x = t 1 x 1 + t 2 x t k x k

Size: px
Start display at page:

Download "x = t 1 x 1 + t 2 x t k x k"

Transcription

1 Def.: Given vectors x,...,x k in R n, the set of all their linear combinations is called their span, and is denoted by span(x,...,x k ) Thm.: span(x,...,x k ) is a subspace of R n Def.: If V is a subspace of R n, the vectors x,...,x k in R n are called a spanning set for V if V = span(x,...,x k ) any x V can be written as x = t x + t 2 x t k x k with numbers t,..., t k Thm.: Every subspace has a spanning set 7.5 Span of a Set of Vectors Nullspaces: Ex.: Consider Ax = 0 for A = Free variable: x 3 = t Equations: x 2 = 0, x 2t = 0 x = 2t 0 = t 2 0 t null(a) = span(2,0, T ) Ex.: Ax = 0 for A =,3, 2 Free variables: x 2 = s, x 3 = t Equation: x + 3s 2t = 0 2t 3s x = s = s 3 t 0 +t 2 0 null(a) = span( 3,,0 T,2,0, T )

2 Determine if a given x is in span(x,...,x k ):. Form matrix X = x,...,x k 2. Try to solve the system Xc = x for c 3. If Xc = x has no solution (system inconsistent), x is not in span(x,...,x k ) 4. If Xc = x has a solution c = c,..., c k T, then x = c x c k x k is in span(x,...,x k ) Ex.: x =, x 2 2 = X = 2 augmented matrix for Xc = x: (a) Let x = M = M = X,x 5 : 5 2, solution exists, c = 2, c 2 = 3 x = 2x + 3x 2 is in span(x,x 2 ) u (b) Let x = be arbitrary: v u 0 (v u)/3 M = 2 v 0 (2u + v)/3 Solution exists span(x,x 2 ) = R 2 2

3 2 Ex.: x =, x 2 =, 2 2 X = 2 Let x = M = Last column pivot solutions don t exist x is not in span(x,x 2 ) Note: x 2 = 2x c x + c 2 x 2 = (c + 2c 2 )x = (c /2 + c 2 )x 2 2 Ex.: x =, x 2 2 =, x 3 = General vector in span(x,x 2,x 3 ): x = c x + c 2 x 2 + c 3 x 3 Since x 3 = x 2 x x = c x + c 2 x 2 + c 3 (x 2 x ) = (c c 3 )x + (c 2 + c 3 )x 2 span(x,x 2,x 3 ) = span(x,x 2 ) and on p.2 it was shown that span(x,x 2 ) = R 2 span(x,x 2 ) = span(x ) = span(x 2 ) 3

4 Linear Dependence and Independence Def.: x,...,x k R n are linearly independent if the only linear combination of them that is 0 is trivial, i.e. c x c k x k = 0 () c = c 2 = = c k = 0 linearly dependent if there are numbers c,..., c k, not all zero, for which () is satisfied. Linear independence check () Xc = 0 (2) Thm.: x,...,x k are linearly independent if (2) has only c = 0 as solution linearly dependent if (2) has nontrivial solutions If k > n, x,...,x k are always linearly dependent Ex.: x = X =, x 2 = R(2,, ) 0 2 Xc = 0 has only solution c = 0 x,x 2 are linearly independent 2 0 Ex.: + = 0 0 the 3 vectors are linearly dependent (k = 3 > 2) Ex.: x j = col j (X), j =,2,3, where X = Xc = 0 for c =,, T x +x 2 x 3 = 0 linearly dependent 4

5 Bases and Dimension of a Subspace, Rank of a Matrix Def.: A spanning set x,...,x k for a subspace V of R n is a basis of V if x,...,x k are linearly independent. Meaning: x V x = a x a k x k with unique numbers a,..., a k Thm.:. Every subspace V has a basis (in fact, many) 2. All bases of V have the same number of vectors Def.: The dimension of a subspace V of R n is the number of vectors in a basis of V, and denoted by dim V. Def.: The rank of a matrix X is the number of pivots in an REF of X, and denoted by rank X. Thm.: Given a spanning set x,...,x k for a subspace V of R n, let X = x,...,x k. Then. dim V = rank X 2. x,...,x k is a basis of V if and only if rank X = k 3. If k = n and rank X = n, then x,...,x n form a basis of R n (dimr n = n) 5

6 Ex.: Let e j = col j (I) where I: n n identity matrix e,...,e n are a basis of R n called the standard basis 0 For n = 2: e =, e 0 2 = Ex.: x =, x 2 = Claim: x,x 2 are a basis of R 2 x Proof: Given x =, show that x y can be uniquely represented as x = a x + a 2 x 2 Equations for a, a 2 : x = a y + a 2 a = a 2 X = R(2,, ) 0 2 is nonsingular unique solution Ex.: A = null(a) = span(2,0, T ) (see p.) 2,0, T is a basis of null(a) dimnull(a) = Ex.: A =,3, 2 (see p.) null(a) = span( 3,,0 T,2,0, T ) 3,,0 T,2,0, T are linearly independent 3,,0 T,2,0, T are a basis of null(a) dimnull(a) = 2 6

7 A: m n Computation of a Basis of a Nullspace Transform A REF(A) or RREF(A) For each choice of a free variable set this variable equal to and all other free variables equal to 0 For each of these choices solve for the pivot variables f (= of free variables) solution vectors x,...,x f for Ax = 0 x,...,x f null(a) are a basis of Ex.: A = Matlab RREF(A) = /3 2/ Free variables: x 3, x 4 ; and x 2 = 0 () Set x 3 =, x 4 = 0 x = /3 x = /3,0,,0 T (2) Set x 3 = 0, x 4 = x = 2/3 x 2 = 2/3,0,0, T x,x 2 are a basis of null(a) dimnull(a) = 2 7

8 Solutions of Inhomogeneous Systems and Nullspaces Form of general solution to Ax = b: x = x p + t x t f x f where x p : particular solution x,...,x f : basis of null(a) t,..., t f : free parameters Finding x p : Transform M = A, b to REF(M) or RREF(M) Set all free variables 0 and solve for pivot variables Ex.: Ax = b for A = ,b = Augmented matrix: M = A, b. Matlab RREF(M) = Free variable: x { 3 x = Set x 3 = 0 = 2 x p =, 2,0 T RREF(A) = x x =,, T is basis of null(a) Solution set: {x = x p + tx t R} 8

9 Worked Out Examples (A) Is w in the span of the given vectors? If yes, find linear combination of spanning vectors for w. M Ex. : u =, 2 T, u 2 = 3,0 T. Is w = 5, 2 T in span(u,u 2 )? Set U = ; Uc = w M = U,w = { } yes, c =,4/3 T /3 0 4/3 w = u + (4/3)u 2 Ex. 3: u =, 2 T, u 3 = 2, 4 T. Is w = 3, 3 T in span(u,u 3 )? Here M = inconsistent M = no, w is not in span(u,u 3 ) = span(u ) = span(u 3 ) Ex. 7: v =, 4,4 T, v 2 = 0, 2, T, v 3 =, 2,3 T. Is w =,0,2 T in span(v,v 2,v 3 )? parameter family of solutions. Choose, e.g., c 3 = 0 c =, c 2 = 2 yes, w = v 2v 2 + 0v 3 is in span(v,v 2,v 3 ) 9

10 (B) Either show that the given vectors are linearly independent or find nontrivial linear combination that adds to zero Ex. 7: v = Ex. 20: v = , v 2 = ; X = 2 3 R(2,, 2) 0 5 REF has no free variables linearly independent 8 2, v2 = ; X = 9 0 R3(, /8) R(2,, 9),R(3,,6) Ex. 22: v = 8 9, v2 = 6 X (RREF) /4 0 9/4 0 7/2 R(3,2,34/9) 6 7 /4 0 9/4 0 0 REF has no free variables linearly independent 2 8 0, v3 = 8 ; X = 7 40 (REF) / (REF) free variable: c 3, set c 3 = c = 2, c 2 = 4 2v 4v 2 + v 3 = 0 0

11 (C) Determine if nullspace of matrix is trivial (null(a) = 0) or nontrivial. If nontrivial, find a basis. Ex. 25: A = 2, (REF), free variable: y set y = 2x = 0 x = /2 basis /2, T 4 4 Ex. 28: A = null(a) = Ex.: A = (RREF) free variables: x 3, x 4 set x 3 =, x 4 = 0 x 2 = 0, x 2 = 0 x = 2,0,,0 T set x 3 = 0, x 4 = x = 0, x 2 + = 0 x 2 =,,0, T x,x 2 are a basis of null(a)

12 (D) Find solution set of Ax = b using previously computed basis of null(a). A,b = A,b = Ex.: A as in Ex. 25, b = 2. M = A,b = 2,,2(REF), free variable: y, set y = 0 2x = 2 x = particular solution: x p =,0 T Use basis of nullspace from Ex. 25 solution set {x =,0 T + t/2, T t R} Ex.: A as in Ex. 28, b = 0, T Equations: x =, y = unique solution x =, T Ex.: A as in last Ex. of (C), p.; b = 0,6,0, 6 T set free variables x 3 = x 4 = 0 x = 3, x 2 = (RREF) particular solution x p = 3,0,0,0 T. Use basis of nullspace from Ex. on p. solution set {x = 3,0,0,0 T + s2,0,,0 T + t,,0, T s, t R} 2

Find the solution set of 2x 3y = 5. Answer: We solve for x = (5 + 3y)/2. Hence the solution space consists of all vectors of the form

Find the solution set of 2x 3y = 5. Answer: We solve for x = (5 + 3y)/2. Hence the solution space consists of all vectors of the form Math 2 Homework #7 March 4, 2 7.3.3. Find the solution set of 2x 3y = 5. Answer: We solve for x = (5 + 3y/2. Hence the solution space consists of all vectors of the form ( ( ( ( x (5 + 3y/2 5/2 3/2 x =

More information

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible. MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Row-column rule: i-j-th entry of AB:

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 222 3. M Test # July, 23 Solutions. For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For

More information

Math 369 Exam #2 Practice Problem Solutions

Math 369 Exam #2 Practice Problem Solutions Math 369 Exam #2 Practice Problem Solutions 2 5. Is { 2, 3, 8 } a basis for R 3? Answer: No, it is not. To show that it is not a basis, it suffices to show that this is not a linearly independent set.

More information

Math 2174: Practice Midterm 1

Math 2174: Practice Midterm 1 Math 74: Practice Midterm Show your work and explain your reasoning as appropriate. No calculators. One page of handwritten notes is allowed for the exam, as well as one blank page of scratch paper.. Consider

More information

ICS 6N Computational Linear Algebra Vector Space

ICS 6N Computational Linear Algebra Vector Space ICS 6N Computational Linear Algebra Vector Space Xiaohui Xie University of California, Irvine xhx@uci.edu Xiaohui Xie (UCI) ICS 6N 1 / 24 Vector Space Definition: A vector space is a non empty set V of

More information

Math 314H EXAM I. 1. (28 points) The row reduced echelon form of the augmented matrix for the system. is the matrix

Math 314H EXAM I. 1. (28 points) The row reduced echelon form of the augmented matrix for the system. is the matrix Math 34H EXAM I Do all of the problems below. Point values for each of the problems are adjacent to the problem number. Calculators may be used to check your answer but not to arrive at your answer. That

More information

1. Determine by inspection which of the following sets of vectors is linearly independent. 3 3.

1. Determine by inspection which of the following sets of vectors is linearly independent. 3 3. 1. Determine by inspection which of the following sets of vectors is linearly independent. (a) (d) 1, 3 4, 1 { [ [,, 1 1] 3]} (b) 1, 4 5, (c) 3 6 (e) 1, 3, 4 4 3 1 4 Solution. The answer is (a): v 1 is

More information

Linear independence, span, basis, dimension - and their connection with linear systems

Linear independence, span, basis, dimension - and their connection with linear systems Linear independence span basis dimension - and their connection with linear systems Linear independence of a set of vectors: We say the set of vectors v v..v k is linearly independent provided c v c v..c

More information

MATH240: Linear Algebra Exam #1 solutions 6/12/2015 Page 1

MATH240: Linear Algebra Exam #1 solutions 6/12/2015 Page 1 MATH4: Linear Algebra Exam # solutions 6//5 Page Write legibly and show all work. No partial credit can be given for an unjustified, incorrect answer. Put your name in the top right corner and sign the

More information

Chapter 3. Directions: For questions 1-11 mark each statement True or False. Justify each answer.

Chapter 3. Directions: For questions 1-11 mark each statement True or False. Justify each answer. Chapter 3 Directions: For questions 1-11 mark each statement True or False. Justify each answer. 1. (True False) Asking whether the linear system corresponding to an augmented matrix [ a 1 a 2 a 3 b ]

More information

Problems for M 10/12:

Problems for M 10/12: Math 30, Lesieutre Problem set #8 October, 05 Problems for M 0/: 4.3.3 Determine whether these vectors are a basis for R 3 by checking whether the vectors span R 3, and whether the vectors are linearly

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Chapter 4 [ Vector Spaces 4.1 If {v 1,v 2,,v n } and {w 1,w 2,,w n } are linearly independent, then {v 1 +w 1,v 2 +w 2,,v n

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

Solution Set 4, Fall 12

Solution Set 4, Fall 12 Solution Set 4, 18.06 Fall 12 1. Do Problem 7 from 3.6. Solution. Since the matrix is invertible, we know the nullspace contains only the zero vector, hence there does not exist a basis for this subspace.

More information

February 20 Math 3260 sec. 56 Spring 2018

February 20 Math 3260 sec. 56 Spring 2018 February 20 Math 3260 sec. 56 Spring 2018 Section 2.2: Inverse of a Matrix Consider the scalar equation ax = b. Provided a 0, we can solve this explicity x = a 1 b where a 1 is the unique number such that

More information

Chapter 2 Subspaces of R n and Their Dimensions

Chapter 2 Subspaces of R n and Their Dimensions Chapter 2 Subspaces of R n and Their Dimensions Vector Space R n. R n Definition.. The vector space R n is a set of all n-tuples (called vectors) x x 2 x =., where x, x 2,, x n are real numbers, together

More information

Math 54 HW 4 solutions

Math 54 HW 4 solutions Math 54 HW 4 solutions 2.2. Section 2.2 (a) False: Recall that performing a series of elementary row operations A is equivalent to multiplying A by a series of elementary matrices. Suppose that E,...,

More information

Review Let A, B, and C be matrices of the same size, and let r and s be scalars. Then

Review Let A, B, and C be matrices of the same size, and let r and s be scalars. Then 1 Sec 21 Matrix Operations Review Let A, B, and C be matrices of the same size, and let r and s be scalars Then (i) A + B = B + A (iv) r(a + B) = ra + rb (ii) (A + B) + C = A + (B + C) (v) (r + s)a = ra

More information

Solutions to Math 51 Midterm 1 July 6, 2016

Solutions to Math 51 Midterm 1 July 6, 2016 Solutions to Math 5 Midterm July 6, 26. (a) (6 points) Find an equation (of the form ax + by + cz = d) for the plane P in R 3 passing through the points (, 2, ), (2,, ), and (,, ). We first compute two

More information

6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if. (a) v 1,, v k span V and

6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if. (a) v 1,, v k span V and 6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if (a) v 1,, v k span V and (b) v 1,, v k are linearly independent. HMHsueh 1 Natural Basis

More information

Linear Independence Reading: Lay 1.7

Linear Independence Reading: Lay 1.7 Linear Independence Reading: Lay 17 September 11, 213 In this section, we discuss the concept of linear dependence and independence I am going to introduce the definitions and then work some examples and

More information

Lecture 13: Row and column spaces

Lecture 13: Row and column spaces Spring 2018 UW-Madison Lecture 13: Row and column spaces 1 The column space of a matrix 1.1 Definition The column space of matrix A denoted as Col(A) is the space consisting of all linear combinations

More information

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work.

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work. Assignment 1 Math 5341 Linear Algebra Review Give complete answers to each of the following questions Show all of your work Note: You might struggle with some of these questions, either because it has

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 4.5 The Dimension of a Vector Space Math 233 Linear Algebra 4.5 The Dimension of a Vector Space Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ Shang-Huan

More information

Vector Spaces 4.3 LINEARLY INDEPENDENT SETS; BASES Pearson Education, Inc.

Vector Spaces 4.3 LINEARLY INDEPENDENT SETS; BASES Pearson Education, Inc. 4 Vector Spaces 4.3 LINEARLY INDEPENDENT SETS; BASES LINEAR INDEPENDENT SETS; BASES An indexed set of vectors {v 1,, v p } in V is said to be linearly independent if the vector equation c c c 1 1 2 2 p

More information

orthogonal relations between vectors and subspaces Then we study some applications in vector spaces and linear systems, including Orthonormal Basis,

orthogonal relations between vectors and subspaces Then we study some applications in vector spaces and linear systems, including Orthonormal Basis, 5 Orthogonality Goals: We use scalar products to find the length of a vector, the angle between 2 vectors, projections, orthogonal relations between vectors and subspaces Then we study some applications

More information

EXAM. Exam #2. Math 2360 Summer II, 2000 Morning Class. Nov. 15, 2000 ANSWERS

EXAM. Exam #2. Math 2360 Summer II, 2000 Morning Class. Nov. 15, 2000 ANSWERS EXAM Exam # Math 6 Summer II Morning Class Nov 5 ANSWERS i Problem Consider the matrix 6 pts A = 6 4 9 5 7 6 5 5 5 4 The RREF of A is the matrix R = A Find a basis for the nullspace of A Solve the homogeneous

More information

Math 250B Midterm II Review Session Spring 2019 SOLUTIONS

Math 250B Midterm II Review Session Spring 2019 SOLUTIONS Math 250B Midterm II Review Session Spring 2019 SOLUTIONS [ Problem #1: Find a spanning set for nullspace 1 2 0 2 3 4 8 0 8 12 1 2 0 2 3 SOLUTION: The row-reduced form of this matrix is Setting 0 0 0 0

More information

Lecture 13: Orthogonal projections and least squares (Section ) Thang Huynh, UC San Diego 2/9/2018

Lecture 13: Orthogonal projections and least squares (Section ) Thang Huynh, UC San Diego 2/9/2018 Lecture 13: Orthogonal projections and least squares (Section 3.2-3.3) Thang Huynh, UC San Diego 2/9/2018 Orthogonal projection onto subspaces Theorem. Let W be a subspace of R n. Then, each x in R n can

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 191 Applied Linear Algebra Lecture 16: Change of Basis Stephen Billups University of Colorado at Denver Math 191Applied Linear Algebra p.1/0 Rank The rank of A is the dimension of the column space

More information

MATH 2360 REVIEW PROBLEMS

MATH 2360 REVIEW PROBLEMS MATH 2360 REVIEW PROBLEMS Problem 1: In (a) (d) below, either compute the matrix product or indicate why it does not exist: ( )( ) 1 2 2 1 (a) 0 1 1 2 ( ) 0 1 2 (b) 0 3 1 4 3 4 5 2 5 (c) 0 3 ) 1 4 ( 1

More information

MTH 362: Advanced Engineering Mathematics

MTH 362: Advanced Engineering Mathematics MTH 362: Advanced Engineering Mathematics Lecture 5 Jonathan A. Chávez Casillas 1 1 University of Rhode Island Department of Mathematics September 26, 2017 1 Linear Independence and Dependence of Vectors

More information

Exam 2 Solutions. (a) Is W closed under addition? Why or why not? W is not closed under addition. For example,

Exam 2 Solutions. (a) Is W closed under addition? Why or why not? W is not closed under addition. For example, Exam 2 Solutions. Let V be the set of pairs of real numbers (x, y). Define the following operations on V : (x, y) (x, y ) = (x + x, xx + yy ) r (x, y) = (rx, y) Check if V together with and satisfy properties

More information

Math 102, Winter 2009, Homework 7

Math 102, Winter 2009, Homework 7 Math 2, Winter 29, Homework 7 () Find the standard matrix of the linear transformation T : R 3 R 3 obtained by reflection through the plane x + z = followed by a rotation about the positive x-axes by 6

More information

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP) MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

More information

The definition of a vector space (V, +, )

The definition of a vector space (V, +, ) The definition of a vector space (V, +, ) 1. For any u and v in V, u + v is also in V. 2. For any u and v in V, u + v = v + u. 3. For any u, v, w in V, u + ( v + w) = ( u + v) + w. 4. There is an element

More information

Section 4.5. Matrix Inverses

Section 4.5. Matrix Inverses Section 4.5 Matrix Inverses The Definition of Inverse Recall: The multiplicative inverse (or reciprocal) of a nonzero number a is the number b such that ab = 1. We define the inverse of a matrix in almost

More information

ft-uiowa-math2550 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 12/31/2014 at 10:36pm CST

ft-uiowa-math2550 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 12/31/2014 at 10:36pm CST me me ft-uiowa-math255 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 2/3/2 at :3pm CST. ( pt) Library/TCNJ/TCNJ LinearSystems/problem3.pg Give a geometric description of the following

More information

MTH 35, SPRING 2017 NIKOS APOSTOLAKIS

MTH 35, SPRING 2017 NIKOS APOSTOLAKIS MTH 35, SPRING 2017 NIKOS APOSTOLAKIS 1. Linear independence Example 1. Recall the set S = {a i : i = 1,...,5} R 4 of the last two lectures, where a 1 = (1,1,3,1) a 2 = (2,1,2, 1) a 3 = (7,3,5, 5) a 4

More information

3.4 Elementary Matrices and Matrix Inverse

3.4 Elementary Matrices and Matrix Inverse Math 220: Summer 2015 3.4 Elementary Matrices and Matrix Inverse A n n elementary matrix is a matrix which is obtained from the n n identity matrix I n n by a single elementary row operation. Elementary

More information

1 Linear systems, existence, uniqueness

1 Linear systems, existence, uniqueness Jor-el Briones / Math 2F, 25 Summer Session, Practice Midterm Page of 9 Linear systems, existence, uniqueness For each part, construct an augmented matrix for a linear system with the given properties,

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

Elementary Linear Algebra Review for Exam 2 Exam is Monday, November 16th.

Elementary Linear Algebra Review for Exam 2 Exam is Monday, November 16th. Elementary Linear Algebra Review for Exam Exam is Monday, November 6th. The exam will cover sections:.4,..4, 5. 5., 7., the class notes on Markov Models. You must be able to do each of the following. Section.4

More information

MATH SOLUTIONS TO PRACTICE PROBLEMS - MIDTERM I. 1. We carry out row reduction. We begin with the row operations

MATH SOLUTIONS TO PRACTICE PROBLEMS - MIDTERM I. 1. We carry out row reduction. We begin with the row operations MATH 2 - SOLUTIONS TO PRACTICE PROBLEMS - MIDTERM I. We carry out row reduction. We begin with the row operations yielding the matrix This is already upper triangular hence The lower triangular matrix

More information

18.06 Spring 2012 Problem Set 3

18.06 Spring 2012 Problem Set 3 8.6 Spring 22 Problem Set 3 This problem set is due Thursday, March, 22 at 4pm (hand in to Room 2-6). The textbook problems are out of the 4th edition. For computational problems, please include a printout

More information

3.3 Linear Independence

3.3 Linear Independence Prepared by Dr. Archara Pacheenburawana (MA3 Sec 75) 84 3.3 Linear Independence In this section we look more closely at the structure of vector spaces. To begin with, we restrict ourselves to vector spaces

More information

We see that this is a linear system with 3 equations in 3 unknowns. equation is A x = b, where

We see that this is a linear system with 3 equations in 3 unknowns. equation is A x = b, where Practice Problems Math 35 Spring 7: Solutions. Write the system of equations as a matrix equation and find all solutions using Gauss elimination: x + y + 4z =, x + 3y + z = 5, x + y + 5z = 3. We see that

More information

Math 20F Practice Final Solutions. Jor-el Briones

Math 20F Practice Final Solutions. Jor-el Briones Math 2F Practice Final Solutions Jor-el Briones Jor-el Briones / Math 2F Practice Problems for Final Page 2 of 6 NOTE: For the solutions to these problems, I skip all the row reduction calculations. Please

More information

MATH 1553, SPRING 2018 SAMPLE MIDTERM 2 (VERSION B), 1.7 THROUGH 2.9

MATH 1553, SPRING 2018 SAMPLE MIDTERM 2 (VERSION B), 1.7 THROUGH 2.9 MATH 155, SPRING 218 SAMPLE MIDTERM 2 (VERSION B), 1.7 THROUGH 2.9 Name Section 1 2 4 5 Total Please read all instructions carefully before beginning. Each problem is worth 1 points. The maximum score

More information

Section 6.1. Inner Product, Length, and Orthogonality

Section 6.1. Inner Product, Length, and Orthogonality Section 6. Inner Product, Length, and Orthogonality Orientation Almost solve the equation Ax = b Problem: In the real world, data is imperfect. x v u But due to measurement error, the measured x is not

More information

Vector Spaces and Dimension. Subspaces of. R n. addition and scalar mutiplication. That is, if u, v in V and alpha in R then ( u + v) Exercise: x

Vector Spaces and Dimension. Subspaces of. R n. addition and scalar mutiplication. That is, if u, v in V and alpha in R then ( u + v) Exercise: x Vector Spaces and Dimension Subspaces of Definition: A non-empty subset V is a subspace of if V is closed under addition and scalar mutiplication. That is, if u, v in V and alpha in R then ( u + v) V and

More information

Warm-up. True or false? Baby proof. 2. The system of normal equations for A x = y has solutions iff A x = y has solutions

Warm-up. True or false? Baby proof. 2. The system of normal equations for A x = y has solutions iff A x = y has solutions Warm-up True or false? 1. proj u proj v u = u 2. The system of normal equations for A x = y has solutions iff A x = y has solutions 3. The normal equations are always consistent Baby proof 1. Let A be

More information

b for the linear system x 1 + x 2 + a 2 x 3 = a x 1 + x 3 = 3 x 1 + x 2 + 9x 3 = 3 ] 1 1 a 2 a

b for the linear system x 1 + x 2 + a 2 x 3 = a x 1 + x 3 = 3 x 1 + x 2 + 9x 3 = 3 ] 1 1 a 2 a Practice Exercises for Exam Exam will be on Monday, September 8, 7. The syllabus for Exam consists of Sections One.I, One.III, Two.I, and Two.II. You should know the main definitions, results and computational

More information

Cheat Sheet for MATH461

Cheat Sheet for MATH461 Cheat Sheet for MATH46 Here is the stuff you really need to remember for the exams Linear systems Ax = b Problem: We consider a linear system of m equations for n unknowns x,,x n : For a given matrix A

More information

6 Basis. 6.1 Introduction

6 Basis. 6.1 Introduction 6 Basis 6 Introduction If x, e, and e 2 are as pictured, then using the geometrical rules for scaling and adding vectors we see that x = 7e +4e 2 We say that x has e -coordinate 7 and e 2 -coordinate 4

More information

(a). W contains the zero vector in R n. (b). W is closed under addition. (c). W is closed under scalar multiplication.

(a). W contains the zero vector in R n. (b). W is closed under addition. (c). W is closed under scalar multiplication. . Subspaces of R n Bases and Linear Independence Definition. Subspaces of R n A subset W of R n is called a subspace of R n if it has the following properties: (a). W contains the zero vector in R n. (b).

More information

Practice Final Exam. Solutions.

Practice Final Exam. Solutions. MATH Applied Linear Algebra December 6, 8 Practice Final Exam Solutions Find the standard matrix f the linear transfmation T : R R such that T, T, T Solution: Easy to see that the transfmation T can be

More information

Linear equations in linear algebra

Linear equations in linear algebra Linear equations in linear algebra Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra Pearson Collections Samy T. Linear

More information

Announcements Monday, October 29

Announcements Monday, October 29 Announcements Monday, October 29 WeBWorK on determinents due on Wednesday at :59pm. The quiz on Friday covers 5., 5.2, 5.3. My office is Skiles 244 and Rabinoffice hours are: Mondays, 2 pm; Wednesdays,

More information

(i) [7 points] Compute the determinant of the following matrix using cofactor expansion.

(i) [7 points] Compute the determinant of the following matrix using cofactor expansion. Question (i) 7 points] Compute the determinant of the following matrix using cofactor expansion 2 4 2 4 2 Solution: Expand down the second column, since it has the most zeros We get 2 4 determinant = +det

More information

This lecture is a review for the exam. The majority of the exam is on what we ve learned about rectangular matrices.

This lecture is a review for the exam. The majority of the exam is on what we ve learned about rectangular matrices. Exam review This lecture is a review for the exam. The majority of the exam is on what we ve learned about rectangular matrices. Sample question Suppose u, v and w are non-zero vectors in R 7. They span

More information

1 Last time: inverses

1 Last time: inverses MATH Linear algebra (Fall 8) Lecture 8 Last time: inverses The following all mean the same thing for a function f : X Y : f is invertible f is one-to-one and onto 3 For each b Y there is exactly one a

More information

Maths for Signals and Systems Linear Algebra in Engineering

Maths for Signals and Systems Linear Algebra in Engineering Maths for Signals and Systems Linear Algebra in Engineering Lecture 3, Friday 4 th October 26 DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON Mathematics for

More information

LINEAR ALGEBRA SUMMARY SHEET.

LINEAR ALGEBRA SUMMARY SHEET. LINEAR ALGEBRA SUMMARY SHEET RADON ROSBOROUGH https://intuitiveexplanationscom/linear-algebra-summary-sheet/ This document is a concise collection of many of the important theorems of linear algebra, organized

More information

x y + z = 3 2y z = 1 4x + y = 0

x y + z = 3 2y z = 1 4x + y = 0 MA 253: Practice Exam Solutions You may not use a graphing calculator, computer, textbook, notes, or refer to other people (except the instructor). Show all of your work; your work is your answer. Problem

More information

Math 240, 4.3 Linear Independence; Bases A. DeCelles. 1. definitions of linear independence, linear dependence, dependence relation, basis

Math 240, 4.3 Linear Independence; Bases A. DeCelles. 1. definitions of linear independence, linear dependence, dependence relation, basis Math 24 4.3 Linear Independence; Bases A. DeCelles Overview Main ideas:. definitions of linear independence linear dependence dependence relation basis 2. characterization of linearly dependent set using

More information

Chapter 6 - Orthogonality

Chapter 6 - Orthogonality Chapter 6 - Orthogonality Maggie Myers Robert A. van de Geijn The University of Texas at Austin Orthogonality Fall 2009 http://z.cs.utexas.edu/wiki/pla.wiki/ 1 Orthogonal Vectors and Subspaces http://z.cs.utexas.edu/wiki/pla.wiki/

More information

2. Every linear system with the same number of equations as unknowns has a unique solution.

2. Every linear system with the same number of equations as unknowns has a unique solution. 1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

More information

Math 308 Practice Test for Final Exam Winter 2015

Math 308 Practice Test for Final Exam Winter 2015 Math 38 Practice Test for Final Exam Winter 25 No books are allowed during the exam. But you are allowed one sheet ( x 8) of handwritten notes (back and front). You may use a calculator. For TRUE/FALSE

More information

Solutions to Math 51 First Exam October 13, 2015

Solutions to Math 51 First Exam October 13, 2015 Solutions to Math First Exam October 3, 2. (8 points) (a) Find an equation for the plane in R 3 that contains both the x-axis and the point (,, 2). The equation should be of the form ax + by + cz = d.

More information

Sections 1.5, 1.7. Ma 322 Fall Ma 322. Sept

Sections 1.5, 1.7. Ma 322 Fall Ma 322. Sept Sections 1.5, 1.7 Ma 322 Fall 213 Ma 322 Sept. 9-13 Summary ˆ Solutions of homogeneous equations AX =. ˆ Using the rank. ˆ Parametric solution of AX = B. ˆ Linear dependence and independence of vectors

More information

Lecture 3q Bases for Row(A), Col(A), and Null(A) (pages )

Lecture 3q Bases for Row(A), Col(A), and Null(A) (pages ) Lecture 3q Bases for Row(A), Col(A), and Null(A) (pages 57-6) Recall that the basis for a subspace S is a set of vectors that both spans S and is linearly independent. Moreover, we saw in section 2.3 that

More information

Math 220 Some Exam 1 Practice Problems Fall 2017

Math 220 Some Exam 1 Practice Problems Fall 2017 Math Some Exam Practice Problems Fall 7 Note that this is not a sample exam. This is much longer than your exam will be. However, the ideas and question types represented here (along with your homework)

More information

Sample Final Exam: Solutions

Sample Final Exam: Solutions Sample Final Exam: Solutions Problem. A linear transformation T : R R 4 is given by () x x T = x 4. x + (a) Find the standard matrix A of this transformation; (b) Find a basis and the dimension for Range(T

More information

Linear Algebra Final Exam Study Guide Solutions Fall 2012

Linear Algebra Final Exam Study Guide Solutions Fall 2012 . Let A = Given that v = 7 7 67 5 75 78 Linear Algebra Final Exam Study Guide Solutions Fall 5 explain why it is not possible to diagonalize A. is an eigenvector for A and λ = is an eigenvalue for A diagonalize

More information

Linear Independence. Consider a plane P that includes the origin in R 3 {u, v, w} in P. and non-zero vectors

Linear Independence. Consider a plane P that includes the origin in R 3 {u, v, w} in P. and non-zero vectors Linear Independence Consider a plane P that includes the origin in R 3 {u, v, w} in P. and non-zero vectors If no two of u, v and w are parallel, then P =span{u, v, w}. But any two vectors determines a

More information

We showed that adding a vector to a basis produces a linearly dependent set of vectors; more is true.

We showed that adding a vector to a basis produces a linearly dependent set of vectors; more is true. Dimension We showed that adding a vector to a basis produces a linearly dependent set of vectors; more is true. Lemma If a vector space V has a basis B containing n vectors, then any set containing more

More information

Eigenvalues, Eigenvectors. Eigenvalues and eigenvector will be fundamentally related to the nature of the solutions of state space systems.

Eigenvalues, Eigenvectors. Eigenvalues and eigenvector will be fundamentally related to the nature of the solutions of state space systems. Chapter 3 Linear Algebra In this Chapter we provide a review of some basic concepts from Linear Algebra which will be required in order to compute solutions of LTI systems in state space form, discuss

More information

Sections 1.5, 1.7. Ma 322 Spring Ma 322. Jan 24-28

Sections 1.5, 1.7. Ma 322 Spring Ma 322. Jan 24-28 Sections 1.5, 1.7 Ma 322 Spring 217 Ma 322 Jan 24-28 Summary ˆ Text: Solution Sets of Linear Systems (1.5),Linear Independence (1.7) ˆ Solutions of homogeneous equations AX =. ˆ Using the rank. ˆ Parametric

More information

Chapter 6. Orthogonality and Least Squares

Chapter 6. Orthogonality and Least Squares Chapter 6 Orthogonality and Least Squares Section 6.1 Inner Product, Length, and Orthogonality Orientation Recall: This course is about learning to: Solve the matrix equation Ax = b Solve the matrix equation

More information

Lecture 3: Linear Algebra Review, Part II

Lecture 3: Linear Algebra Review, Part II Lecture 3: Linear Algebra Review, Part II Brian Borchers January 4, Linear Independence Definition The vectors v, v,..., v n are linearly independent if the system of equations c v + c v +...+ c n v n

More information

Lecture 11: Vector space and subspace

Lecture 11: Vector space and subspace Lecture : Vector space and subspace Vector space. R n space Definition.. The space R n consists of all column vector v with n real components, i.e. R n = { v : v = [v,v 2,...,v n ] T, v j R,j =,2,...,n

More information

Linear Equation: a 1 x 1 + a 2 x a n x n = b. x 1, x 2,..., x n : variables or unknowns

Linear Equation: a 1 x 1 + a 2 x a n x n = b. x 1, x 2,..., x n : variables or unknowns Linear Equation: a x + a 2 x 2 +... + a n x n = b. x, x 2,..., x n : variables or unknowns a, a 2,..., a n : coefficients b: constant term Examples: x + 4 2 y + (2 5)z = is linear. x 2 + y + yz = 2 is

More information

INVERSE OF A MATRIX [2.2]

INVERSE OF A MATRIX [2.2] INVERSE OF A MATRIX [2.2] The inverse of a matrix: Introduction We have a mapping from R n to R n represented by a matrix A. Can we invert this mapping? i.e. can we find a matrix (call it B for now) such

More information

Advanced Linear Algebra Math 4377 / 6308 (Spring 2015) March 5, 2015

Advanced Linear Algebra Math 4377 / 6308 (Spring 2015) March 5, 2015 Midterm 1 Advanced Linear Algebra Math 4377 / 638 (Spring 215) March 5, 215 2 points 1. Mark each statement True or False. Justify each answer. (If true, cite appropriate facts or theorems. If false, explain

More information

Section 1.5. Solution Sets of Linear Systems

Section 1.5. Solution Sets of Linear Systems Section 1.5 Solution Sets of Linear Systems Plan For Today Today we will learn to describe and draw the solution set of an arbitrary system of linear equations Ax = b, using spans. Ax = b Recall: the solution

More information

row operation. = elementary matrix E with B = EA [B = AE]. with Id E by the same elementary operation.

row operation. = elementary matrix E with B = EA [B = AE]. with Id E by the same elementary operation. . Elementary matrix operations and systems of linear equations goal: computing rank of matrix solving systems of linear equations.. Elementary matrix operations and elementary matrices. goal: transform

More information

Spring 2015 Midterm 1 03/04/15 Lecturer: Jesse Gell-Redman

Spring 2015 Midterm 1 03/04/15 Lecturer: Jesse Gell-Redman Math 0 Spring 05 Midterm 03/04/5 Lecturer: Jesse Gell-Redman Time Limit: 50 minutes Name (Print): Teaching Assistant This exam contains pages (including this cover page) and 5 problems. Check to see if

More information

This lecture: basis and dimension 4.4. Linear Independence: Suppose that V is a vector space and. r 1 x 1 + r 2 x r k x k = 0

This lecture: basis and dimension 4.4. Linear Independence: Suppose that V is a vector space and. r 1 x 1 + r 2 x r k x k = 0 Linear Independence: Suppose that V is a vector space and that x, x 2,, x k belong to V {x, x 2,, x k } are linearly independent if r x + r 2 x 2 + + r k x k = only for r = r 2 = = r k = The vectors x,

More information

Mid-term Exam #2 MATH 205, Fall 2014

Mid-term Exam #2 MATH 205, Fall 2014 Mid-term Exam # MATH 05, Fall 04 Name: Instructions: Please answer as many of the following questions as possible Show all of your work and give complete explanations when requested Write your final answer

More information

MATH2210 Notebook 3 Spring 2018

MATH2210 Notebook 3 Spring 2018 MATH2210 Notebook 3 Spring 2018 prepared by Professor Jenny Baglivo c Copyright 2009 2018 by Jenny A. Baglivo. All Rights Reserved. 3 MATH2210 Notebook 3 3 3.1 Vector Spaces and Subspaces.................................

More information

v = w if the same length and the same direction Given v, we have the negative v. We denote the length of v by v.

v = w if the same length and the same direction Given v, we have the negative v. We denote the length of v by v. Linear Algebra [1] 4.1 Vectors and Lines Definition scalar : magnitude vector : magnitude and direction Geometrically, a vector v can be represented by an arrow. We denote the length of v by v. zero vector

More information

Math : Solutions to Assignment 10

Math : Solutions to Assignment 10 Math -3: Solutions to Assignment. There are two tanks. The first tank initially has gallons of pure water. The second tank initially has 8 gallons of a water/salt solution with oz of salt. Both tanks drain

More information

and u and v are orthogonal if and only if u v = 0. u v = x1x2 + y1y2 + z1z2. 1. In R 3 the dot product is defined by

and u and v are orthogonal if and only if u v = 0. u v = x1x2 + y1y2 + z1z2. 1. In R 3 the dot product is defined by Linear Algebra [] 4.2 The Dot Product and Projections. In R 3 the dot product is defined by u v = u v cos θ. 2. For u = (x, y, z) and v = (x2, y2, z2), we have u v = xx2 + yy2 + zz2. 3. cos θ = u v u v,

More information

Linear Algebra Highlights

Linear Algebra Highlights Linear Algebra Highlights Chapter 1 A linear equation in n variables is of the form a 1 x 1 + a 2 x 2 + + a n x n. We can have m equations in n variables, a system of linear equations, which we want to

More information

MATH 3321 Sample Questions for Exam 3. 3y y, C = Perform the indicated operations, if possible: (a) AC (b) AB (c) B + AC (d) CBA

MATH 3321 Sample Questions for Exam 3. 3y y, C = Perform the indicated operations, if possible: (a) AC (b) AB (c) B + AC (d) CBA MATH 33 Sample Questions for Exam 3. Find x and y so that x 4 3 5x 3y + y = 5 5. x = 3/7, y = 49/7. Let A = 3 4, B = 3 5, C = 3 Perform the indicated operations, if possible: a AC b AB c B + AC d CBA AB

More information

Math 123, Week 5: Linear Independence, Basis, and Matrix Spaces. Section 1: Linear Independence

Math 123, Week 5: Linear Independence, Basis, and Matrix Spaces. Section 1: Linear Independence Math 123, Week 5: Linear Independence, Basis, and Matrix Spaces Section 1: Linear Independence Recall that every row on the left-hand side of the coefficient matrix of a linear system A x = b which could

More information

Chapter 1: Linear Equations

Chapter 1: Linear Equations Chapter : Linear Equations (Last Updated: September, 6) The material for these notes is derived primarily from Linear Algebra and its applications by David Lay (4ed).. Systems of Linear Equations Before

More information