Constraints on Solutions to the Normal Equations. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

Size: px
Start display at page:

Download "Constraints on Solutions to the Normal Equations. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41"

Transcription

1 Constraints on Solutions to the Normal Equations Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

2 If rank( n p X) = r < p, there are infinitely many solutions to the NE X Xb = X y. For (X X) any GI of X X, the set of all solutions is { (X X) X y + (I (X X) X X)z : z R p}. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

3 It is possible to place additional constraints on a solution to the NE so that a unique solution that satisfies the constraints. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

4 Example: Suppose y ij = µ + τ i + ε ij (i = 1,..., t; j = 1,..., n i ) where E(ε ij ) = 0 i, j. ˆµ Consider the following constraints on a solution to the NE ˆβ ˆτ 1 =.. ˆτ 2 (Note that constraints are on ˆβ not β.) opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

5 Four common choices are 1. ˆτ 1 = 0 (set first to zero) 2. ˆτ t = 0 (set last to zero) 3. t i=1 ˆτ i = 0 (sum to zero) 4. t i=1 n iˆτ i = 0 (weighted sum to zero) opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

6 Any one of these constraints may be imposed by insisting that a solution to the NE ˆβ satisfies Aˆβ = 0 for some matrix A whose rows ˆµ define linear constraints on ˆβ ˆτ 1 =.. ˆτ 2 Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

7 For example, 1. A = [0, 1, 0,..., 0]. 2. A = [0, 0, 0,..., 1]. 3. A = [0, 1, 1,..., 1]. 4. A = [0, n 1, n 2,..., n t ]. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

8 Note that solution ˆβ satisfies both the NE and the constraint equations Aˆβ = 0 iff [ ] [ ] X X X ˆβ y =. A 0 Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

9 Furthermore, we know that X Xb = X y Xb = P X y. Thus, we have ˆβ a solution to NE satisfying the constraints iff [ ] [ ] X PX y ˆβ =. A 0 Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

10 We now know that if [ we ] want a unique solution to NE and constraint X equations, we need to be of full-column rank; that is, we need A ([ ]) X rank = p. A Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

11 rank( n p X) = r < p. Thus, we know X has r LI rows. If we can find s p r p 1 vectors, when these vectors are combined with r LI rows of X, the set of p vectors is LI, then we can use the s vectors as rows of A to get ([ ]) X rank = p. A Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

12 Suppose x 1,..., x r denote r LI rows of X (written as column vectors) or, equivalently, r LI columns of X. We seek a 1,..., a s (s = p r) so that {x 1,..., x r, a 1,..., a s } is a set of p = r + s LI vectors in R p. [ ] X Then, with A = [a 1,..., a s ], will have full-column rank. A Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

13 Obviously, a 1,..., a s must be LI and a k / C(X ) k = 1,..., s. Show by example that these conditions are not sufficient to guarantee ([ ]) X rank = p. A opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

14 Example: 1 Suppose r = 1 and x 1 = x r = If a 1 = 1 and a 2 = 0, then a 1, a 2 LI, a 1 / C(X ), and a 2 / C(X ). 0 1 [ ] X However, = A has rank 2 < 3 = p Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

15 The problem arises because, although neither a 1 nor a 2 is in C(X ), LCs of a 1 and a 2 (e.g., a 1 + a 2 = x 1 ) that are in C(X ). Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

16 Prove the following results: Suppose x 1,, x r LI in R p. Suppose a 1,..., a s LI in R p. Suppose r + s = p. Then x 1,..., x r, a 1,..., a s LI span{x 1,..., x r } span{a 1,..., a s } = {0}. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

17 Proof: (= ) x 1,..., x r, a 1,..., a s LI iff c 1 x c r x r + d 1 a d s a s = 0 c 1 = = c r = d 1 = = d s = 0. If z span{x 1,..., x r } span{a 1,..., a s }, then c 1,..., c r and d 1,..., d s z = c 1 x c r x r = d 1 a 1 d s a s c 1 x c r x r + d 1 a d s a s = 0 c 1 = = c r = d 1 = = d s = 0 z = 0. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

18 ( =) span{x 1,..., x r } span{a 1,..., a s } = {0} c 1 x c r x r = d 1 a 1 d s a s only when r s c i x i = ( d j )a j = 0. i=1 j=1 x 1,..., x r LI and a 1,..., a s LI, r s c i x i = ( d j )a j = 0 i=1 j=1 c 1 = = c r = d 1 = = d s = 0. c 1 x c r x r + d 1 a d s a s = 0 only when c 1 = = c r = d 1 = = d s = 0. x 1,..., x r, a 1,..., a s are LI. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

19 Note that the condition span{x 1,..., x r } span{a 1,..., a s } = {0} (d 1 a d s a s ) β is not estimable whenever d 1,..., d s are not all 0. Thus, the constraints that we add, as well as all nontrivial LCs of those constraints, must correspond to nonestimable functions. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

20 Note that a 1,..., a s with the desired properties always exist. Why is that? opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

21 We know C(X ) has dim p r = s and satisfies C(X ) C(X ) = {0}. We can take a 1,..., a s to be basis vectors of C(X ) = N (X). opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

22 Although choosing basis vectors from N (X) is one possibility, we don t need a 1,..., a s N (X). Demonstrate this with an example. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

23 Example: 1 Suppose rank(x) = 1 and x 1 = x r = If we take a 1 = 0 and a 2 = 1, then a 1 / N (X), a 2 / N (X) and rank = 3 = p Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

24 The result that we proved can be alternatively stated as follows: Suppose rank( n p X) = r < p. Suppose rank( s p A) = s where s = p r. Then ([ ]) X C(X ) C(A ) = {0} rank = p. A Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

25 Lemma 3.1: For s p A rank(a) = s = p rank( n p X) and C(X ) C(A ) = {0}, [ ] [ ] X X X y b = A 0 is equivalent to [ ] [ ] X X X y b =, A A 0 which is equivalent to (X X + A A)b = X y. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

26 Proof of Lemma 3.1: Ab = 0 A Ab = 0 A Ab = 0 b A Ab = 0 Ab = 0. and Thus, the first equivalence holds. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

27 Now [ ] [ ] X X X y b = X Xb = X y and A Ab = 0 A A 0 X Xb + A Ab = X y (X X + A A)b = X y. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

28 Now note that (X X + A A)b = X y X Xb X y = A Ab X (Xb y) = A ( Ab). Now note that X (Xb y) C(X ) and A ( Ab) C(A ). Thus, X (Xb y) = A ( Ab) C(X ) C(A ), which implies X (Xb y) = A ( Ab) = 0. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

29 Therefore, we have X (Xb y) = 0 X Xb = X y A Ab = 0 A Ab = 0. [ ] [ ] X X X y b =. A A 0 Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

30 Result 3.6: Suppose rank( n p X) = r, rank( s p A) = s = p r, and C(X ) C(A ) = {0}. Then (i) X X + A A is nonsingular. (ii) (X X + A A) 1 X y is unique solution to X Xb = X y and Ab = 0. (iii) (X X + A A) 1 is GI of X X. (iv) A(X X + A A) 1 X = 0. (v) A(X X + A A) 1 A = I. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

31 Proof of Result 3.6: (i) ([ ]) X p = rank A ( [ ]) X = rank [X, A ] A = rank(x X + A A). (By Corollary 2.2) Thus, X X + A A is full rank p p matrix and is nonsingular. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

32 (ii) By Lemma 3.1, solution to (X X + A A)b = X y satisfies X Xb = X y and Ab = 0 and vice versa. X X + A A is nonsingular, the unique solution is (X X + A A) 1 X y, which is obtained by multiplying (X X + A A)b = X y on the left by (X X + A A) 1. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

33 (iii) By (ii), (X X + A A) 1 X y is a solution to X Xb = X y y R n. X X(X X + A A) 1 X y = X y y R n X X(X X + A A) 1 X = X X X(X X + A A) 1 X X = X X (X X + A A) 1 is GI of X X. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

34 (iv) By (ii), (X X + A A) 1 X y solves Ab = 0 y R n. A(X X + A A) 1 X y = 0 y R n. A(X X + A A) 1 X = 0. (v) HW Problem. See exercise opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

35 Returning to our example, y ij = µ + τ i + ε ij (i = 1,..., t; j = 1,..., n i ) where E(ε ij ) = 0 i, j. µ τ 1 β =.. Let s consider the constraint τ t t n iˆτ i = 0. i=1 Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

36 Find ˆβ that satisfies NE and the constraint. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

37 1 n1 1 n1 0 n1 0 n1 1 n2 0 n2 1 n2 0 n2 X = nt 0 nt 0 nt 1 nt n n 1 n 2 n t n 1 n X X = n 2 0 n n t 0 0 n t Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

38 nˆµ + n 1ˆτ n tˆτ t X n 1ˆµ + n 1ˆτ 1 Xˆβ =. n t ˆµ + n tˆτ t y X y 1 y =.. y t Equating X Xˆβ and X y leads to Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

39 nˆµ + n 1ˆτ n tˆτ t = y n 1ˆµ + n 1ˆτ 1 = y 1. n t ˆµ + n tˆτ t = y t. This system of equations has an infinite number of solutions. However, if we insist that n 1ˆτ n tˆτ t = 0, the first equation becomes opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

40 nˆµ = y ˆµ = ȳ. Substituting ˆµ = ȳ in the other equations yields n i ȳ + n iˆτ i = y i ȳ + ˆτ i = ȳ i ˆτ i = ȳ i ȳ Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

41 For the general case, we can compute ˆβ = (X X + A A) 1 X y. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

Estimable Functions and Their Least Squares Estimators. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 51

Estimable Functions and Their Least Squares Estimators. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 51 Estimable Functions and Their Least Squares Estimators Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 51 Consider the GLM y = n p X β + ε, where E(ε) = 0. p 1 n 1 n 1 Suppose

More information

Miscellaneous Results, Solving Equations, and Generalized Inverses. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 51

Miscellaneous Results, Solving Equations, and Generalized Inverses. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 51 Miscellaneous Results, Solving Equations, and Generalized Inverses opyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 51 Result A.7: Suppose S and T are vector spaces. If S T and

More information

Estimating Estimable Functions of β. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 17

Estimating Estimable Functions of β. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 17 Estimating Estimable Functions of β Copyright c 202 Dan Nettleton (Iowa State University) Statistics 5 / 7 The Response Depends on β Only through Xβ In the Gauss-Markov or Normal Theory Gauss-Markov Linear

More information

Estimation of the Response Mean. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 27

Estimation of the Response Mean. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 27 Estimation of the Response Mean Copyright c 202 Dan Nettleton (Iowa State University) Statistics 5 / 27 The Gauss-Markov Linear Model y = Xβ + ɛ y is an n random vector of responses. X is an n p matrix

More information

General Linear Test of a General Linear Hypothesis. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 35

General Linear Test of a General Linear Hypothesis. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 35 General Linear Test of a General Linear Hypothesis Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 35 Suppose the NTGMM holds so that y = Xβ + ε, where ε N(0, σ 2 I). opyright

More information

The Aitken Model. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

The Aitken Model. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41 The Aitken Model Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 41 The Aitken Model (AM): Suppose where y = Xβ + ε, E(ε) = 0 and Var(ε) = σ 2 V for some σ 2 > 0 and some known

More information

The Gauss-Markov Model. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

The Gauss-Markov Model. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61 The Gauss-Markov Model Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 61 Recall that Cov(u, v) = E((u E(u))(v E(v))) = E(uv) E(u)E(v) Var(u) = Cov(u, u) = E(u E(u)) 2 = E(u 2

More information

Scheffé s Method. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 37

Scheffé s Method. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 37 Scheffé s Method opyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 37 Scheffé s Method: Suppose where Let y = Xβ + ε, ε N(0, σ 2 I). c 1β,..., c qβ be q estimable functions, where

More information

ML and REML Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 58

ML and REML Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 58 ML and REML Variance Component Estimation Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 58 Suppose y = Xβ + ε, where ε N(0, Σ) for some positive definite, symmetric matrix Σ.

More information

Distributions of Quadratic Forms. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 31

Distributions of Quadratic Forms. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 31 Distributions of Quadratic Forms Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 31 Under the Normal Theory GMM (NTGMM), y = Xβ + ε, where ε N(0, σ 2 I). By Result 5.3, the NTGMM

More information

Likelihood Ratio Test of a General Linear Hypothesis. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

Likelihood Ratio Test of a General Linear Hypothesis. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42 Likelihood Ratio Test of a General Linear Hypothesis Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 42 Consider the Likelihood Ratio Test of H 0 : Cβ = d vs H A : Cβ d. Suppose

More information

Xβ is a linear combination of the columns of X: Copyright c 2010 Dan Nettleton (Iowa State University) Statistics / 25 X =

Xβ is a linear combination of the columns of X: Copyright c 2010 Dan Nettleton (Iowa State University) Statistics / 25 X = The Gauss-Markov Linear Model y Xβ + ɛ y is an n random vector of responses X is an n p matrix of constants with columns corresponding to explanatory variables X is sometimes referred to as the design

More information

Preliminary Linear Algebra 1. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 100

Preliminary Linear Algebra 1. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 100 Preliminary Linear Algebra 1 Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 100 Notation for all there exists such that therefore because end of proof (QED) Copyright c 2012

More information

Determinants. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 25

Determinants. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 25 Determinants opyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 25 Notation The determinant of a square matrix n n A is denoted det(a) or A. opyright c 2012 Dan Nettleton (Iowa State

More information

When is the OLSE the BLUE? Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 40

When is the OLSE the BLUE? Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 40 When is the OLSE the BLUE? Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 40 When is the Ordinary Least Squares Estimator (OLSE) the Best Linear Unbiased Estimator (BLUE)? Copyright

More information

2. A Review of Some Key Linear Models Results. Copyright c 2018 Dan Nettleton (Iowa State University) 2. Statistics / 28

2. A Review of Some Key Linear Models Results. Copyright c 2018 Dan Nettleton (Iowa State University) 2. Statistics / 28 2. A Review of Some Key Linear Models Results Copyright c 2018 Dan Nettleton (Iowa State University) 2. Statistics 510 1 / 28 A General Linear Model (GLM) Suppose y = Xβ + ɛ, where y R n is the response

More information

ANOVA Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 32

ANOVA Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 32 ANOVA Variance Component Estimation Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 32 We now consider the ANOVA approach to variance component estimation. The ANOVA approach

More information

3. For a given dataset and linear model, what do you think is true about least squares estimates? Is Ŷ always unique? Yes. Is ˆβ always unique? No.

3. For a given dataset and linear model, what do you think is true about least squares estimates? Is Ŷ always unique? Yes. Is ˆβ always unique? No. 7. LEAST SQUARES ESTIMATION 1 EXERCISE: Least-Squares Estimation and Uniqueness of Estimates 1. For n real numbers a 1,...,a n, what value of a minimizes the sum of squared distances from a to each of

More information

3. The F Test for Comparing Reduced vs. Full Models. opyright c 2018 Dan Nettleton (Iowa State University) 3. Statistics / 43

3. The F Test for Comparing Reduced vs. Full Models. opyright c 2018 Dan Nettleton (Iowa State University) 3. Statistics / 43 3. The F Test for Comparing Reduced vs. Full Models opyright c 2018 Dan Nettleton (Iowa State University) 3. Statistics 510 1 / 43 Assume the Gauss-Markov Model with normal errors: y = Xβ + ɛ, ɛ N(0, σ

More information

Preliminaries. Copyright c 2018 Dan Nettleton (Iowa State University) Statistics / 38

Preliminaries. Copyright c 2018 Dan Nettleton (Iowa State University) Statistics / 38 Preliminaries Copyright c 2018 Dan Nettleton (Iowa State University) Statistics 510 1 / 38 Notation for Scalars, Vectors, and Matrices Lowercase letters = scalars: x, c, σ. Boldface, lowercase letters

More information

The Multivariate Normal Distribution. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 36

The Multivariate Normal Distribution. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 36 The Multivariate Normal Distribution Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 36 The Moment Generating Function (MGF) of a random vector X is given by M X (t) = E(e t X

More information

20.1. Balanced One-Way Classification Cell means parametrization: ε 1. ε I. + ˆɛ 2 ij =

20.1. Balanced One-Way Classification Cell means parametrization: ε 1. ε I. + ˆɛ 2 ij = 20. ONE-WAY ANALYSIS OF VARIANCE 1 20.1. Balanced One-Way Classification Cell means parametrization: Y ij = µ i + ε ij, i = 1,..., I; j = 1,..., J, ε ij N(0, σ 2 ), In matrix form, Y = Xβ + ε, or 1 Y J

More information

The Multivariate Normal Distribution. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 36

The Multivariate Normal Distribution. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 36 The Multivariate Normal Distribution Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 36 The Moment Generating Function (MGF) of a random vector X is given by M X (t) = E(e t X

More information

Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = The errors are uncorrelated with common variance:

Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = The errors are uncorrelated with common variance: 8. PROPERTIES OF LEAST SQUARES ESTIMATES 1 Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = 0. 2. The errors are uncorrelated with common variance: These assumptions

More information

11 Hypothesis Testing

11 Hypothesis Testing 28 11 Hypothesis Testing 111 Introduction Suppose we want to test the hypothesis: H : A q p β p 1 q 1 In terms of the rows of A this can be written as a 1 a q β, ie a i β for each row of A (here a i denotes

More information

ANOVA Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 32

ANOVA Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 32 ANOVA Variance Component Estimation Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 32 We now consider the ANOVA approach to variance component estimation. The ANOVA approach

More information

Span & Linear Independence (Pop Quiz)

Span & Linear Independence (Pop Quiz) Span & Linear Independence (Pop Quiz). Consider the following vectors: v = 2, v 2 = 4 5, v 3 = 3 2, v 4 = Is the set of vectors S = {v, v 2, v 3, v 4 } linearly independent? Solution: Notice that the number

More information

MATH 3321 Sample Questions for Exam 3. 3y y, C = Perform the indicated operations, if possible: (a) AC (b) AB (c) B + AC (d) CBA

MATH 3321 Sample Questions for Exam 3. 3y y, C = Perform the indicated operations, if possible: (a) AC (b) AB (c) B + AC (d) CBA MATH 33 Sample Questions for Exam 3. Find x and y so that x 4 3 5x 3y + y = 5 5. x = 3/7, y = 49/7. Let A = 3 4, B = 3 5, C = 3 Perform the indicated operations, if possible: a AC b AB c B + AC d CBA AB

More information

Math 407: Linear Optimization

Math 407: Linear Optimization Math 407: Linear Optimization Lecture 16: The Linear Least Squares Problem II Math Dept, University of Washington February 28, 2018 Lecture 16: The Linear Least Squares Problem II (Math Dept, University

More information

Lecture 6: Linear models and Gauss-Markov theorem

Lecture 6: Linear models and Gauss-Markov theorem Lecture 6: Linear models and Gauss-Markov theorem Linear model setting Results in simple linear regression can be extended to the following general linear model with independently observed response variables

More information

OHSx XM511 Linear Algebra: Solutions to Online True/False Exercises

OHSx XM511 Linear Algebra: Solutions to Online True/False Exercises This document gives the solutions to all of the online exercises for OHSx XM511. The section ( ) numbers refer to the textbook. TYPE I are True/False. Answers are in square brackets [. Lecture 02 ( 1.1)

More information

2.7 Estimation with linear Restriction

2.7 Estimation with linear Restriction Proof (Method 1: show that that a C(W T ), which implies that the GLSE is an estimable function under the old model is also an estimable function under the new model; secnd show that E[a T ˆβ G ] = a T

More information

Biostatistics 533 Classical Theory of Linear Models Spring 2007 Final Exam. Please choose ONE of the following options.

Biostatistics 533 Classical Theory of Linear Models Spring 2007 Final Exam. Please choose ONE of the following options. 1 Biostatistics 533 Classical Theory of Linear Models Spring 2007 Final Exam Name: KEY Problems do not have equal value and some problems will take more time than others. Spend your time wisely. You do

More information

LECTURE 6: VECTOR SPACES II (CHAPTER 3 IN THE BOOK)

LECTURE 6: VECTOR SPACES II (CHAPTER 3 IN THE BOOK) LECTURE 6: VECTOR SPACES II (CHAPTER 3 IN THE BOOK) In this lecture, F is a fixed field. One can assume F = R or C. 1. More about the spanning set 1.1. Let S = { v 1, v n } be n vectors in V, we have defined

More information

Exam 2 Solutions. (a) Is W closed under addition? Why or why not? W is not closed under addition. For example,

Exam 2 Solutions. (a) Is W closed under addition? Why or why not? W is not closed under addition. For example, Exam 2 Solutions. Let V be the set of pairs of real numbers (x, y). Define the following operations on V : (x, y) (x, y ) = (x + x, xx + yy ) r (x, y) = (rx, y) Check if V together with and satisfy properties

More information

Linear Algebra. Paul Yiu. Department of Mathematics Florida Atlantic University. Fall 2011

Linear Algebra. Paul Yiu. Department of Mathematics Florida Atlantic University. Fall 2011 Linear Algebra Paul Yiu Department of Mathematics Florida Atlantic University Fall 2011 Linear Algebra Paul Yiu Department of Mathematics Florida Atlantic University Fall 2011 1A: Vector spaces Fields

More information

Chapter 5 Matrix Approach to Simple Linear Regression

Chapter 5 Matrix Approach to Simple Linear Regression STAT 525 SPRING 2018 Chapter 5 Matrix Approach to Simple Linear Regression Professor Min Zhang Matrix Collection of elements arranged in rows and columns Elements will be numbers or symbols For example:

More information

System of Linear Equations. Slide for MA1203 Business Mathematics II Week 1 & 2

System of Linear Equations. Slide for MA1203 Business Mathematics II Week 1 & 2 System of Linear Equations Slide for MA1203 Business Mathematics II Week 1 & 2 Function A manufacturer would like to know how his company s profit is related to its production level. How does one quantity

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 222 3. M Test # July, 23 Solutions. For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For

More information

Linear maps. Matthew Macauley. Department of Mathematical Sciences Clemson University Math 8530, Spring 2017

Linear maps. Matthew Macauley. Department of Mathematical Sciences Clemson University  Math 8530, Spring 2017 Linear maps Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 8530, Spring 2017 M. Macauley (Clemson) Linear maps Math 8530, Spring 2017

More information

Biostatistics 533 Classical Theory of Linear Models Spring 2007 Final Exam. Please choose ONE of the following options.

Biostatistics 533 Classical Theory of Linear Models Spring 2007 Final Exam. Please choose ONE of the following options. 1 Biostatistics 533 Classical Theory of Linear Models Spring 2007 Final Exam Name: Problems do not have equal value and some problems will take more time than others. Spend your time wisely. You do not

More information

Linear Algebra 1 Exam 2 Solutions 7/14/3

Linear Algebra 1 Exam 2 Solutions 7/14/3 Linear Algebra 1 Exam Solutions 7/14/3 Question 1 The line L has the symmetric equation: x 1 = y + 3 The line M has the parametric equation: = z 4. [x, y, z] = [ 4, 10, 5] + s[10, 7, ]. The line N is perpendicular

More information

14 Multiple Linear Regression

14 Multiple Linear Regression B.Sc./Cert./M.Sc. Qualif. - Statistics: Theory and Practice 14 Multiple Linear Regression 14.1 The multiple linear regression model In simple linear regression, the response variable y is expressed in

More information

SECTION 3.3. PROBLEM 22. The null space of a matrix A is: N(A) = {X : AX = 0}. Here are the calculations of AX for X = a,b,c,d, and e. =

SECTION 3.3. PROBLEM 22. The null space of a matrix A is: N(A) = {X : AX = 0}. Here are the calculations of AX for X = a,b,c,d, and e. = SECTION 3.3. PROBLEM. The null space of a matrix A is: N(A) {X : AX }. Here are the calculations of AX for X a,b,c,d, and e. Aa [ ][ ] 3 3 [ ][ ] Ac 3 3 [ ] 3 3 [ ] 4+4 6+6 Ae [ ], Ab [ ][ ] 3 3 3 [ ]

More information

LINEAR ALGEBRA BOOT CAMP WEEK 1: THE BASICS

LINEAR ALGEBRA BOOT CAMP WEEK 1: THE BASICS LINEAR ALGEBRA BOOT CAMP WEEK 1: THE BASICS Unless otherwise stated, all vector spaces in this worksheet are finite dimensional and the scalar field F has characteristic zero. The following are facts (in

More information

STAT 540: Data Analysis and Regression

STAT 540: Data Analysis and Regression STAT 540: Data Analysis and Regression Wen Zhou http://www.stat.colostate.edu/~riczw/ Email: riczw@stat.colostate.edu Department of Statistics Colorado State University Fall 205 W. Zhou (Colorado State

More information

ORIE 6300 Mathematical Programming I August 25, Recitation 1

ORIE 6300 Mathematical Programming I August 25, Recitation 1 ORIE 6300 Mathematical Programming I August 25, 2016 Lecturer: Calvin Wylie Recitation 1 Scribe: Mateo Díaz 1 Linear Algebra Review 1 1.1 Independence, Spanning, and Dimension Definition 1 A (usually infinite)

More information

Elementary operation matrices: row addition

Elementary operation matrices: row addition Elementary operation matrices: row addition For t a, let A (n,t,a) be the n n matrix such that { A (n,t,a) 1 if r = c, or if r = t and c = a r,c = 0 otherwise A (n,t,a) = I + e t e T a Example: A (5,2,4)

More information

Chapter 4 Euclid Space

Chapter 4 Euclid Space Chapter 4 Euclid Space Inner Product Spaces Definition.. Let V be a real vector space over IR. A real inner product on V is a real valued function on V V, denoted by (, ), which satisfies () (x, y) = (y,

More information

EXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1)

EXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1) EXERCISE SET 5. 6. The pair (, 2) is in the set but the pair ( )(, 2) = (, 2) is not because the first component is negative; hence Axiom 6 fails. Axiom 5 also fails. 8. Axioms, 2, 3, 6, 9, and are easily

More information

Chapter Two Elements of Linear Algebra

Chapter Two Elements of Linear Algebra Chapter Two Elements of Linear Algebra Previously, in chapter one, we have considered single first order differential equations involving a single unknown function. In the next chapter we will begin to

More information

Math 242 fall 2008 notes on problem session for week of This is a short overview of problems that we covered.

Math 242 fall 2008 notes on problem session for week of This is a short overview of problems that we covered. Math 242 fall 28 notes on problem session for week of 9-3-8 This is a short overview of problems that we covered.. For each of the following sets ask the following: Does it span R 3? Is it linearly independent?

More information

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Midterm 1 Review Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Summary This Midterm Review contains notes on sections 1.1 1.5 and 1.7 in your

More information

Math 353, Practice Midterm 1

Math 353, Practice Midterm 1 Math 353, Practice Midterm Name: This exam consists of 8 pages including this front page Ground Rules No calculator is allowed 2 Show your work for every problem unless otherwise stated Score 2 2 3 5 4

More information

Solutions of Linear system, vector and matrix equation

Solutions of Linear system, vector and matrix equation Goals: Solutions of Linear system, vector and matrix equation Solutions of linear system. Vectors, vector equation. Matrix equation. Math 112, Week 2 Suggested Textbook Readings: Sections 1.3, 1.4, 1.5

More information

Topic 7 - Matrix Approach to Simple Linear Regression. Outline. Matrix. Matrix. Review of Matrices. Regression model in matrix form

Topic 7 - Matrix Approach to Simple Linear Regression. Outline. Matrix. Matrix. Review of Matrices. Regression model in matrix form Topic 7 - Matrix Approach to Simple Linear Regression Review of Matrices Outline Regression model in matrix form - Fall 03 Calculations using matrices Topic 7 Matrix Collection of elements arranged in

More information

Linear Algebra Notes. Lecture Notes, University of Toronto, Fall 2016

Linear Algebra Notes. Lecture Notes, University of Toronto, Fall 2016 Linear Algebra Notes Lecture Notes, University of Toronto, Fall 2016 (Ctd ) 11 Isomorphisms 1 Linear maps Definition 11 An invertible linear map T : V W is called a linear isomorphism from V to W Etymology:

More information

STAT 151A: Lab 1. 1 Logistics. 2 Reference. 3 Playing with R: graphics and lm() 4 Random vectors. Billy Fang. 2 September 2017

STAT 151A: Lab 1. 1 Logistics. 2 Reference. 3 Playing with R: graphics and lm() 4 Random vectors. Billy Fang. 2 September 2017 STAT 151A: Lab 1 Billy Fang 2 September 2017 1 Logistics Billy Fang (blfang@berkeley.edu) Office hours: Monday 9am-11am, Wednesday 10am-12pm, Evans 428 (room changes will be written on the chalkboard)

More information

5 More on Linear Algebra

5 More on Linear Algebra 14.102, Math for Economists Fall 2004 Lecture Notes, 9/23/2004 These notes are primarily based on those written by George Marios Angeletos for the Harvard Math Camp in 1999 and 2000, and updated by Stavros

More information

Lecture 15. Hypothesis testing in the linear model

Lecture 15. Hypothesis testing in the linear model 14. Lecture 15. Hypothesis testing in the linear model Lecture 15. Hypothesis testing in the linear model 1 (1 1) Preliminary lemma 15. Hypothesis testing in the linear model 15.1. Preliminary lemma Lemma

More information

COMPLETELY RANDOMIZED DESIGNS (CRD) For now, t unstructured treatments (e.g. no factorial structure)

COMPLETELY RANDOMIZED DESIGNS (CRD) For now, t unstructured treatments (e.g. no factorial structure) STAT 52 Completely Randomized Designs COMPLETELY RANDOMIZED DESIGNS (CRD) For now, t unstructured treatments (e.g. no factorial structure) Completely randomized means no restrictions on the randomization

More information

Solutions to Exam I MATH 304, section 6

Solutions to Exam I MATH 304, section 6 Solutions to Exam I MATH 304, section 6 YOU MUST SHOW ALL WORK TO GET CREDIT. Problem 1. Let A = 1 2 5 6 1 2 5 6 3 2 0 0 1 3 1 1 2 0 1 3, B =, C =, I = I 0 0 0 1 1 3 4 = 4 4 identity matrix. 3 1 2 6 0

More information

Math 550 Notes. Chapter 2. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010

Math 550 Notes. Chapter 2. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010 Math 550 Notes Chapter 2 Jesse Crawford Department of Mathematics Tarleton State University Fall 2010 (Tarleton State University) Math 550 Chapter 2 Fall 2010 1 / 20 Linear algebra deals with finite dimensional

More information

STAT 100C: Linear models

STAT 100C: Linear models STAT 100C: Linear models Arash A. Amini April 27, 2018 1 / 1 Table of Contents 2 / 1 Linear Algebra Review Read 3.1 and 3.2 from text. 1. Fundamental subspace (rank-nullity, etc.) Im(X ) = ker(x T ) R

More information

1 Determinants. 1.1 Determinant

1 Determinants. 1.1 Determinant 1 Determinants [SB], Chapter 9, p.188-196. [SB], Chapter 26, p.719-739. Bellow w ll study the central question: which additional conditions must satisfy a quadratic matrix A to be invertible, that is to

More information

Linear Algebra. Grinshpan

Linear Algebra. Grinshpan Linear Algebra Grinshpan Saturday class, 2/23/9 This lecture involves topics from Sections 3-34 Subspaces associated to a matrix Given an n m matrix A, we have three subspaces associated to it The column

More information

Multiple Regression Model: I

Multiple Regression Model: I Multiple Regression Model: I Suppose the data are generated according to y i 1 x i1 2 x i2 K x ik u i i 1...n Define y 1 x 11 x 1K 1 u 1 y y n X x n1 x nk K u u n So y n, X nxk, K, u n Rks: In many applications,

More information

Answer Key for STAT 200B HW No. 8

Answer Key for STAT 200B HW No. 8 Answer Key for STAT 200B HW No. 8 May 8, 2007 Problem 3.42 p. 708 The values of Ȳ for x 00, 0, 20, 30 are 5/40, 0, 20/50, and, respectively. From Corollary 3.5 it follows that MLE exists i G is identiable

More information

MAT Linear Algebra Collection of sample exams

MAT Linear Algebra Collection of sample exams MAT 342 - Linear Algebra Collection of sample exams A-x. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system

More information

x = t 1 x 1 + t 2 x t k x k

x = t 1 x 1 + t 2 x t k x k Def.: Given vectors x,...,x k in R n, the set of all their linear combinations is called their span, and is denoted by span(x,...,x k ) Thm.: span(x,...,x k ) is a subspace of R n Def.: If V is a subspace

More information

3. Linear Programming and Polyhedral Combinatorics

3. Linear Programming and Polyhedral Combinatorics Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans April 5, 2017 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the introductory

More information

Lecture Summaries for Linear Algebra M51A

Lecture Summaries for Linear Algebra M51A These lecture summaries may also be viewed online by clicking the L icon at the top right of any lecture screen. Lecture Summaries for Linear Algebra M51A refers to the section in the textbook. Lecture

More information

Linear Algebra. Workbook

Linear Algebra. Workbook Linear Algebra Workbook Paul Yiu Department of Mathematics Florida Atlantic University Last Update: November 21 Student: Fall 2011 Checklist Name: A B C D E F F G H I J 1 2 3 4 5 6 7 8 9 10 xxx xxx xxx

More information

Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences.

Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences. Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences.. Recall that P 3 denotes the vector space of polynomials of degree less

More information

10. Rank-nullity Definition Let A M m,n (F ). The row space of A is the span of the rows. The column space of A is the span of the columns.

10. Rank-nullity Definition Let A M m,n (F ). The row space of A is the span of the rows. The column space of A is the span of the columns. 10. Rank-nullity Definition 10.1. Let A M m,n (F ). The row space of A is the span of the rows. The column space of A is the span of the columns. The nullity ν(a) of A is the dimension of the kernel. The

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2 MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS AND MATRICES Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

LINEAR ALGEBRA BOOT CAMP WEEK 2: LINEAR OPERATORS

LINEAR ALGEBRA BOOT CAMP WEEK 2: LINEAR OPERATORS LINEAR ALGEBRA BOOT CAMP WEEK 2: LINEAR OPERATORS Unless otherwise stated, all vector spaces in this worksheet are finite dimensional and the scalar field F has characteristic zero. The following are facts

More information

Math 344 Lecture # Linear Systems

Math 344 Lecture # Linear Systems Math 344 Lecture #12 2.7 Linear Systems Through a choice of bases S and T for finite dimensional vector spaces V (with dimension n) and W (with dimension m), a linear equation L(v) = w becomes the linear

More information

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible. MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Row-column rule: i-j-th entry of AB:

More information

Paul Schrimpf. September 10, 2013

Paul Schrimpf. September 10, 2013 Systems of UBC Economics 526 September 10, 2013 More cardinality Let A and B be sets, the Cartesion product of A and B is A B := {(a, b) : a A, b B} Question If A and B are countable is A B countable?

More information

Apprentice Linear Algebra, 1st day, 6/27/05

Apprentice Linear Algebra, 1st day, 6/27/05 Apprentice Linear Algebra, 1st day, 6/7/05 REU 005 Instructor: László Babai Scribe: Eric Patterson Definitions 1.1. An abelian group is a set G with the following properties: (i) ( a, b G)(!a + b G) (ii)

More information

Algebraic Properties of Solutions of Linear Systems

Algebraic Properties of Solutions of Linear Systems Algebraic Properties of Solutions of Linear Systems In this chapter we will consider simultaneous first-order differential equations in several variables, that is, equations of the form f 1t,,,x n d f

More information

Online Exercises for Linear Algebra XM511

Online Exercises for Linear Algebra XM511 This document lists the online exercises for XM511. The section ( ) numbers refer to the textbook. TYPE I are True/False. Lecture 02 ( 1.1) Online Exercises for Linear Algebra XM511 1) The matrix [3 2

More information

1 Continuous-time Systems

1 Continuous-time Systems Observability Completely controllable systems can be restructured by means of state feedback to have many desirable properties. But what if the state is not available for feedback? What if only the output

More information

Algebraic Methods in Combinatorics

Algebraic Methods in Combinatorics Algebraic Methods in Combinatorics Po-Shen Loh 27 June 2008 1 Warm-up 1. (A result of Bourbaki on finite geometries, from Răzvan) Let X be a finite set, and let F be a family of distinct proper subsets

More information

1 Lecture notes Classication. Denition 1. Let z be a set function on the nite set V i.e. z : 2 V R, then z is submodular if

1 Lecture notes Classication. Denition 1. Let z be a set function on the nite set V i.e. z : 2 V R, then z is submodular if Lecture notes 3 Denition. Let z be a set function on the nite set V i.e z : 2 V R, then z is submodular if z A) + z B) z A B) + z A B) A, B V. Denition 2. If z is submodular then z is supermodular. Denition

More information

System of Linear Equations

System of Linear Equations Math 20F Linear Algebra Lecture 2 1 System of Linear Equations Slide 1 Definition 1 Fix a set of numbers a ij, b i, where i = 1,, m and j = 1,, n A system of m linear equations in n variables x j, is given

More information

Kernel and range. Definition: A homogeneous linear equation is an equation of the form A v = 0

Kernel and range. Definition: A homogeneous linear equation is an equation of the form A v = 0 Kernel and range Definition: The kernel (or null-space) of A is ker A { v V : A v = 0 ( U)}. Theorem 5.3. ker A is a subspace of V. (In particular, it always contains 0 V.) Definition: A is one-to-one

More information

Problem 1. CS205 Homework #2 Solutions. Solution

Problem 1. CS205 Homework #2 Solutions. Solution CS205 Homework #2 s Problem 1 [Heath 3.29, page 152] Let v be a nonzero n-vector. The hyperplane normal to v is the (n-1)-dimensional subspace of all vectors z such that v T z = 0. A reflector is a linear

More information

Answers in blue. If you have questions or spot an error, let me know. 1. Find all matrices that commute with A =. 4 3

Answers in blue. If you have questions or spot an error, let me know. 1. Find all matrices that commute with A =. 4 3 Answers in blue. If you have questions or spot an error, let me know. 3 4. Find all matrices that commute with A =. 4 3 a b If we set B = and set AB = BA, we see that 3a + 4b = 3a 4c, 4a + 3b = 3b 4d,

More information

Orthonormal Transformations

Orthonormal Transformations Orthonormal Transformations Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo October 25, 2010 Applications of transformation Q : R m R m, with Q T Q = I 1.

More information

New concepts: rank-nullity theorem Inverse matrix Gauss-Jordan algorithm to nd inverse

New concepts: rank-nullity theorem Inverse matrix Gauss-Jordan algorithm to nd inverse Lesson 10: Rank-nullity theorem, General solution of Ax = b (A 2 R mm ) New concepts: rank-nullity theorem Inverse matrix Gauss-Jordan algorithm to nd inverse Matrix rank. matrix nullity Denition. The

More information

Linear Mixed-Effects Models. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 34

Linear Mixed-Effects Models. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 34 Linear Mixed-Effects Models Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 34 The Linear Mixed-Effects Model y = Xβ + Zu + e X is an n p design matrix of known constants β R

More information

Extra Problems: Chapter 1

Extra Problems: Chapter 1 MA131 (Section 750002): Prepared by Asst.Prof.Dr.Archara Pacheenburawana 1 Extra Problems: Chapter 1 1. In each of the following answer true if the statement is always true and false otherwise in the space

More information

Math 2174: Practice Midterm 1

Math 2174: Practice Midterm 1 Math 74: Practice Midterm Show your work and explain your reasoning as appropriate. No calculators. One page of handwritten notes is allowed for the exam, as well as one blank page of scratch paper.. Consider

More information

MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS

MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS 1. HW 1: Due September 4 1.1.21. Suppose v, w R n and c is a scalar. Prove that Span(v + cw, w) = Span(v, w). We must prove two things: that every element

More information

Functional Analysis HW #1

Functional Analysis HW #1 Functional Analysis HW #1 Sangchul Lee October 9, 2015 1 Solutions Solution of #1.1. Suppose that X

More information

Matrix invertibility. Rank-Nullity Theorem: For any n-column matrix A, nullity A +ranka = n

Matrix invertibility. Rank-Nullity Theorem: For any n-column matrix A, nullity A +ranka = n Matrix invertibility Rank-Nullity Theorem: For any n-column matrix A, nullity A +ranka = n Corollary: Let A be an R C matrix. Then A is invertible if and only if R = C and the columns of A are linearly

More information

When Are Two Random Variables Independent?

When Are Two Random Variables Independent? When Are Two Random Variables Independent? 1 Introduction. Almost all of the mathematics of inferential statistics and sampling theory is based on the behavior of mutually independent random variables,

More information

Answer Key for STAT 200B HW No. 7

Answer Key for STAT 200B HW No. 7 Answer Key for STAT 200B HW No. 7 May 5, 2007 Problem 2.2 p. 649 Assuming binomial 2-sample model ˆπ =.75, ˆπ 2 =.6. a ˆτ = ˆπ 2 ˆπ =.5. From Ex. 2.5a on page 644: ˆπ ˆπ + ˆπ 2 ˆπ 2.75.25.6.4 = + =.087;

More information