linear models STAT 100C: Linear models Arash A. Amini June 9, 2018 1 / 56 Table of Contents Multiple linear regression Linear model setup Estimation of β Geometric interpretation Estimation of σ 2 Hat matrix Gram matrix

More information

Lecture 6: Linear models and Gauss-Markov theorem

Lecture 6: Linear models and Gauss-Markov theorem Lecture 6: Linear models and Gauss-Markov theorem Linear model setting Results in simple linear regression can be extended to the following general linear model with independently observed response variables

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

Properties of the least squares estimates

Properties of the least squares estimates Properties of the least squares estimates 2019-01-18 Warmup Let a and b be scalar constants, and X be a scalar random variable. Fill in the blanks E ax + b) = Var ax + b) = Goal Recall that the least squares

More information

STAT 100C: Linear models

STAT 100C: Linear models STAT 100C: Linear models Arash A. Amini April 27, 2018 1 / 1 Table of Contents 2 / 1 Linear Algebra Review Read 3.1 and 3.2 from text. 1. Fundamental subspace (rank-nullity, etc.) Im(X ) = ker(x T ) R

More information

Ma 3/103: Lecture 24 Linear Regression I: Estimation

Ma 3/103: Lecture 24 Linear Regression I: Estimation Ma 3/103: Lecture 24 Linear Regression I: Estimation March 3, 2017 KC Border Linear Regression I March 3, 2017 1 / 32 Regression analysis Regression analysis Estimate and test E(Y X) = f (X). f is the

More information

MIT Spring 2016

MIT Spring 2016 Exponential Families II MIT 18.655 Dr. Kempthorne Spring 2016 1 Outline Exponential Families II 1 Exponential Families II 2 : Expectation and Variance U (k 1) and V (l 1) are random vectors If A (m k),

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

Probability Lecture III (August, 2006)

Probability Lecture III (August, 2006) robability Lecture III (August, 2006) 1 Some roperties of Random Vectors and Matrices We generalize univariate notions in this section. Definition 1 Let U = U ij k l, a matrix of random variables. Suppose

More information

Miscellaneous Results, Solving Equations, and Generalized Inverses. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 51

Miscellaneous Results, Solving Equations, and Generalized Inverses. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 51 Miscellaneous Results, Solving Equations, and Generalized Inverses opyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 51 Result A.7: Suppose S and T are vector spaces. If S T and

More information

Linear models. Linear models are computationally convenient and remain widely used in. applied econometric research

Linear models. Linear models are computationally convenient and remain widely used in. applied econometric research Linear models Linear models are computationally convenient and remain widely used in applied econometric research Our main focus in these lectures will be on single equation linear models of the form y

More information

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018 Econometrics I KS Module 2: Multivariate Linear Regression Alexander Ahammer Department of Economics Johannes Kepler University of Linz This version: April 16, 2018 Alexander Ahammer (JKU) Module 2: Multivariate

More information

STAT5044: Regression and Anova. Inyoung Kim

STAT5044: Regression and Anova. Inyoung Kim STAT5044: Regression and Anova Inyoung Kim 2 / 47 Outline 1 Regression 2 Simple Linear regression 3 Basic concepts in regression 4 How to estimate unknown parameters 5 Properties of Least Squares Estimators:

More information

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept,

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, Linear Regression In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, y = Xβ + ɛ, where y t = (y 1,..., y n ) is the column vector of target values,

More information

INTRODUCTORY ECONOMETRICS

INTRODUCTORY ECONOMETRICS INTRODUCTORY ECONOMETRICS Lesson 2b Dr Javier Fernández etpfemaj@ehu.es Dpt. of Econometrics & Statistics UPV EHU c J Fernández (EA3-UPV/EHU), February 21, 2009 Introductory Econometrics - p. 1/192 GLRM:

More information

20. REML Estimation of Variance Components. Copyright c 2018 (Iowa State University) 20. Statistics / 36

20. REML Estimation of Variance Components. Copyright c 2018 (Iowa State University) 20. Statistics / 36 20. REML Estimation of Variance Components Copyright c 2018 (Iowa State University) 20. Statistics 510 1 / 36 Consider the General Linear Model y = Xβ + ɛ, where ɛ N(0, Σ) and Σ is an n n positive definite

More information

STAT 540: Data Analysis and Regression

STAT 540: Data Analysis and Regression STAT 540: Data Analysis and Regression Wen Zhou http://www.stat.colostate.edu/~riczw/ Email: riczw@stat.colostate.edu Department of Statistics Colorado State University Fall 205 W. Zhou (Colorado State

More information

3. For a given dataset and linear model, what do you think is true about least squares estimates? Is Ŷ always unique? Yes. Is ˆβ always unique? No.

3. For a given dataset and linear model, what do you think is true about least squares estimates? Is Ŷ always unique? Yes. Is ˆβ always unique? No. 7. LEAST SQUARES ESTIMATION 1 EXERCISE: Least-Squares Estimation and Uniqueness of Estimates 1. For n real numbers a 1,...,a n, what value of a minimizes the sum of squared distances from a to each of

More information

Multivariate Regression

Multivariate Regression Multivariate Regression The so-called supervised learning problem is the following: we want to approximate the random variable Y with an appropriate function of the random variables X 1,..., X p with the

More information

Applied Econometrics (QEM)

Applied Econometrics (QEM) Applied Econometrics (QEM) The Simple Linear Regression Model based on Prinicples of Econometrics Jakub Mućk Department of Quantitative Economics Jakub Mućk Applied Econometrics (QEM) Meeting #2 The Simple

More information

4 Multiple Linear Regression

4 Multiple Linear Regression 4 Multiple Linear Regression 4. The Model Definition 4.. random variable Y fits a Multiple Linear Regression Model, iff there exist β, β,..., β k R so that for all (x, x 2,..., x k ) R k where ε N (, σ

More information

2.7 Estimation with linear Restriction

2.7 Estimation with linear Restriction Proof (Method 1: show that that a C(W T ), which implies that the GLSE is an estimable function under the old model is also an estimable function under the new model; secnd show that E[a T ˆβ G ] = a T

More information

The Multivariate Normal Distribution. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 36

The Multivariate Normal Distribution. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 36 The Multivariate Normal Distribution Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 36 The Moment Generating Function (MGF) of a random vector X is given by M X (t) = E(e t X

More information

LECTURE 2 LINEAR REGRESSION MODEL AND OLS

LECTURE 2 LINEAR REGRESSION MODEL AND OLS SEPTEMBER 29, 2014 LECTURE 2 LINEAR REGRESSION MODEL AND OLS Definitions A common question in econometrics is to study the effect of one group of variables X i, usually called the regressors, on another

More information

Introduction to Econometrics Midterm Examination Fall 2005 Answer Key

Introduction to Econometrics Midterm Examination Fall 2005 Answer Key Introduction to Econometrics Midterm Examination Fall 2005 Answer Key Please answer all of the questions and show your work Clearly indicate your final answer to each question If you think a question is

More information

Advanced Quantitative Methods: ordinary least squares

Advanced Quantitative Methods: ordinary least squares Advanced Quantitative Methods: Ordinary Least Squares University College Dublin 31 January 2012 1 2 3 4 5 Terminology y is the dependent variable referred to also (by Greene) as a regressand X are the

More information

Well-developed and understood properties

Well-developed and understood properties 1 INTRODUCTION TO LINEAR MODELS 1 THE CLASSICAL LINEAR MODEL Most commonly used statistical models Flexible models Well-developed and understood properties Ease of interpretation Building block for more

More information

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8 Contents 1 Linear model 1 2 GLS for multivariate regression 5 3 Covariance estimation for the GLM 8 4 Testing the GLH 11 A reference for some of this material can be found somewhere. 1 Linear model Recall

More information

Regression Models - Introduction

Regression Models - Introduction Regression Models - Introduction In regression models, two types of variables that are studied: A dependent variable, Y, also called response variable. It is modeled as random. An independent variable,

More information

Regression Models - Introduction

Regression Models - Introduction Regression Models - Introduction In regression models there are two types of variables that are studied: A dependent variable, Y, also called response variable. It is modeled as random. An independent

More information

Matrices and Multivariate Statistics - II

Matrices and Multivariate Statistics - II Matrices and Multivariate Statistics - II Richard Mott November 2011 Multivariate Random Variables Consider a set of dependent random variables z = (z 1,..., z n ) E(z i ) = µ i cov(z i, z j ) = σ ij =

More information

REPEATED MEASURES. Copyright c 2012 (Iowa State University) Statistics / 29

REPEATED MEASURES. Copyright c 2012 (Iowa State University) Statistics / 29 REPEATED MEASURES Copyright c 2012 (Iowa State University) Statistics 511 1 / 29 Repeated Measures Example In an exercise therapy study, subjects were assigned to one of three weightlifting programs i=1:

More information

Determinants. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 25

Determinants. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 25 Determinants opyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 25 Notation The determinant of a square matrix n n A is denoted det(a) or A. opyright c 2012 Dan Nettleton (Iowa State

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Regression based methods, 1st part: Introduction (Sec.

More information

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University.

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University. Summer School in Statistics for Astronomers V June 1 - June 6, 2009 Regression Mosuk Chow Statistics Department Penn State University. Adapted from notes prepared by RL Karandikar Mean and variance Recall

More information

Quick Review on Linear Multiple Regression

Quick Review on Linear Multiple Regression Quick Review on Linear Multiple Regression Mei-Yuan Chen Department of Finance National Chung Hsing University March 6, 2007 Introduction for Conditional Mean Modeling Suppose random variables Y, X 1,

More information

Introduction to Estimation Methods for Time Series models. Lecture 1

Introduction to Estimation Methods for Time Series models. Lecture 1 Introduction to Estimation Methods for Time Series models Lecture 1 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 1 SNS Pisa 1 / 19 Estimation

More information

Review of Statistics

Review of Statistics Economics 672 Fall 2017 Tauchen 1 Random Variables Review of Statistics A random variable takes on values as determined by its probability distribution. The probability distribution can be discrete, continuous,

More information

Lecture 34: Properties of the LSE

Lecture 34: Properties of the LSE Lecture 34: Properties of the LSE The following results explain why the LSE is popular. Gauss-Markov Theorem Assume a general linear model previously described: Y = Xβ + E with assumption A2, i.e., Var(E

More information

Chapter 5 Matrix Approach to Simple Linear Regression

Chapter 5 Matrix Approach to Simple Linear Regression STAT 525 SPRING 2018 Chapter 5 Matrix Approach to Simple Linear Regression Professor Min Zhang Matrix Collection of elements arranged in rows and columns Elements will be numbers or symbols For example:

More information

Chapter 5 Prediction of Random Variables

Chapter 5 Prediction of Random Variables Chapter 5 Prediction of Random Variables C R Henderson 1984 - Guelph We have discussed estimation of β, regarded as fixed Now we shall consider a rather different problem, prediction of random variables,

More information

Lecture 20: Linear model, the LSE, and UMVUE

Lecture 20: Linear model, the LSE, and UMVUE Lecture 20: Linear model, the LSE, and UMVUE Linear Models One of the most useful statistical models is X i = β τ Z i + ε i, i = 1,...,n, where X i is the ith observation and is often called the ith response;

More information

Panel Data Models. James L. Powell Department of Economics University of California, Berkeley

Panel Data Models. James L. Powell Department of Economics University of California, Berkeley Panel Data Models James L. Powell Department of Economics University of California, Berkeley Overview Like Zellner s seemingly unrelated regression models, the dependent and explanatory variables for panel

More information

ECE Lecture #9 Part 2 Overview

ECE Lecture #9 Part 2 Overview ECE 450 - Lecture #9 Part Overview Bivariate Moments Mean or Expected Value of Z = g(x, Y) Correlation and Covariance of RV s Functions of RV s: Z = g(x, Y); finding f Z (z) Method : First find F(z), by

More information

Financial Econometrics

Financial Econometrics Material : solution Class : Teacher(s) : zacharias psaradakis, marian vavra Example 1.1: Consider the linear regression model y Xβ + u, (1) where y is a (n 1) vector of observations on the dependent variable,

More information

11 Hypothesis Testing

11 Hypothesis Testing 28 11 Hypothesis Testing 111 Introduction Suppose we want to test the hypothesis: H : A q p β p 1 q 1 In terms of the rows of A this can be written as a 1 a q β, ie a i β for each row of A (here a i denotes

More information

Preliminary Linear Algebra 1. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 100

Preliminary Linear Algebra 1. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 100 Preliminary Linear Algebra 1 Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 100 Notation for all there exists such that therefore because end of proof (QED) Copyright c 2012

More information

21. Best Linear Unbiased Prediction (BLUP) of Random Effects in the Normal Linear Mixed Effects Model

21. Best Linear Unbiased Prediction (BLUP) of Random Effects in the Normal Linear Mixed Effects Model 21. Best Linear Unbiased Prediction (BLUP) of Random Effects in the Normal Linear Mixed Effects Model Copyright c 2018 (Iowa State University) 21. Statistics 510 1 / 26 C. R. Henderson Born April 1, 1911,

More information

The Statistical Property of Ordinary Least Squares

The Statistical Property of Ordinary Least Squares The Statistical Property of Ordinary Least Squares The linear equation, on which we apply the OLS is y t = X t β + u t Then, as we have derived, the OLS estimator is ˆβ = [ X T X] 1 X T y Then, substituting

More information

Instrumental Variables

Instrumental Variables Università di Pavia 2010 Instrumental Variables Eduardo Rossi Exogeneity Exogeneity Assumption: the explanatory variables which form the columns of X are exogenous. It implies that any randomness in the

More information

Simple Linear Regression: The Model

Simple Linear Regression: The Model Simple Linear Regression: The Model task: quantifying the effect of change X in X on Y, with some constant β 1 : Y = β 1 X, linear relationship between X and Y, however, relationship subject to a random

More information

13. The Cochran-Satterthwaite Approximation for Linear Combinations of Mean Squares

13. The Cochran-Satterthwaite Approximation for Linear Combinations of Mean Squares 13. The Cochran-Satterthwaite Approximation for Linear Combinations of Mean Squares opyright c 2018 Dan Nettleton (Iowa State University) 13. Statistics 510 1 / 18 Suppose M 1,..., M k are independent

More information

Lecture 1: Linear Models and Applications

Lecture 1: Linear Models and Applications Lecture 1: Linear Models and Applications Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction to linear models Exploratory data analysis (EDA) Estimation

More information

Econometrics A. Simple linear model (2) Keio University, Faculty of Economics. Simon Clinet (Keio University) Econometrics A October 16, / 11

Econometrics A. Simple linear model (2) Keio University, Faculty of Economics. Simon Clinet (Keio University) Econometrics A October 16, / 11 Econometrics A Keio University, Faculty of Economics Simple linear model (2) Simon Clinet (Keio University) Econometrics A October 16, 2018 1 / 11 Estimation of the noise variance σ 2 In practice σ 2 too

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 6: Bias and variance (v5) Ramesh Johari ramesh.johari@stanford.edu 1 / 49 Our plan today We saw in last lecture that model scoring methods seem to be trading off two different

More information

Multivariate Regression Analysis

Multivariate Regression Analysis Matrices and vectors The model from the sample is: Y = Xβ +u with n individuals, l response variable, k regressors Y is a n 1 vector or a n l matrix with the notation Y T = (y 1,y 2,...,y n ) 1 x 11 x

More information

Gauss Markov & Predictive Distributions

Gauss Markov & Predictive Distributions Gauss Markov & Predictive Distributions Merlise Clyde STA721 Linear Models Duke University September 14, 2017 Outline Topics Gauss-Markov Theorem Estimability and Prediction Readings: Christensen Chapter

More information

Multiple Regression Analysis. Part III. Multiple Regression Analysis

Multiple Regression Analysis. Part III. Multiple Regression Analysis Part III Multiple Regression Analysis As of Sep 26, 2017 1 Multiple Regression Analysis Estimation Matrix form Goodness-of-Fit R-square Adjusted R-square Expected values of the OLS estimators Irrelevant

More information

EC3062 ECONOMETRICS. THE MULTIPLE REGRESSION MODEL Consider T realisations of the regression equation. (1) y = β 0 + β 1 x β k x k + ε,

EC3062 ECONOMETRICS. THE MULTIPLE REGRESSION MODEL Consider T realisations of the regression equation. (1) y = β 0 + β 1 x β k x k + ε, THE MULTIPLE REGRESSION MODEL Consider T realisations of the regression equation (1) y = β 0 + β 1 x 1 + + β k x k + ε, which can be written in the following form: (2) y 1 y 2.. y T = 1 x 11... x 1k 1

More information

The Multivariate Normal Distribution. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 36

The Multivariate Normal Distribution. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 36 The Multivariate Normal Distribution Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 36 The Moment Generating Function (MGF) of a random vector X is given by M X (t) = E(e t X

More information

Econometrics Master in Business and Quantitative Methods

Econometrics Master in Business and Quantitative Methods Econometrics Master in Business and Quantitative Methods Helena Veiga Universidad Carlos III de Madrid Models with discrete dependent variables and applications of panel data methods in all fields of economics

More information

3 Multiple Linear Regression

3 Multiple Linear Regression 3 Multiple Linear Regression 3.1 The Model Essentially, all models are wrong, but some are useful. Quote by George E.P. Box. Models are supposed to be exact descriptions of the population, but that is

More information

identity matrix, shortened I the jth column of I; the jth standard basis vector matrix A with its elements a ij

identity matrix, shortened I the jth column of I; the jth standard basis vector matrix A with its elements a ij Notation R R n m R n m r R n s real numbers set of n m real matrices subset of R n m consisting of matrices with rank r subset of R n n consisting of symmetric matrices NND n subset of R n s consisting

More information

Chapter 1 Simple Linear Regression (part 6: matrix version)

Chapter 1 Simple Linear Regression (part 6: matrix version) Chapter Simple Liear Regressio (part 6: matrix versio) Overview Simple liear regressio model: respose variable Y, a sigle idepedet variable X Y β 0 + β X + ε Multiple liear regressio model: respose Y,

More information

Generalized Linear Mixed-Effects Models. Copyright c 2015 Dan Nettleton (Iowa State University) Statistics / 58

Generalized Linear Mixed-Effects Models. Copyright c 2015 Dan Nettleton (Iowa State University) Statistics / 58 Generalized Linear Mixed-Effects Models Copyright c 2015 Dan Nettleton (Iowa State University) Statistics 510 1 / 58 Reconsideration of the Plant Fungus Example Consider again the experiment designed to

More information

14 Multiple Linear Regression

14 Multiple Linear Regression B.Sc./Cert./M.Sc. Qualif. - Statistics: Theory and Practice 14 Multiple Linear Regression 14.1 The multiple linear regression model In simple linear regression, the response variable y is expressed in

More information

STAT5044: Regression and Anova. Inyoung Kim

STAT5044: Regression and Anova. Inyoung Kim STAT5044: Regression and Anova Inyoung Kim 2 / 51 Outline 1 Matrix Expression 2 Linear and quadratic forms 3 Properties of quadratic form 4 Properties of estimates 5 Distributional properties 3 / 51 Matrix

More information

Mixed-Models. version 30 October 2011

Mixed-Models. version 30 October 2011 Mixed-Models version 30 October 2011 Mixed models Mixed models estimate a vector! of fixed effects and one (or more) vectors u of random effects Both fixed and random effects models always include a vector

More information

Topic 7 - Matrix Approach to Simple Linear Regression. Outline. Matrix. Matrix. Review of Matrices. Regression model in matrix form

Topic 7 - Matrix Approach to Simple Linear Regression. Outline. Matrix. Matrix. Review of Matrices. Regression model in matrix form Topic 7 - Matrix Approach to Simple Linear Regression Review of Matrices Outline Regression model in matrix form - Fall 03 Calculations using matrices Topic 7 Matrix Collection of elements arranged in

More information

Lecture: Simultaneous Equation Model (Wooldridge s Book Chapter 16)

Lecture: Simultaneous Equation Model (Wooldridge s Book Chapter 16) Lecture: Simultaneous Equation Model (Wooldridge s Book Chapter 16) 1 2 Model Consider a system of two regressions y 1 = β 1 y 2 + u 1 (1) y 2 = β 2 y 1 + u 2 (2) This is a simultaneous equation model

More information

Appendix A: Review of the General Linear Model

Appendix A: Review of the General Linear Model Appendix A: Review of the General Linear Model The generallinear modelis an important toolin many fmri data analyses. As the name general suggests, this model can be used for many different types of analyses,

More information

Biostatistics 533 Classical Theory of Linear Models Spring 2007 Final Exam. Please choose ONE of the following options.

Biostatistics 533 Classical Theory of Linear Models Spring 2007 Final Exam. Please choose ONE of the following options. 1 Biostatistics 533 Classical Theory of Linear Models Spring 2007 Final Exam Name: KEY Problems do not have equal value and some problems will take more time than others. Spend your time wisely. You do

More information

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1 Inverse of a Square Matrix For an N N square matrix A, the inverse of A, 1 A, exists if and only if A is of full rank, i.e., if and only if no column of A is a linear combination 1 of the others. A is

More information

Linear Models Review

Linear Models Review Linear Models Review Vectors in IR n will be written as ordered n-tuples which are understood to be column vectors, or n 1 matrices. A vector variable will be indicted with bold face, and the prime sign

More information

Best Linear Unbiased Prediction (BLUP) of Random Effects in the Normal Linear Mixed Effects Model. *Modified notes from Dr. Dan Nettleton from ISU

Best Linear Unbiased Prediction (BLUP) of Random Effects in the Normal Linear Mixed Effects Model. *Modified notes from Dr. Dan Nettleton from ISU Best Linear Unbiased Prediction (BLUP) of Random Effects in the Normal Linear Mixed Effects Model *Modified notes from Dr. Dan Nettleton from ISU Suppose intelligence quotients (IQs) for a population of

More information

1 of 7 7/16/2009 6:12 AM Virtual Laboratories > 7. Point Estimation > 1 2 3 4 5 6 1. Estimators The Basic Statistical Model As usual, our starting point is a random experiment with an underlying sample

More information

Regression and Statistical Inference

Regression and Statistical Inference Regression and Statistical Inference Walid Mnif wmnif@uwo.ca Department of Applied Mathematics The University of Western Ontario, London, Canada 1 Elements of Probability 2 Elements of Probability CDF&PDF

More information

Review of Classical Least Squares. James L. Powell Department of Economics University of California, Berkeley

Review of Classical Least Squares. James L. Powell Department of Economics University of California, Berkeley Review of Classical Least Squares James L. Powell Department of Economics University of California, Berkeley The Classical Linear Model The object of least squares regression methods is to model and estimate

More information

Homoskedasticity. Var (u X) = σ 2. (23)

Homoskedasticity. Var (u X) = σ 2. (23) Homoskedasticity How big is the difference between the OLS estimator and the true parameter? To answer this question, we make an additional assumption called homoskedasticity: Var (u X) = σ 2. (23) This

More information