AMB111F Notes 3 Quadratic Equations, Inequalities and their Graphs

Size: px
Start display at page:

Download "AMB111F Notes 3 Quadratic Equations, Inequalities and their Graphs"

Transcription

1 AMB111F Notes 3 Quadratic Equations, Inequalities and their Graphs The eqn y = a +b+c is a quadratic eqn and its graph is called a parabola. If a > 0, the parabola is concave up, while if a < 0, the parabola is concave down as shown in the diagrams below: (i) Case a > 0: (a, b) (ii) Case a < 0: (a, b) In each case the point (a, b) is a turning or critical point. The vertical line = a through (a, b) is the ais of symmetry of the parabola. Now consider the eqn y = a + b + c of the parabola. c is the y-intercept. For - intercepts, solve the eqn 0 = a +b+c. The ais of symmetry is given by the eqn = b/a, thus the turning point has coordinates ( b/a, f( b/a)) = ( b/a, ac (b /4a)) where y = f(). The y-coordinate is found by completing the square, see later. To solve 0 = a + b + c you may use the formula = b± b 4ac or factorise a the epression and then solve easily. Eample 9: Graph the parabola y = 5 + 6, showing intercepts, ais of symmetry and turning points. Soln. y-int: y = 6. -int: Solve = 0; thus = 5± 5 4(1)(6) = 3 or 1

2 . Therefore the -intercepts are and 3. Ais of symmetry: = b/a = 5/. So the turning point is (5/, 1/4). Since the coefficient of is 1 and thus positive, then the parabola is concave up. Hence its graph is as shown below: y 3 (5/, 1/4) Eample 10: Consider the quadratic eqn = ay + by + c. It is like the previous quadratic eqn with and y interchanged. Thus it also represents a parabola which is concave right if a > 0, and concave left if a < 0. Its ais of symmetry is given by y = b/a and its turning point is (f( b/a), b/a) where = f(y). For eample draw the graph of = y + 5y 6. Soln. -int: = 6. y-int: solve y + 5y 6 = 0; thus y-intercepts are and 3. Ais of symmetry: y = b/a = 5/. Thus the turning point is ( 1/4, 5/). Hence the following graph:

3 y 3 ( 1/4, 5/) Finding an Eqn of a Parabola given some points Competing the square for y = a + b + c, we may write the equation of the parabola as y = a[( + b/a) + c b /4a ]. Eample 11: A concave up parabola has a turning point (5/, 1/4) and one -intercept at 3. Find its eqn with an aid of a diagram. y 3 (5/, 1/4) Soln. By symmetry, = is another - intercept. The general eqn of this parabola is y = a + b + c. From this, construct eqns using the intercepts and the turning point. Thus we solve simultaneously 0 = 4a + b + c 0 = 9a + 3b + c. Subtracting, we have b = 5a. Using the turning point we have 1/4 = 5/4a + 5/b + c. Subtracting this from the first eqn, we have 3

4 1/4 = 11/4a+1/b. Using b = 5a we get a = 1 and b = 5. Substitute these into the first eqn to get c = 6. Thus the eqn of the parabola is y = 5+6. SECOND METHOD: y = a + b + c = a[( + b/a) + c b /4a ] and b/a = 5/ implying b = 5a. Also when = b/a, y = f( b/a) = ac b /4a = a[c b /4a ] = a[c (5/) ] = 1/4. When = 3, y = 0 = a[( + b/a) + c b /4a ], implying [( + b/a) + c b /4a ] = 0 = [(3 +( 5/)) + c (5/4)]. Thus c = 6. Using a[c (5/) ] = 1/4, we have a = 1. Thus b = 5a = 5. Hence the eqn of the parabola is y = Other quadratics Eample 1: Draw the graph of the eqn = y + 1 Soln. Squaring, we have y = 1, 0. Thus this is the right half of the parabola y = 1 as shown in the graph below: y 1 1 Eample 13: Draw the graph of the eqn y = + 1. Soln. Squaring, we have = y 1 = (y 1)(y + 1); y 0. Thus the graph is the upper half of the parabola = y 1. The sketch is shown below: 4

5 y 1 1 Quadratic Inequalities In this section we solve inequalities of form a + b + c 0, or may also be replaced by any inequality sign. We discuss two methods of solving these inequalities, viz the parabola method and the table of signs. Parabola Method : Assume we want to solve the inequality a + b + c 0. First draw the graph of the eqn y = a + b + c. Suppose the -intercepts are 0 and 1 and that the graph is concave up. y 0 1 Since y 0, we consider the part of the graph lying above the -ais. The soln is the set of all -coordinates of the points on the parabola that lie above the -ais. Clearly these points are on the left side of 0 and on the right side of 1. We then write the soln as 0 or 1. On the number line the 5

6 soln is as follows: 0 1 Suppose in the above discussion is replaced with <, then using the same graph but taking points below the -ais, we see that the soln is 0 < < 1. Its number line is as follows: 0 1 Eample 14: Solve the inequality > 0. Soln. Let y = +5 6 = ( )( 3). Thus the parabola is as shown below. 6

7 y 3 We want all the -coordinates of points on the graph that lie above the -ais since y > 0. Clearly these -coordinates are real numbers between and 3. Thus the solution is < < 3. Table of signsmethod Eample 15 : Solve Soln. First solve = 0 and find the roots and 3. This means ( )( 3) 0. Then draw up a table of signs (negative or positive) of ( ) and ( 3) as follows: (-)(-3) is -ve for all < while 3 is -ve for all less than 3. Thus ( )( 3) is -ve for all between and 3. To find the required soln, we look for the region in which ( )( 3) 0, noting that less than zero essentially means negative. Clearly then the soln is 3, i.e. all real numbers from to 3. Note that the same table gives soln to ( )( 3) > 0 as < or > 3. Eample 16: Draw the region y a + b + c. Soln. First draw the parabola y = a + b + c, then shade the region above the parabola. (For, shade below the parabola). 7

8 y 3 Inequalities involving Absolute Values The symbol means equivalent. Two statements are equivalent when they have the same meaning. For eample the statements 3 < 5 and 5 > 3 are equivalent. (1) We claim that a a a Proof. Suppose a. Case 0. Then = a. Thus a 0 a. Case < 0. Then = a implies a. Thus a a. Suppose a a. Case 0. The = a. Case < 0. Then = a. () Similarly a a or a Eample 17: Solve 3 < 1. Soln. By (1) above, 1 < 3 < 1, thus < < 4. Eample 18: Solve 3 1. Soln. By () above, 3 1 or 3 1. Thus 4 or. Squaring Method for solving absolute value inequalities Eample 19: Solve 3 < 1. Soln. Square both sides to get < 1, implying ( )( 4) < 0. Using the parabola method we get < < 4. Eample 0: Solve 3+1 Soln. Squaring we get (3+1) 4( ). Simplifying, we have 5 + 8

9 15 0. Using the parabola method, the soln is 5 3/ /5 Eample 1: Solve 3+1. Soln. Note that there is no absolute value here. Thus we cannot square. We use common sense. Case > 0. Then 3+1 ( ) = 4. This implies 5. But our assumption implies >. This conflicts with 5. Hence we cannot have > 0. Thus < 0, implying <. Therefore 3+1 ( ) = 4 giving 5. Using <, we arrive at the soln 5 <. 9

CHAPTER 3 : QUADRARIC FUNCTIONS MODULE CONCEPT MAP Eercise 1 3. Recognizing the quadratic functions Graphs of quadratic functions 4 Eercis

CHAPTER 3 : QUADRARIC FUNCTIONS MODULE CONCEPT MAP Eercise 1 3. Recognizing the quadratic functions Graphs of quadratic functions 4 Eercis ADDITIONAL MATHEMATICS MODULE 5 QUADRATIC FUNCTIONS CHAPTER 3 : QUADRARIC FUNCTIONS MODULE 5 3.1 CONCEPT MAP Eercise 1 3. Recognizing the quadratic functions 3 3.3 Graphs of quadratic functions 4 Eercise

More information

Lesson 9 Exploring Graphs of Quadratic Functions

Lesson 9 Exploring Graphs of Quadratic Functions Exploring Graphs of Quadratic Functions Graph the following system of linear inequalities: { y > 1 2 x 5 3x + 2y 14 a What are three points that are solutions to the system of inequalities? b Is the point

More information

Mathematics 10 Page 1 of 7 The Quadratic Function (Vertex Form): Translations. and axis of symmetry is at x a.

Mathematics 10 Page 1 of 7 The Quadratic Function (Vertex Form): Translations. and axis of symmetry is at x a. Mathematics 10 Page 1 of 7 Verte form of Quadratic Relations The epression a p q defines a quadratic relation called the verte form with a horizontal translation of p units and vertical translation of

More information

Section 2.7 Notes Name: Date: Polynomial and Rational Inequalities

Section 2.7 Notes Name: Date: Polynomial and Rational Inequalities Section.7 Notes Name: Date: Precalculus Polynomial and Rational Inequalities At the beginning of this unit we solved quadratic inequalities by using an analysis of the graph of the parabola combined with

More information

The coordinates of the vertex of the corresponding parabola are p, q. If a > 0, the parabola opens upward. If a < 0, the parabola opens downward.

The coordinates of the vertex of the corresponding parabola are p, q. If a > 0, the parabola opens upward. If a < 0, the parabola opens downward. Mathematics 10 Page 1 of 8 Quadratic Relations in Vertex Form The expression y ax p q defines a quadratic relation in form. The coordinates of the of the corresponding parabola are p, q. If a > 0, the

More information

QUADRATIC GRAPHS ALGEBRA 2. Dr Adrian Jannetta MIMA CMath FRAS INU0114/514 (MATHS 1) Quadratic Graphs 1/ 16 Adrian Jannetta

QUADRATIC GRAPHS ALGEBRA 2. Dr Adrian Jannetta MIMA CMath FRAS INU0114/514 (MATHS 1) Quadratic Graphs 1/ 16 Adrian Jannetta QUADRATIC GRAPHS ALGEBRA 2 INU0114/514 (MATHS 1) Dr Adrian Jannetta MIMA CMath FRAS Quadratic Graphs 1/ 16 Adrian Jannetta Objectives Be able to sketch the graph of a quadratic function Recognise the shape

More information

Quadratics NOTES.notebook November 02, 2017

Quadratics NOTES.notebook November 02, 2017 1) Find y where y = 2-1 and a) = 2 b) = -1 c) = 0 2) Epand the brackets and simplify: (m + 4)(2m - 3) To find the equation of quadratic graphs using substitution of a point. 3) Fully factorise 4y 2-5y

More information

2-7 Solving Quadratic Inequalities. ax 2 + bx + c > 0 (a 0)

2-7 Solving Quadratic Inequalities. ax 2 + bx + c > 0 (a 0) Quadratic Inequalities In One Variable LOOKS LIKE a quadratic equation but Doesn t have an equal sign (=) Has an inequality sign (>,

More information

Finding the Equation of a Graph. I can give the equation of a curve given just the roots.

Finding the Equation of a Graph. I can give the equation of a curve given just the roots. National 5 W 7th August Finding the Equation of a Parabola Starter Sketch the graph of y = x - 8x + 15. On your sketch clearly identify the roots, axis of symmetry, turning point and y intercept. Today

More information

SOLVING QUADRATICS. Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources

SOLVING QUADRATICS. Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources SOLVING QUADRATICS Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources SOLVING QUADRATICS General Form: y a b c Where a, b and c are constants To solve a quadratic equation, the equation

More information

Graphing Rational Functions KEY. (x 4) (x + 2) Factor denominator. y = 0 x = 4, x = -2

Graphing Rational Functions KEY. (x 4) (x + 2) Factor denominator. y = 0 x = 4, x = -2 6 ( 6) Factor numerator 1) f ( ) 8 ( 4) ( + ) Factor denominator n() is of degree: 1 -intercepts: d() is of degree: 6 y 0 4, - Plot the -intercepts. Draw the asymptotes with dotted lines. Then perform

More information

12. Quadratics NOTES.notebook September 21, 2017

12. Quadratics NOTES.notebook September 21, 2017 1) Fully factorise 4y 2-5y - 6 Today's Learning: To find the equation of quadratic graphs using substitution of a point. 2) Epand the brackets and simplify: (m + 4)(2m - 3) 3) Calculate 20% of 340 without

More information

Lesson 4.1 Exercises, pages

Lesson 4.1 Exercises, pages Lesson 4.1 Eercises, pages 57 61 When approimating answers, round to the nearest tenth. A 4. Identify the y-intercept of the graph of each quadratic function. a) y = - 1 + 5-1 b) y = 3-14 + 5 Use mental

More information

Vertex form of a quadratic equation

Vertex form of a quadratic equation Verte form of a quadratic equation Nikos Apostolakis Spring 017 Recall 1. Last time we looked at the graphs of quadratic equations in two variables. The upshot was that the graph of the equation: k = a(

More information

Algebra Final Exam Review Packet

Algebra Final Exam Review Packet Algebra 1 00 Final Eam Review Packet UNIT 1 EXPONENTS / RADICALS Eponents Degree of a monomial: Add the degrees of all the in the monomial together. o Eample - Find the degree of 5 7 yz Degree of a polynomial:

More information

Math RE - Calculus I Functions Page 1 of 10. Topics of Functions used in Calculus

Math RE - Calculus I Functions Page 1 of 10. Topics of Functions used in Calculus Math 0-03-RE - Calculus I Functions Page of 0 Definition of a function f() : Topics of Functions used in Calculus A function = f() is a relation between variables and such that for ever value onl one value.

More information

4-1 Graphing Quadratic Functions

4-1 Graphing Quadratic Functions 4-1 Graphing Quadratic Functions Quadratic Function in standard form: f() a b c The graph of a quadratic function is a. y intercept Ais of symmetry -coordinate of verte coordinate of verte 1) f ( ) 4 a=

More information

Learning Targets: Standard Form: Quadratic Function. Parabola. Vertex Max/Min. x-coordinate of vertex Axis of symmetry. y-intercept.

Learning Targets: Standard Form: Quadratic Function. Parabola. Vertex Max/Min. x-coordinate of vertex Axis of symmetry. y-intercept. Name: Hour: Algebra A Lesson:.1 Graphing Quadratic Functions Learning Targets: Term Picture/Formula In your own words: Quadratic Function Standard Form: Parabola Verte Ma/Min -coordinate of verte Ais of

More information

SOLVING INEQUALITIES and 9.1.2

SOLVING INEQUALITIES and 9.1.2 SOLVING INEQUALITIES 9.1.1 and 9.1.2 To solve an inequality in one variable, first change it to an equation and solve. Place the solution, called a boundary point, on a number line. This point separates

More information

Modeling Revision Questions Set 1

Modeling Revision Questions Set 1 Modeling Revision Questions Set. In an eperiment researchers found that a specific culture of bacteria increases in number according to the formula N = 5 2 t, where N is the number of bacteria present

More information

Chapter 18 Quadratic Function 2

Chapter 18 Quadratic Function 2 Chapter 18 Quadratic Function Completed Square Form 1 Consider this special set of numbers - the square numbers or the set of perfect squares. 4 = = 9 = 3 = 16 = 4 = 5 = 5 = Numbers like 5, 11, 15 are

More information

Intermediate Tier - Algebra revision

Intermediate Tier - Algebra revision Intermediate Tier - Algebra revision Contents : Collecting like terms Multiplying terms together Indices Expanding single brackets Expanding double brackets Substitution Solving equations Finding nth term

More information

Math-2A Lesson 13-3 (Analyzing Functions, Systems of Equations and Inequalities) Which functions are symmetric about the y-axis?

Math-2A Lesson 13-3 (Analyzing Functions, Systems of Equations and Inequalities) Which functions are symmetric about the y-axis? Math-A Lesson 13-3 (Analyzing Functions, Systems of Equations and Inequalities) Which functions are symmetric about the y-axis? f ( x) x x x x x x 3 3 ( x) x We call functions that are symmetric about

More information

F6 Solving Inequalities

F6 Solving Inequalities UNIT F6 Solving Inequalities: Tet F6 Solving Inequalities F6. Inequalities on a Number Line An inequalit involves one of the four smbols >,, < or The following statements illustrate the meaning of each

More information

Lesson 5.1 Exercises, pages

Lesson 5.1 Exercises, pages Lesson 5.1 Eercises, pages 346 352 A 4. Use the given graphs to write the solutions of the corresponding quadratic inequalities. a) 2 2-8 - 10 < 0 The solution is the values of for which y

More information

Roots are: Solving Quadratics. Graph: y = 2x 2 2 y = x 2 x 12 y = x 2 + 6x + 9 y = x 2 + 6x + 3. real, rational. real, rational. real, rational, equal

Roots are: Solving Quadratics. Graph: y = 2x 2 2 y = x 2 x 12 y = x 2 + 6x + 9 y = x 2 + 6x + 3. real, rational. real, rational. real, rational, equal Solving Quadratics Graph: y = 2x 2 2 y = x 2 x 12 y = x 2 + 6x + 9 y = x 2 + 6x + 3 Roots are: real, rational real, rational real, rational, equal real, irrational 1 To find the roots algebraically, make

More information

Function Practice. 1. (a) attempt to form composite (M1) (c) METHOD 1 valid approach. e.g. g 1 (5), 2, f (5) f (2) = 3 A1 N2 2

Function Practice. 1. (a) attempt to form composite (M1) (c) METHOD 1 valid approach. e.g. g 1 (5), 2, f (5) f (2) = 3 A1 N2 2 1. (a) attempt to form composite e.g. ( ) 3 g 7 x, 7 x + (g f)(x) = 10 x N (b) g 1 (x) = x 3 N1 1 (c) METHOD 1 valid approach e.g. g 1 (5),, f (5) f () = 3 N METHOD attempt to form composite of f and g

More information

Chapter 5: Systems of Equations and Inequalities. Section 5.4. Check Point Exercises

Chapter 5: Systems of Equations and Inequalities. Section 5.4. Check Point Exercises Chapter : Systems of Equations and Inequalities Section. Check Point Eercises. = y y = Solve the first equation for y. y = + Substitute the epression + for y in the second equation and solve for. ( + )

More information

Higher Tier - Algebra revision

Higher Tier - Algebra revision Higher Tier - Algebra revision Contents: Indices Epanding single brackets Epanding double brackets Substitution Solving equations Solving equations from angle probs Finding nth term of a sequence Simultaneous

More information

Mathematics. Polynomials and Quadratics. hsn.uk.net. Higher. Contents. Polynomials and Quadratics 52 HSN22100

Mathematics. Polynomials and Quadratics. hsn.uk.net. Higher. Contents. Polynomials and Quadratics 52 HSN22100 Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 5 1 Quadratics 5 The Discriminant 54 Completing the Square 55 4 Sketching Parabolas 57 5 Determining the Equation

More information

1 x

1 x Unit 1. Calculus Topic 4: Increasing and decreasing functions: turning points In topic 4 we continue with straightforward derivatives and integrals: Locate turning points where f () = 0. Determine the

More information

Algebra Concepts Equation Solving Flow Chart Page 1 of 6. How Do I Solve This Equation?

Algebra Concepts Equation Solving Flow Chart Page 1 of 6. How Do I Solve This Equation? Algebra Concepts Equation Solving Flow Chart Page of 6 How Do I Solve This Equation? First, simplify both sides of the equation as much as possible by: combining like terms, removing parentheses using

More information

Quadratics. SPTA Mathematics Higher Notes

Quadratics. SPTA Mathematics Higher Notes H Quadratics SPTA Mathematics Higher Notes Quadratics are expressions with degree 2 and are of the form ax 2 + bx + c, where a 0. The Graph of a Quadratic is called a Parabola, and there are 2 types as

More information

correlated to the Idaho Content Standards Algebra II

correlated to the Idaho Content Standards Algebra II correlated to the Idaho Content Standards Algebra II McDougal Littell Algebra and Trigonometry: Structure and Method, Book 2 2000 correlated to the Idaho Content Standards Algebra 2 STANDARD 1: NUMBER

More information

Chapter 2 Analysis of Graphs of Functions

Chapter 2 Analysis of Graphs of Functions Chapter Analysis of Graphs of Functions Chapter Analysis of Graphs of Functions Covered in this Chapter:.1 Graphs of Basic Functions and their Domain and Range. Odd, Even Functions, and their Symmetry..

More information

May 27, QUADRATICS.notebook. Apr 26 17:43. Apr 26 18:27. Apr 26 18:40. Apr 28 10:22. Apr 28 10:34. Apr 28 10:33. Starter

May 27, QUADRATICS.notebook. Apr 26 17:43. Apr 26 18:27. Apr 26 18:40. Apr 28 10:22. Apr 28 10:34. Apr 28 10:33. Starter 1. Factorise: 2 - - 6 2. Solve for : 2( + 1) = - 1 3. Factorise: 2-25 To solve quadratic equations.. Factorise: 2 2-8 5. State the gradient of the line: + 12 = 2 Apr 26 17:3 Apr 26 18:27 Solving Quadratic

More information

UNIT #9 ROOTS AND IRRATIONAL NUMBERS REVIEW QUESTIONS

UNIT #9 ROOTS AND IRRATIONAL NUMBERS REVIEW QUESTIONS Answer Key Name: Date: UNIT #9 ROOTS AND IRRATIONAL NUMBERS REVIEW QUESTIONS Part I Questions. Which of the following is the value of 6? () 6 () 4 () (4). The epression is equivalent to 6 6 6 6 () () 6

More information

6.6 General Form of the Equation for a Linear Relation

6.6 General Form of the Equation for a Linear Relation 6.6 General Form of the Equation for a Linear Relation FOCUS Relate the graph of a line to its equation in general form. We can write an equation in different forms. y 0 6 5 y 10 = 0 An equation for this

More information

Algebra I Practice Questions ? 1. Which is equivalent to (A) (B) (C) (D) 2. Which is equivalent to 6 8? (A) 4 3

Algebra I Practice Questions ? 1. Which is equivalent to (A) (B) (C) (D) 2. Which is equivalent to 6 8? (A) 4 3 1. Which is equivalent to 64 100? 10 50 8 10 8 100. Which is equivalent to 6 8? 4 8 1 4. Which is equivalent to 7 6? 4 4 4. Which is equivalent to 4? 8 6 Page 1 of 0 11 Practice Questions 6 1 5. Which

More information

Goal: To graph points in the Cartesian plane, identify functions by graphs and equations, use function notation

Goal: To graph points in the Cartesian plane, identify functions by graphs and equations, use function notation Section -1 Functions Goal: To graph points in the Cartesian plane, identify functions by graphs and equations, use function notation Definition: A rule that produces eactly one output for one input is

More information

Lesson 10.1 Solving Quadratic Equations

Lesson 10.1 Solving Quadratic Equations Lesson 10.1 Solving Quadratic Equations 1. Sketch the graph of a quadratic equation with each set of conditions. a. One -intercept and all nonnegative y-values b. The verte in the third quadrant and no

More information

Graphs and Solutions for Quadratic Equations

Graphs and Solutions for Quadratic Equations Format y = a + b + c where a 0 Graphs and Solutions for Quadratic Equations Graphing a quadratic equation creates a parabola. If a is positive, the parabola opens up or is called a smiley face. If a is

More information

Quadratic Inequalities in One Variable

Quadratic Inequalities in One Variable Quadratic Inequalities in One Variable Quadratic inequalities in one variable can be written in one of the following forms: a b c + + 0 a b c + + 0 a b c + + 0 a b c + + 0 Where a, b, and c are real and

More information

MORE CURVE SKETCHING

MORE CURVE SKETCHING Mathematics Revision Guides More Curve Sketching Page of 3 MK HOME TUITION Mathematics Revision Guides Level: AS / A Level MEI OCR MEI: C4 MORE CURVE SKETCHING Version : 5 Date: 05--007 Mathematics Revision

More information

IB Questionbank Mathematical Studies 3rd edition. Quadratics. 112 min 110 marks. y l

IB Questionbank Mathematical Studies 3rd edition. Quadratics. 112 min 110 marks. y l IB Questionbank Mathematical Studies 3rd edition Quadratics 112 min 110 marks 1. The following diagram shows a straight line l. 10 8 y l 6 4 2 0 0 1 2 3 4 5 6 (a) Find the equation of the line l. The line

More information

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE Functions & Graphs Contents Functions and Relations... 1 Interval Notation... 3 Graphs: Linear Functions... 5 Lines and Gradients... 7 Graphs: Quadratic

More information

(a) Write down the value of q and of r. (2) Write down the equation of the axis of symmetry. (1) (c) Find the value of p. (3) (Total 6 marks)

(a) Write down the value of q and of r. (2) Write down the equation of the axis of symmetry. (1) (c) Find the value of p. (3) (Total 6 marks) 1. Let f(x) = p(x q)(x r). Part of the graph of f is shown below. The graph passes through the points ( 2, 0), (0, 4) and (4, 0). (a) Write down the value of q and of r. (b) Write down the equation of

More information

Polynomials and Quadratics

Polynomials and Quadratics PSf Paper 1 Section A Polnomials and Quadratics Each correct answer in this section is worth two marks. 1. A parabola has equation = 2 2 + 4 + 5. Which of the following are true? I. The parabola has a

More information

MATHEMATICAL METHODS UNIT 1 CHAPTER 3 ALGEBRAIC FOUNDATIONS

MATHEMATICAL METHODS UNIT 1 CHAPTER 3 ALGEBRAIC FOUNDATIONS E da = q ε ( B da = 0 E ds = dφ. B ds = μ ( i + μ ( ε ( dφ 3 dt dt MATHEMATICAL METHODS UNIT 1 CHAPTER 3 ALGEBRAIC FOUNDATIONS Key knowledge Factorization patterns, the quadratic formula and discriminant,

More information

Core 1 Inequalities and indices Section 1: Errors and inequalities

Core 1 Inequalities and indices Section 1: Errors and inequalities Notes and Eamples Core Inequalities and indices Section : Errors and inequalities These notes contain subsections on Inequalities Linear inequalities Quadratic inequalities This is an eample resource from

More information

Ch. 9.3 Vertex to General Form. of a Parabola

Ch. 9.3 Vertex to General Form. of a Parabola Ch. 9.3 Verte to General Form Learning Intentions: of a Parabola Change a quadratic equation from verte to general form. Learn to square a binomial & factor perfectsquare epressions using rectangle diagrams.

More information

Solving Quadratic Equations

Solving Quadratic Equations Concepts: Solving Quadratic Equations, Completing the Square, The Quadratic Formula, Sketching Quadratics Solving Quadratic Equations Completing the Square ax + bx + c = a x + ba ) x + c Factor so the

More information

10.7 Polynomial and Rational Inequalities

10.7 Polynomial and Rational Inequalities 10.7 Polynomial and Rational Inequalities In this section we want to turn our attention to solving polynomial and rational inequalities. That is, we want to solve inequalities like 5 4 0. In order to do

More information

A11.1 Areas under curves

A11.1 Areas under curves Applications 11.1 Areas under curves A11.1 Areas under curves Before ou start You should be able to: calculate the value of given the value of in algebraic equations of curves calculate the area of a trapezium.

More information

3. TRANSLATED PARABOLAS

3. TRANSLATED PARABOLAS 3. TRANSLATED PARABOLAS The Parabola with Verte V(h, k) and Aes Parallel to the ais Consider the concave up parabola with verte V(h, k) shown below. This parabola is obtained b translating the parabola

More information

Mathematics. Polynomials and Quadratics. hsn.uk.net. Higher. Contents. Polynomials and Quadratics 1. CfE Edition

Mathematics. Polynomials and Quadratics. hsn.uk.net. Higher. Contents. Polynomials and Quadratics 1. CfE Edition Higher Mathematics Contents 1 1 Quadratics EF 1 The Discriminant EF 3 3 Completing the Square EF 4 4 Sketching Parabolas EF 7 5 Determining the Equation of a Parabola RC 9 6 Solving Quadratic Inequalities

More information

Section 7.1 Objective 1: Solve Quadratic Equations Using the Square Root Property Video Length 12:12

Section 7.1 Objective 1: Solve Quadratic Equations Using the Square Root Property Video Length 12:12 Section 7.1 Video Guide Solving Quadratic Equations by Completing the Square Objectives: 1. Solve Quadratic Equations Using the Square Root Property. Complete the Square in One Variable 3. Solve Quadratic

More information

Chapter XX: 1: Functions. XXXXXXXXXXXXXXX <CT>Chapter 1: Data representation</ct> 1.1 Mappings

Chapter XX: 1: Functions. XXXXXXXXXXXXXXX <CT>Chapter 1: Data representation</ct> 1.1 Mappings 978--08-8-8 Cambridge IGCSE and O Level Additional Mathematics Practice Book Ecerpt Chapter XX: : Functions XXXXXXXXXXXXXXX Chapter : Data representation This section will show you how to: understand

More information

Section 4.3: Quadratic Formula

Section 4.3: Quadratic Formula Objective: Solve quadratic equations using the quadratic formula. In this section we will develop a formula to solve any quadratic equation ab c 0 where a b and c are real numbers and a 0. Solve for this

More information

Higher. Polynomials and Quadratics. Polynomials and Quadratics 1

Higher. Polynomials and Quadratics. Polynomials and Quadratics 1 Higher Mathematics Contents 1 1 Quadratics EF 1 The Discriminant EF 3 3 Completing the Square EF 4 4 Sketching Parabolas EF 7 5 Determining the Equation of a Parabola RC 9 6 Solving Quadratic Inequalities

More information

Quadratic Functions and Graphs *

Quadratic Functions and Graphs * OpenStax-CNX module: m30843 1 Quadratic Functions and Graphs * Rory Adams Free High School Science Texts Project Heather Williams This work is produced by OpenStax-CNX and licensed under the Creative Commons

More information

ALGEBRA II-GRAPHING QUADRATICS THE GRAPH OF A QUADRATIC FUNCTION

ALGEBRA II-GRAPHING QUADRATICS THE GRAPH OF A QUADRATIC FUNCTION ALGEBRA II-GRAPHING QUADRATICS THE GRAPH OF A QUADRATIC FUNCTION The Quadratic Equation is written as: ; this equation has a degree of. Where a, b and c are integer coefficients (where a 0) The graph of

More information

6A The language of polynomials. A Polynomial function follows the rule. Degree of a polynomial is the highest power of x with a non-zero coefficient.

6A The language of polynomials. A Polynomial function follows the rule. Degree of a polynomial is the highest power of x with a non-zero coefficient. Unit Mathematical Methods Chapter 6: Polynomials Objectives To add, subtract and multiply polynomials. To divide polynomials. To use the remainder theorem, factor theorem and rational-root theorem to identify

More information

Algebra Review C H A P T E R. To solve an algebraic equation with one variable, find the value of the unknown variable.

Algebra Review C H A P T E R. To solve an algebraic equation with one variable, find the value of the unknown variable. C H A P T E R 6 Algebra Review This chapter reviews key skills and concepts of algebra that you need to know for the SAT. Throughout the chapter are sample questions in the style of SAT questions. Each

More information

CALCULUS BASIC SUMMER REVIEW

CALCULUS BASIC SUMMER REVIEW NAME CALCULUS BASIC SUMMER REVIEW Slope of a non vertical line: rise y y y m run Point Slope Equation: y y m( ) The slope is m and a point on your line is, ). ( y Slope-Intercept Equation: y m b slope=

More information

Functions and Equations

Functions and Equations Canadian Mathematics Competition An activity of the Centre for Education in Mathematics and Computing, University of Waterloo, Waterloo, Ontario Euclid eworkshop # Functions and Equations c 006 CANADIAN

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables A function f : R n R m is a function of several variables if n > 1 that is, if there is more than one input variable. For eample a function f : R 2 R 3 is a parametrized

More information

T25 - Quadratic Functions

T25 - Quadratic Functions Lesson Objectives T25 - Quadratic Functions (1) Establish a context for Quadratic Relations (2) Features of graphs of Quadratic relations D,R,intercepts, vertex (extrema/max/min), axis of symmetry, direction

More information

4Cubic. polynomials UNCORRECTED PAGE PROOFS

4Cubic. polynomials UNCORRECTED PAGE PROOFS 4Cubic polnomials 4.1 Kick off with CAS 4. Polnomials 4.3 The remainder and factor theorems 4.4 Graphs of cubic polnomials 4.5 Equations of cubic polnomials 4.6 Cubic models and applications 4.7 Review

More information

Math-3 Lesson 4-6 Polynomial and Rational Inequalities

Math-3 Lesson 4-6 Polynomial and Rational Inequalities Math-3 Lesson 4-6 Polynomial and Rational Inequalities SM3 HANDOUT 4-6 Polynomial and Rational Inequalities Graph the general shape of the equation. y 4 1 Positive lead coefficient, even degree nd degree

More information

Calculus Interpretation: Part 1

Calculus Interpretation: Part 1 Saturday X-tra X-Sheet: 8 Calculus Interpretation: Part Key Concepts In this session we will focus on summarising what you need to know about: Tangents to a curve. Remainder and factor theorem. Sketching

More information

Name: Period: SM Starter on Reading Quadratic Graph. This graph and equation represent the path of an object being thrown.

Name: Period: SM Starter on Reading Quadratic Graph. This graph and equation represent the path of an object being thrown. SM Name: Period: 7.5 Starter on Reading Quadratic Graph This graph and equation represent the path of an object being thrown. 1. What is the -ais measuring?. What is the y-ais measuring? 3. What are the

More information

Final Exam A Name. 20 i C) Solve the equation by factoring. 4) x2 = x + 30 A) {-5, 6} B) {5, 6} C) {1, 30} D) {-5, -6} -9 ± i 3 14

Final Exam A Name. 20 i C) Solve the equation by factoring. 4) x2 = x + 30 A) {-5, 6} B) {5, 6} C) {1, 30} D) {-5, -6} -9 ± i 3 14 Final Exam A Name First, write the value(s) that make the denominator(s) zero. Then solve the equation. 1 1) x + 3 + 5 x - 3 = 30 (x + 3)(x - 3) 1) A) x -3, 3; B) x -3, 3; {4} C) No restrictions; {3} D)

More information

Vertex. March 23, Ch 9 Guided Notes.notebook

Vertex. March 23, Ch 9 Guided Notes.notebook March, 07 9 Quadratic Graphs and Their Properties A quadratic function is a function that can be written in the form: Verte Its graph looks like... which we call a parabola. The simplest quadratic function

More information

Unit 11 - Solving Quadratic Functions PART ONE

Unit 11 - Solving Quadratic Functions PART ONE Unit 11 - Solving Quadratic Functions PART ONE PREREQUISITE SKILLS: students should be able to add, subtract and multiply polynomials students should be able to factor polynomials students should be able

More information

Secondary Math 2 Honors Unit 4 Graphing Quadratic Functions

Secondary Math 2 Honors Unit 4 Graphing Quadratic Functions SMH Secondary Math Honors Unit 4 Graphing Quadratic Functions 4.0 Forms of Quadratic Functions Form: ( ) f = a + b + c, where a 0. There are no parentheses. f = 3 + 7 Eample: ( ) Form: f ( ) = a( p)( q),

More information

G r a d e 1 1 P r e - C a l c u l u s M a t h e m a t i c s ( 3 0 S ) Final Practice Exam Answer Key

G r a d e 1 1 P r e - C a l c u l u s M a t h e m a t i c s ( 3 0 S ) Final Practice Exam Answer Key G r a d e P r e - C a l c u l u s M a t h e m a t i c s ( 3 0 S ) Final Practice Eam Answer Key G r a d e P r e - C a l c u l u s M a t h e m a t i c s Final Practice Eam Answer Key Name: Student Number:

More information

Algebra I Quadratics Practice Questions

Algebra I Quadratics Practice Questions 1. Which is equivalent to 64 100? 10 50 8 10 8 100. Which is equivalent to 6 8? 4 8 1 4. Which is equivalent to 7 6? 4 4 4. Which is equivalent to 4? 8 6 From CCSD CSE S Page 1 of 6 1 5. Which is equivalent

More information

November 13, 2018 MAT186 Week 8 Justin Ko

November 13, 2018 MAT186 Week 8 Justin Ko 1 Mean Value Theorem Theorem 1 (Mean Value Theorem). Let f be a continuous on [a, b] and differentiable on (a, b). There eists a c (a, b) such that f f(b) f(a) (c) =. b a Eample 1: The Mean Value Theorem

More information

Algebra y funciones [219 marks]

Algebra y funciones [219 marks] Algebra y funciones [9 marks] Let f() = 3 ln and g() = ln5 3. a. Epress g() in the form f() + lna, where a Z +. attempt to apply rules of logarithms e.g. ln a b = b lna, lnab = lna + lnb correct application

More information

Unit 5 Solving Quadratic Equations

Unit 5 Solving Quadratic Equations SM Name: Period: Unit 5 Solving Quadratic Equations 5.1 Solving Quadratic Equations by Factoring Quadratic Equation: Any equation that can be written in the form a b c + + = 0, where a 0. Zero Product

More information

IMAGINARY NUMBERS COMMON CORE ALGEBRA II

IMAGINARY NUMBERS COMMON CORE ALGEBRA II Name: Date: IMAGINARY NUMBERS COMMON CORE ALGEBRA II Recall that in the Real Number System, it is not possible to take the square root of a negative quantity because whenever a real number is squared it

More information

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED FOM 11 T0 INTRODUCING PARABOLAS 1 MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED 1) QUADRATIC FUNCTION = a statement containing different kinds of variables where one variable lacks a visible exponent and

More information

Solutions to Problem Sheet for Week 11

Solutions to Problem Sheet for Week 11 THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS Solutions to Problem Sheet for Week MATH9: Differential Calculus (Advanced) Semester, 7 Web Page: sydney.edu.au/science/maths/u/ug/jm/math9/

More information

USING THE QUADRATIC FORMULA and 9.1.3

USING THE QUADRATIC FORMULA and 9.1.3 Chapter 9 USING THE QUADRATIC FORMULA 9.1.2 and 9.1.3 When a quadratic equation is not factorable, another method is needed to solve for x. The Quadratic Formula can be used to calculate the roots of a

More information

x 20 f ( x ) = x Determine the implied domain of the given function. Express your answer in interval notation.

x 20 f ( x ) = x Determine the implied domain of the given function. Express your answer in interval notation. Test 2 Review 1. Given the following relation: 5 2 + = -6 - y Step 1. Rewrite the relation as a function of. Step 2. Using the answer from step 1, evaluate the function at = -1. Step. Using the answer

More information

1. Find the domain of the following functions. Write your answer using interval notation. (9 pts.)

1. Find the domain of the following functions. Write your answer using interval notation. (9 pts.) MATH- Sample Eam Spring 7. Find the domain of the following functions. Write your answer using interval notation. (9 pts.) a. 9 f ( ) b. g ( ) 9 8 8. Write the equation of the circle in standard form given

More information

QUADRATIC FUNCTIONS. ( x 7)(5x 6) = 2. Exercises: 1 3x 5 Sum: 8. We ll expand it by using the distributive property; 9. Let s use the FOIL method;

QUADRATIC FUNCTIONS. ( x 7)(5x 6) = 2. Exercises: 1 3x 5 Sum: 8. We ll expand it by using the distributive property; 9. Let s use the FOIL method; QUADRATIC FUNCTIONS A. Eercises: 1.. 3. + = + = + + = +. ( 1)(3 5) (3 5) 1(3 5) 6 10 3 5 6 13 5 = = + = +. ( 7)(5 6) (5 6) 7(5 6) 5 6 35 4 5 41 4 3 5 6 10 1 3 5 Sum: 6 + 10+ 3 5 ( + 1)(3 5) = 6 + 13 5

More information

National 5 Mathematics

National 5 Mathematics St Andrew s Academ Mathematics Department National 5 Mathematics UNIT 4 ASSESSMENT PREPARATION St Andrew's Academ Maths Dept 016-17 1 Practice Unit Assessment 4A for National 5 1. Simplif, giving our answer

More information

Lesson 3: Exploring Quadratic Relations Graphs Unit 5 Quadratic Relations

Lesson 3: Exploring Quadratic Relations Graphs Unit 5 Quadratic Relations (A) Lesson Context BIG PICTURE of this UNIT: CONTEXT of this LESSON: How do we analyze and then work with a data set that shows both increase and decrease What is a parabola and what key features do they

More information

Questions From Old Exams

Questions From Old Exams MATH 0 OLD EXAM QUESTIONS FOR EXAM 3 ON CHAPTERS 3 AND 4 PAGE Questions From Old Eams. Write the equation of a quadratic function whose graph has the following characteristics: It opens down; it is stretched

More information

1 Triangle ABC has vertices A( 1,12), B( 2, 5)

1 Triangle ABC has vertices A( 1,12), B( 2, 5) Higher Mathematics Paper : Marking Scheme Version Triangle ABC has vertices A(,), B(, ) A(, ) y and C(, ). (a) (b) (c) Find the equation of the median BD. Find the equation of the altitude AE. Find the

More information

Module 3, Section 4 Analytic Geometry II

Module 3, Section 4 Analytic Geometry II Principles of Mathematics 11 Section, Introduction 01 Introduction, Section Analtic Geometr II As the lesson titles show, this section etends what ou have learned about Analtic Geometr to several related

More information

recognise quadratics of the form y = kx 2 and y = (x + a) 2 + b ; a, b Î Z, from their graphs solve quadratic equations by factorisation

recognise quadratics of the form y = kx 2 and y = (x + a) 2 + b ; a, b Î Z, from their graphs solve quadratic equations by factorisation QUADRATIC FUNCTIONS B the end of this unit, ou should be able to: (a) (b) (c) (d) (e) recognise quadratics of the form = k 2 and = ( + a) 2 + b ; a, b Î Z, from their graphs identif the nature and coordinates

More information

Algebra I Semester 2 Practice Exam DRAFT

Algebra I Semester 2 Practice Exam DRAFT Algebra I Semester Practice Eam 1. What is the -coordinate of the point of intersection for the two lines below? 6 7 y y 640 8 13 4 13. What is the y-coordinate of the point of intersection for the two

More information

ARE YOU READY FOR CALCULUS?? Name: Date: Period:

ARE YOU READY FOR CALCULUS?? Name: Date: Period: ARE YOU READY FOR CALCULUS?? Name: Date: Period: Directions: Complete the following problems. **You MUST show all work to receive credit.**(use separate sheets of paper.) Problems with an asterisk (*)

More information

( ) ( ) ( ) ( ) Given that and its derivative are continuous when, find th values of and. ( ) ( )

( ) ( ) ( ) ( ) Given that and its derivative are continuous when, find th values of and. ( ) ( ) 1. The piecewise function is defined by where and are constants. Given that and its derivative are continuous when, find th values of and. When When of of Substitute into ; 2. Using the substitution, evaluate

More information

Graphical Solutions of Linear Systems

Graphical Solutions of Linear Systems Graphical Solutions of Linear Systems Consistent System (At least one solution) Inconsistent System (No Solution) Independent (One solution) Dependent (Infinite many solutions) Parallel Lines Equations

More information

Introduction to Rational Functions

Introduction to Rational Functions Introduction to Rational Functions The net class of functions that we will investigate is the rational functions. We will eplore the following ideas: Definition of rational function. The basic (untransformed)

More information

LHS Algebra Pre-Test

LHS Algebra Pre-Test Your Name Teacher Block Grade (please circle): 9 10 11 12 Course level (please circle): Honors Level 1 Instructions LHS Algebra Pre-Test The purpose of this test is to see whether you know Algebra 1 well

More information