T x. T k x. is a constant of integration. We integrate a second time to obtain an expression for the temperature distribution:

Size: px
Start display at page:

Download "T x. T k x. is a constant of integration. We integrate a second time to obtain an expression for the temperature distribution:"

Transcription

1 ME 336 Fall 8 HW solution Poblem - The geneal fom of the heat diffusion equation is: T cp = ( T) + eg t - one-dimensional conduction (along the x - diection only): = ˆi and T = T( x) x - steady state conditions: t - constant themal popeties: = constant - no heat geneation with the base plate mateial: e g Theefoe, the educed heat conduction equation is: T x T x Integatg with espect to x : T =, x whee is a constant of tegation. We tegate a second time to obta an expession fo the tempeatue distibution: T ( x) = x +, whee is anothe constant of tegation. To solve fo the two constants, we need to conside the bounday conditions this poblem. - B: the heat flux along the lowe suface is equal to q T = q x x = q = q - B: the conductive heat flux along the top suface is equal to the convective heat flux T x = h( T ( ) T ) x= = h + T + h = T h ( )

2 ME 336 Fall 8 HW solution Substitutg bac the geneal fom of the tempeatue distibution: q T( x) = + x+ T h Numeical applications: T = T() = T = 339 T = T( ) = T = 3 - T = 3 : the oute suface tempeatue is highe than the safe tempeatue of. The oute suface of the enge should be coveed with potective sulation to pevent fie hazad the event of oil leaage. Poblem In ode to deteme the side suface tempeatue of the funace T, the tempeatue distibution with the funace must be detemed. This tempeatue distibution depends on the oute suface tempeatue T( ), which can be detemed by consideg an enegy balance on the oute suface. Along that suface, heat is enteg though a unifom flux q. Heat is lost the same amount via convection and adiation. The enegy balance can then be witten: 4 4 ( ( ) ) ( ( ) su ) q = h T T + T T convection adiation 8 4 Numeical application: 5 T (73 + ) +.3( 5.67 ) T ( + 73) 4 Usg a numeical solve on the calculato: T = 594 K With the nowledge of this bounday condition, we can now deive an expession fo the tempeatue distibution the funace font. The geneal fom of the heat diffusion equation is: T cp = ( T) + eg t - one-dimensional conduction (along the x - diection only): = ˆi and T = T( x) x

3 ME 336 Fall 8 HW solution - steady state conditions: t - constant themal popeties: = constant - no heat geneation: e g Theefoe, the educed heat conduction equation is: T x T x Integatg with espect to x : T =, x whee is a constant of tegation. We tegate a second time to obta an expession fo the tempeatue distibution: T ( x) = x +, whee is anothe constant of tegation. To solve fo the two constants, we need to conside the bounday conditions this poblem. - B: the heat flux along the left suface is equal to q T = q x x = q = q - B: the tempeatue along the ight suface is T q + = T = T + Substitutg bac the geneal fom of the tempeatue distibution: q T ( x) = ( x) + T 5 Numeical application: T = T() = T = 598 K 5

4 ME 336 Fall 8 HW solution T = T( ) = T = 3 Poblem 3 The geneal fom of the heat diffusion equation spheical coodates is: T T s T q T gen c s s = t - one-dimensional conduction (along the - diection only): = and T = T() - steady state conditions: t - constant themal popeties: = constant - no heat geneation: q gen Theefoe, the educed heat conduction equation is: T = T = T = We tegate both sides with espect to : We tegate aga with espect to : T = T = T() = + - B: at =, q= q The heat tansfeed to the spheical contae is due to the tic heate, which geneates a heat flux along the e diection acoss a suface aea A= 4 : ˆ q Q = 4 Sce % of the tical powe is lost to the sulation, 9% is effectively tansfeed to the contae:

5 ME 336 Fall 8 HW solution q.9p = 4 Theefoe, the bounday condition on the oute suface of the contae is expessed as: T.9P =.9P.9P = 4 = 4 4 = - B: T ( ) = T T + = = T+.9P = T + 4 Substitutg bac to the tempeatue distibution:.9p T() = T Numeical application: T = T( ) T =.3 The ate of heat supply to the wate is calculated as: Q = mc T p Q m = c p T m.9p = c T T ( ) p w Numeical application:.98 m = 485 ( ) m.5 g/s = 7.74 g/h

One-Dimensional, Steady-State. State Conduction with Thermal Energy Generation

One-Dimensional, Steady-State. State Conduction with Thermal Energy Generation One-Dimensional, Steady-State State Conduction with Themal Enegy Geneation Implications of Enegy Geneation Involves a local (volumetic) souce of themal enegy due to convesion fom anothe fom of enegy in

More information

LECTURER: PM DR MAZLAN ABDUL WAHID PM Dr Mazlan Abdul Wahid

LECTURER: PM DR MAZLAN ABDUL WAHID   PM Dr Mazlan Abdul Wahid M 445 LU: M D MZL BDUL WID http://www.fkm.utm.my/~mazlan hapte teady-tate tate One Dimensional eat onduction M bdul Wahid UM aculty of Mechanical ngineeing Univesiti eknologi Malaysia www.fkm.utm.my/~mazlan

More information

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006 1 Qualifying Examination Electicity and Magnetism Solutions Januay 12, 2006 PROBLEM EA. a. Fist, we conside a unit length of cylinde to find the elationship between the total chage pe unit length λ and

More information

Heat transfer has direction as well as magnitude. The rate of heat conduction

Heat transfer has direction as well as magnitude. The rate of heat conduction cen58933_ch2.qd 9/1/22 8:46 AM Page 61 HEAT CONDUCTION EQUATION CHAPTER 2 Heat tansfe has diection as well as magnitude. The ate of heat conduction in a specified diection is popotional to the tempeatue

More information

1D2G - Numerical solution of the neutron diffusion equation

1D2G - Numerical solution of the neutron diffusion equation DG - Numeical solution of the neuton diffusion equation Y. Danon Daft: /6/09 Oveview A simple numeical solution of the neuton diffusion equation in one dimension and two enegy goups was implemented. Both

More information

In the previous section we considered problems where the

In the previous section we considered problems where the 5.4 Hydodynamically Fully Developed and Themally Developing Lamina Flow In the pevious section we consideed poblems whee the velocity and tempeatue pofile wee fully developed, so that the heat tansfe coefficient

More information

LECTURER: DR. MAZLAN ABDUL WAHID HEAT TRANSFER

LECTURER: DR. MAZLAN ABDUL WAHID  HEAT TRANSFER SM 4463 LU: D. MZLN BDUL WID http://www.fm.utm.my/~mazlan FULY OF MNIL NGINING UNIVSII KNOLOGI MLYSI SKUDI, JOO, MLYSI Mazlan 006 NSF D MZLN hapte Fundamental oncepts of onduction ssoc. of. D. Mazlan bdul

More information

one primary direction in which heat transfers (generally the smallest dimension) simple model good representation for solving engineering problems

one primary direction in which heat transfers (generally the smallest dimension) simple model good representation for solving engineering problems CHAPTER 3: One-Dimenional Steady-State Conduction one pimay diection in which heat tanfe (geneally the mallet dimenion) imple model good epeentation fo olving engineeing poblem 3. Plane Wall 3.. hot fluid

More information

1 Fundamental Solutions to the Wave Equation

1 Fundamental Solutions to the Wave Equation 1 Fundamental Solutions to the Wave Equation Physical insight in the sound geneation mechanism can be gained by consideing simple analytical solutions to the wave equation. One example is to conside acoustic

More information

Chapter 2 ONE DIMENSIONAL STEADY STATE CONDUCTION. Chapter 2 Chee 318 1

Chapter 2 ONE DIMENSIONAL STEADY STATE CONDUCTION. Chapter 2 Chee 318 1 hapte ONE DIMENSIONAL SEADY SAE ONDUION hapte hee 38 HEA ONDUION HOUGH OMPOSIE EANGULA WALLS empeatue pofile A B X X 3 X 3 4 X 4 Χ A Χ B Χ hapte hee 38 hemal conductivity Fouie s law ( is constant) A A

More information

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below. Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings

More information

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics AE301 Aeodynamics I UNIT B: Theoy of Aeodynamics ROAD MAP... B-1: Mathematics fo Aeodynamics B-2: Flow Field Repesentations B-3: Potential Flow Analysis B-4: Applications of Potential Flow Analysis AE301

More information

Correlation between System (Lagrangian) concept Control-volume (Eulerian) concept for comprehensive understanding of fluid motion?

Correlation between System (Lagrangian) concept Control-volume (Eulerian) concept for comprehensive understanding of fluid motion? The Reynolds Tanspot Theoem Coelation between System (Lagangian) concept Contol-volume (Euleian) concept fo compehensive undestanding of fluid motion? Reynolds Tanspot Theoem Let s set a fundamental equation

More information

PHYS 2135 Exam I February 13, 2018

PHYS 2135 Exam I February 13, 2018 Exam Total /200 PHYS 2135 Exam I Febuay 13, 2018 Name: Recitation Section: Five multiple choice questions, 8 points each Choose the best o most nealy coect answe Fo questions 6-9, solutions must begin

More information

STUDY ON 2-D SHOCK WAVE PRESSURE MODEL IN MICRO SCALE LASER SHOCK PEENING

STUDY ON 2-D SHOCK WAVE PRESSURE MODEL IN MICRO SCALE LASER SHOCK PEENING Study Rev. Adv. on -D Mate. shock Sci. wave 33 (13) pessue 111-118 model in mico scale lase shock peening 111 STUDY ON -D SHOCK WAVE PRESSURE MODEL IN MICRO SCALE LASER SHOCK PEENING Y.J. Fan 1, J.Z. Zhou,

More information

Astronomy 111, Fall October 2011

Astronomy 111, Fall October 2011 Astonomy 111, Fall 011 4 Octobe 011 Today in Astonomy 111: moe details on enegy tanspot and the tempeatues of the planets Moe about albedo and emissivity Moe about the tempeatue of sunlit, adiation-cooled

More information

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2 THE LAPLACE EQUATION The Laplace (o potential) equation is the equation whee is the Laplace opeato = 2 x 2 u = 0. in R = 2 x 2 + 2 y 2 in R 2 = 2 x 2 + 2 y 2 + 2 z 2 in R 3 The solutions u of the Laplace

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

5.4 Second Law of Thermodynamics Irreversible Flow 5

5.4 Second Law of Thermodynamics Irreversible Flow 5 5.4 Second Law of hemodynamics Ievesile Flow 5 5.4 Second Law of hemodynamics Ievesile Flow he second law of themodynamics fomalizes the notion of loss. he second law of themodynamics affods us with a

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

CHAPTER IV RADIATION BY SIMPLE ACOUSTIC SOURCE. or by vibratory forces acting directly on the fluid, or by the violent motion of the fluid itself.

CHAPTER IV RADIATION BY SIMPLE ACOUSTIC SOURCE. or by vibratory forces acting directly on the fluid, or by the violent motion of the fluid itself. CHAPTER IV RADIATION BY SIMPLE ACOUSTIC SOURCE 4.1 POINT SOURCE Sound waves ae geneated by the vibation of any solid body in contact with the fluid medium o by vibatoy foces acting diectly on the fluid,

More information

PHY2061 Enriched Physics 2 Lecture Notes. Gauss Law

PHY2061 Enriched Physics 2 Lecture Notes. Gauss Law PHY61 Eniched Physics Lectue Notes Law Disclaime: These lectue notes ae not meant to eplace the couse textbook. The content may be incomplete. ome topics may be unclea. These notes ae only meant to be

More information

I( x) t e. is the total mean free path in the medium, [cm] tis the total cross section in the medium, [cm ] A M

I( x) t e. is the total mean free path in the medium, [cm] tis the total cross section in the medium, [cm ] A M t I ( x) I e x x t Ie (1) whee: 1 t is the total mean fee path in the medium, [cm] N t t -1 tis the total coss section in the medium, [cm ] A M 3 is the density of the medium [gm/cm ] v 3 N= is the nuclea

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

Review for Midterm-1

Review for Midterm-1 Review fo Midtem-1 Midtem-1! Wednesday Sept. 24th at 6pm Section 1 (the 4:10pm class) exam in BCC N130 (Business College) Section 2 (the 6:00pm class) exam in NR 158 (Natual Resouces) Allowed one sheet

More information

6.641 Electromagnetic Fields, Forces, and Motion Spring 2005

6.641 Electromagnetic Fields, Forces, and Motion Spring 2005 MIT OpenouseWae http://ocw.mit.edu 6.641 Electomagnetic Fields, Foces, and Motion Sping 2005 Fo infomation about citing these mateials o ou Tems of Use, visit: http://ocw.mit.edu/tems. 6.641 Electomagnetic

More information

Research Article EXPERIMENTAL STUDY OF HEAT TRANSFER CHARACTERISTICS OF STAINLESS STEEL FIBROUS FLOW INSULATOR

Research Article EXPERIMENTAL STUDY OF HEAT TRANSFER CHARACTERISTICS OF STAINLESS STEEL FIBROUS FLOW INSULATOR Tansactions of the TSME (16) Vol. 4, No. 2, 148 155 Jounal of seach and Applications in Mechanical Engineeing Copyight 16 by TSME ISSN 2229-2152 pint DOI: 1.14456/jame.16.15 seach Aticle EXPERIMENTAL STUDY

More information

Numerical Integration

Numerical Integration MCEN 473/573 Chapte 0 Numeical Integation Fall, 2006 Textbook, 0.4 and 0.5 Isopaametic Fomula Numeical Integation [] e [ ] T k = h B [ D][ B] e B Jdsdt In pactice, the element stiffness is calculated numeically.

More information

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE CHAPTER 0 ELECTRIC POTENTIAL AND CAPACITANCE ELECTRIC POTENTIAL AND CAPACITANCE 7 0. ELECTRIC POTENTIAL ENERGY Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic

More information

Black Body Radiation and Radiometric Parameters:

Black Body Radiation and Radiometric Parameters: Black Body Radiation and Radiometic Paametes: All mateials absob and emit adiation to some extent. A blackbody is an idealization of how mateials emit and absob adiation. It can be used as a efeence fo

More information

Fundamentals of Heat Transfer Muhammad Rashid Usman

Fundamentals of Heat Transfer Muhammad Rashid Usman Fundamentals of Heat ansfe Muhammad Rashid Usman Institute of Chemical Engineeing and echnology Univesity of the Punjab, ahoe. Figue taen fom: http:heatexchange-design.com0006heat-exchanges-6 Dated: 7-Jan-0

More information

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS DOING PHYIC WITH MTLB COMPUTTIONL OPTIC FOUNDTION OF CLR DIFFRCTION THEORY Ian Coope chool of Physics, Univesity of ydney ian.coope@sydney.edu.au DOWNLOD DIRECTORY FOR MTLB CRIPT View document: Numeical

More information

Electromagnetism Physics 15b

Electromagnetism Physics 15b lectomagnetism Physics 15b Lectue #20 Dielectics lectic Dipoles Pucell 10.1 10.6 What We Did Last Time Plane wave solutions of Maxwell s equations = 0 sin(k ωt) B = B 0 sin(k ωt) ω = kc, 0 = B, 0 ˆk =

More information

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Physics 2A Chapter 10 - Moment of Inertia Fall 2018 Physics Chapte 0 - oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.

More information

Current, Resistance and

Current, Resistance and Cuent, Resistance and Electomotive Foce Chapte 25 Octobe 2, 2012 Octobe 2, 2012 Physics 208 1 Leaning Goals The meaning of electic cuent, and how chages move in a conducto. What is meant by esistivity

More information

Solute Transport In Biological Systems Design of An Artificial Kidney Utilizing Urease in Polymeric Beads. Dialysate. Flow out C(z) U Q,C b UB

Solute Transport In Biological Systems Design of An Artificial Kidney Utilizing Urease in Polymeric Beads. Dialysate. Flow out C(z) U Q,C b UB hapte Solute Tanspot In Biological Systems.14 Design of n tificial Kidney Utilizg Uease Polymeic Beads Fo the teatment of uemia discussed section.11, fesh dialysate is used kidney dialysis to mata a concentation

More information

University Physics (PHY 2326)

University Physics (PHY 2326) Chapte Univesity Physics (PHY 6) Lectue lectostatics lectic field (cont.) Conductos in electostatic euilibium The oscilloscope lectic flux and Gauss s law /6/5 Discuss a techniue intoduced by Kal F. Gauss

More information

An Exact Solution of Navier Stokes Equation

An Exact Solution of Navier Stokes Equation An Exact Solution of Navie Stokes Equation A. Salih Depatment of Aeospace Engineeing Indian Institute of Space Science and Technology, Thiuvananthapuam, Keala, India. July 20 The pincipal difficulty in

More information

Chapter 3 Optical Systems with Annular Pupils

Chapter 3 Optical Systems with Annular Pupils Chapte 3 Optical Systems with Annula Pupils 3 INTRODUCTION In this chapte, we discuss the imaging popeties of a system with an annula pupil in a manne simila to those fo a system with a cicula pupil The

More information

Conservative Averaging Method and its Application for One Heat Conduction Problem

Conservative Averaging Method and its Application for One Heat Conduction Problem Poceedings of the 4th WSEAS Int. Conf. on HEAT TRANSFER THERMAL ENGINEERING and ENVIRONMENT Elounda Geece August - 6 (pp6-) Consevative Aveaging Method and its Application fo One Heat Conduction Poblem

More information

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1 Monday, Mach 5, 019 Page: 1 Q1. Figue 1 shows thee pais of identical conducting sphees that ae to be touched togethe and then sepaated. The initial chages on them befoe the touch ae indicated. Rank the

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is Mon., 3/23 Wed., 3/25 Thus., 3/26 Fi., 3/27 Mon., 3/30 Tues., 3/31 21.4-6 Using Gauss s & nto to Ampee s 21.7-9 Maxwell s, Gauss s, and Ampee s Quiz Ch 21, Lab 9 Ampee s Law (wite up) 22.1-2,10 nto to

More information

Module 05: Gauss s s Law a

Module 05: Gauss s s Law a Module 05: Gauss s s Law a 1 Gauss s Law The fist Maxwell Equation! And a vey useful computational technique to find the electic field E when the souce has enough symmety. 2 Gauss s Law The Idea The total

More information

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0 Ch : 4, 9,, 9,,, 4, 9,, 4, 8 4 (a) Fom the diagam in the textbook, we see that the flux outwad though the hemispheical suface is the same as the flux inwad though the cicula suface base of the hemisphee

More information

COMPARISON OF METHODS FOR SOLVING THE HEAT TRANSFER IN ELECTRICAL MACHINES

COMPARISON OF METHODS FOR SOLVING THE HEAT TRANSFER IN ELECTRICAL MACHINES POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 75 Electical Engineeing 2013 Zbynek MAKKI* Macel JANDA* Ramia DEEB* COMPARISON OF METHODS FOR SOLVING THE HEAT TRANSFER IN ELECTRICAL MACHINES This

More information

2.25 Advanced Fluid Mechanics

2.25 Advanced Fluid Mechanics MIT Depatment of Mechanical Engineeing 2.25 Advanced Fluid Mechanics Poblem 4.27 This poblem is fom Advanced Fluid Mechanics Poblems by A.H. Shapio and A.A. Sonin u(,t) pg Gas Liquid, density Conside a

More information

1 Spherical multipole moments

1 Spherical multipole moments Jackson notes 9 Spheical multipole moments Suppose we have a chage distibution ρ (x) wheeallofthechageiscontained within a spheical egion of adius R, as shown in the diagam. Then thee is no chage in the

More information

Thermal-Fluids I. Chapter 17 Steady heat conduction. Dr. Primal Fernando Ph: (850)

Thermal-Fluids I. Chapter 17 Steady heat conduction. Dr. Primal Fernando Ph: (850) emal-fluids I Capte 7 Steady eat conduction D. Pimal Fenando pimal@eng.fsu.edu P: (850 40-633 Steady eat conduction Hee we conside one dimensional steady eat conduction. We conside eat tansfe in a plane

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

Algebra-based Physics II

Algebra-based Physics II lgebabased Physics II Chapte 19 Electic potential enegy & The Electic potential Why enegy is stoed in an electic field? How to descibe an field fom enegetic point of view? Class Website: Natual way of

More information

PROBLEM SET #3A. A = Ω 2r 2 2 Ω 1r 2 1 r2 2 r2 1

PROBLEM SET #3A. A = Ω 2r 2 2 Ω 1r 2 1 r2 2 r2 1 PROBLEM SET #3A AST242 Figue 1. Two concentic co-axial cylindes each otating at a diffeent angula otation ate. A viscous fluid lies between the two cylindes. 1. Couette Flow A viscous fluid lies in the

More information

PHYS 1444 Section 501 Lecture #7

PHYS 1444 Section 501 Lecture #7 PHYS 1444 Section 51 Lectue #7 Wednesday, Feb. 8, 26 Equi-potential Lines and Sufaces Electic Potential Due to Electic Dipole E detemined fom V Electostatic Potential Enegy of a System of Chages Capacitos

More information

Physics 111. Ch 12: Gravity. Newton s Universal Gravity. R - hat. the equation. = Gm 1 m 2. F g 2 1. ˆr 2 1. Gravity G =

Physics 111. Ch 12: Gravity. Newton s Universal Gravity. R - hat. the equation. = Gm 1 m 2. F g 2 1. ˆr 2 1. Gravity G = ics Announcements day, embe 9, 004 Ch 1: Gavity Univesal Law Potential Enegy Keple s Laws Ch 15: Fluids density hydostatic equilibium Pascal s Pinciple This week s lab will be anothe physics wokshop -

More information

Math 124B February 02, 2012

Math 124B February 02, 2012 Math 24B Febuay 02, 202 Vikto Gigoyan 8 Laplace s equation: popeties We have aleady encounteed Laplace s equation in the context of stationay heat conduction and wave phenomena. Recall that in two spatial

More information

FREE TRANSVERSE VIBRATIONS OF NON-UNIFORM BEAMS

FREE TRANSVERSE VIBRATIONS OF NON-UNIFORM BEAMS Please cite this aticle as: Izabela Zamosa Fee tansvese vibations of non-unifom beams Scientific Reseach of the Institute of Mathematics and Compute Science Volume 9 Issue pages 3-9. The website: http://www.amcm.pcz.pl/

More information

=0, (x, y) Ω (10.1) Depending on the nature of these boundary conditions, forced, natural or mixed type, the elliptic problems are classified as

=0, (x, y) Ω (10.1) Depending on the nature of these boundary conditions, forced, natural or mixed type, the elliptic problems are classified as Chapte 1 Elliptic Equations 1.1 Intoduction The mathematical modeling of steady state o equilibium phenomena geneally esult in to elliptic equations. The best example is the steady diffusion of heat in

More information

Institute of Fundamental Sciences-Mathematics,Massey University, Palmerston North,NZ

Institute of Fundamental Sciences-Mathematics,Massey University, Palmerston North,NZ Poceedings20th NZ Geothemal Wokshop 1998 FLUID FLOW A FLASHING CYCLONE SEPARATOR Institute of Fundamental SciencesMathematics,Massey Univesity, Palmeston Noth,NZ SUMMARY In geothemal steamgatheingsystems

More information

Dymore User s Manual Two- and three dimensional dynamic inflow models

Dymore User s Manual Two- and three dimensional dynamic inflow models Dymoe Use s Manual Two- and thee dimensional dynamic inflow models Contents 1 Two-dimensional finite-state genealized dynamic wake theoy 1 Thee-dimensional finite-state genealized dynamic wake theoy 1

More information

[Griffiths Ch.1-3] 2008/11/18, 10:10am 12:00am, 1. (6%, 7%, 7%) Suppose the potential at the surface of a hollow hemisphere is specified, as shown

[Griffiths Ch.1-3] 2008/11/18, 10:10am 12:00am, 1. (6%, 7%, 7%) Suppose the potential at the surface of a hollow hemisphere is specified, as shown [Giffiths Ch.-] 8//8, :am :am, Useful fomulas V ˆ ˆ V V V = + θ+ φ ˆ and v = ( v ) + (sin θvθ ) + v θ sinθ φ sinθ θ sinθ φ φ. (6%, 7%, 7%) Suppose the potential at the suface of a hollow hemisphee is specified,

More information

Chapter 3: Wave propagation fundamentals: From energy point of view, energy partitioning at interfaces

Chapter 3: Wave propagation fundamentals: From energy point of view, energy partitioning at interfaces Chapte 3: Wave popagation fundamentals: Fom enegy point of view, enegy patitioning at intefaces Befoe pusuing futhe on discussing specific topics in seismic exploation to a vaiety of applications, it is

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineeing 41 Intoductoy Nuclea Engineeing Lectue 16 Nuclea eacto Theoy III Neuton Tanspot 1 One-goup eacto Equation Mono-enegetic neutons (Neuton Balance) DD φφ aa φφ + ss 1 vv vv is neuton speed

More information

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E)

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E) Geneal physics II (10) D. Iyad D. Iyad Chapte : lectic Fields In this chapte we will cove The lectic Field lectic Field Lines -: The lectic Field () lectic field exists in a egion of space suounding a

More information

A dual-reciprocity boundary element method for axisymmetric thermoelastodynamic deformations in functionally graded solids

A dual-reciprocity boundary element method for axisymmetric thermoelastodynamic deformations in functionally graded solids APCOM & ISCM 11-14 th Decembe, 013, Singapoe A dual-ecipocity bounday element method fo axisymmetic themoelastodynamic defomations in functionally gaded solids *W. T. Ang and B. I. Yun Division of Engineeing

More information

Water flows through the voids in a soil which are interconnected. This flow may be called seepage, since the velocities are very small.

Water flows through the voids in a soil which are interconnected. This flow may be called seepage, since the velocities are very small. Wate movement Wate flows though the voids in a soil which ae inteconnected. This flow may be called seepage, since the velocities ae vey small. Wate flows fom a highe enegy to a lowe enegy and behaves

More information

Chapter Sixteen: Electric Charge and Electric Fields

Chapter Sixteen: Electric Charge and Electric Fields Chapte Sixteen: Electic Chage and Electic Fields Key Tems Chage Conducto The fundamental electical popety to which the mutual attactions o epulsions between electons and potons ae attibuted. Any mateial

More information

Molecular dynamics simulation of ultrafast laser ablation of fused silica

Molecular dynamics simulation of ultrafast laser ablation of fused silica IOP Publishing Jounal of Physics: Confeence Seies 59 (27) 1 14 doi:1.188/1742-6596/59/1/22 Eighth Intenational Confeence on Lase Ablation Molecula dynamics simulation of ultafast lase ablation of fused

More information

Question 1: The dipole

Question 1: The dipole Septembe, 08 Conell Univesity, Depatment of Physics PHYS 337, Advance E&M, HW #, due: 9/5/08, :5 AM Question : The dipole Conside a system as discussed in class and shown in Fig.. in Heald & Maion.. Wite

More information

Stellar Structure and Evolution

Stellar Structure and Evolution Stella Stuctue and Evolution Theoetical Stella odels Conside each spheically symmetic shell of adius and thickness d. Basic equations of stella stuctue ae: 1 Hydostatic equilibium π dp dp d G π = G =.

More information

[ ] [ ] 3.3 Given: turning corner radius, r ε = 0 mm lead angle, ψ r = 15 back rake angle, γ p = 5 side rake angle, γ f = 5

[ ] [ ] 3.3 Given: turning corner radius, r ε = 0 mm lead angle, ψ r = 15 back rake angle, γ p = 5 side rake angle, γ f = 5 33 Given: tuning cone adius, ε = 0 mm lead angle, ψ = 5 back ake angle, γ p = 5 side ake angle, γ f = 5 initial wokpiece diamete, D w = 00 mm specific cutting and thust enegy models feed ate, f = 020 mm/ev

More information

3.6 Applied Optimization

3.6 Applied Optimization .6 Applied Optimization Section.6 Notes Page In this section we will be looking at wod poblems whee it asks us to maimize o minimize something. Fo all the poblems in this section you will be taking the

More information

MAGNETIC FIELD AROUND TWO SEPARATED MAGNETIZING COILS

MAGNETIC FIELD AROUND TWO SEPARATED MAGNETIZING COILS The 8 th Intenational Confeence of the Slovenian Society fo Non-Destuctive Testing»pplication of Contempoay Non-Destuctive Testing in Engineeing«Septembe 1-3, 5, Potoož, Slovenia, pp. 17-1 MGNETIC FIELD

More information

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force Potential negy The change U in the potential enegy is defined to equal to the negative of the wok done by a consevative foce duing the shift fom an initial to a final state. U = U U = W F c = F c d Potential

More information

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant.

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant. ANTNNAS Vecto and Scala Potentials Maxwell's quations jωb J + jωd D ρ B (M) (M) (M3) (M4) D ε B Fo a linea, homogeneous, isotopic medium and ε ae contant. Since B, thee exists a vecto A such that B A and

More information

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b.

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b. Solutions. Plum Pudding Model (a) Find the coesponding electostatic potential inside and outside the atom. Fo R The solution can be found by integating twice, 2 V in = ρ 0 ε 0. V in = ρ 0 6ε 0 2 + a 2

More information

1 Similarity Analysis

1 Similarity Analysis ME43A/538A/538B Axisymmetic Tubulent Jet 9 Novembe 28 Similaity Analysis. Intoduction Conside the sketch of an axisymmetic, tubulent jet in Figue. Assume that measuements of the downsteam aveage axial

More information

TheWaveandHelmholtzEquations

TheWaveandHelmholtzEquations TheWaveandHelmholtzEquations Ramani Duaiswami The Univesity of Mayland, College Pak Febuay 3, 2006 Abstact CMSC828D notes (adapted fom mateial witten with Nail Gumeov). Wok in pogess 1 Acoustic Waves 1.1

More information

15 Solving the Laplace equation by Fourier method

15 Solving the Laplace equation by Fourier method 5 Solving the Laplace equation by Fouie method I aleady intoduced two o thee dimensional heat equation, when I deived it, ecall that it taes the fom u t = α 2 u + F, (5.) whee u: [0, ) D R, D R is the

More information

MATH 417 Homework 3 Instructor: D. Cabrera Due June 30. sin θ v x = v r cos θ v θ r. (b) Then use the Cauchy-Riemann equations in polar coordinates

MATH 417 Homework 3 Instructor: D. Cabrera Due June 30. sin θ v x = v r cos θ v θ r. (b) Then use the Cauchy-Riemann equations in polar coordinates MATH 417 Homewok 3 Instucto: D. Cabea Due June 30 1. Let a function f(z) = u + iv be diffeentiable at z 0. (a) Use the Chain Rule and the fomulas x = cosθ and y = to show that u x = u cosθ u θ, v x = v

More information

Magneto-Elastic Analysis of an Annular FGM Plate Based on Classical Plate Theory Using GDQ Method

Magneto-Elastic Analysis of an Annular FGM Plate Based on Classical Plate Theory Using GDQ Method 736 Magneto-Elastic Analysis of an Annula FGM Plate Based on Classical Plate Theoy Using GDQ Method Abstact Using GDQ method, the adial and cicumfeential stesses in an annula FGM plate with a unifom thickness

More information

The Divergence Theorem

The Divergence Theorem 13.8 The ivegence Theoem Back in 13.5 we ewote Geen s Theoem in vecto fom as C F n ds= div F x, y da ( ) whee C is the positively-oiented bounday cuve of the plane egion (in the xy-plane). Notice this

More information

Calculation of Temperature Rise in Dry-type Air-core Reactors Using Strong Coupling of Fluid-Temperature Field

Calculation of Temperature Rise in Dry-type Air-core Reactors Using Strong Coupling of Fluid-Temperature Field Reseach Jounal of Applied Sciences, Engineeing and Technology 5(10: 941-945, 013 ISSN: 040-7459; e-issn: 040-7467 Maxwell Scientific Oganization, 013 Submitted: Septembe 15, 01 Accepted: Octobe 4, 01 Published:

More information

B da = 0. Q E da = ε. E da = E dv

B da = 0. Q E da = ε. E da = E dv lectomagnetic Theo Pof Ruiz, UNC Asheville, doctophs on YouTube Chapte Notes The Maxwell quations in Diffeential Fom 1 The Maxwell quations in Diffeential Fom We will now tansfom the integal fom of the

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Electromagnetism II September 15, 2012 Prof. Alan Guth PROBLEM SET 2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Electromagnetism II September 15, 2012 Prof. Alan Guth PROBLEM SET 2 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.07: Electomagnetism II Septembe 5, 202 Pof. Alan Guth PROBLEM SET 2 DUE DATE: Monday, Septembe 24, 202. Eithe hand it in at the lectue,

More information

Hopefully Helpful Hints for Gauss s Law

Hopefully Helpful Hints for Gauss s Law Hopefully Helpful Hints fo Gauss s Law As befoe, thee ae things you need to know about Gauss s Law. In no paticula ode, they ae: a.) In the context of Gauss s Law, at a diffeential level, the electic flux

More information

PHYS 301 HOMEWORK #10 (Optional HW)

PHYS 301 HOMEWORK #10 (Optional HW) PHYS 301 HOMEWORK #10 (Optional HW) 1. Conside the Legende diffeential equation : 1 - x 2 y'' - 2xy' + m m + 1 y = 0 Make the substitution x = cos q and show the Legende equation tansfoms into d 2 y 2

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Seies UG Examination 2015 16 FLUID DYNAMICS WITH ADVANCED TOPICS MTH-MD59 Time allowed: 3 Hous Attempt QUESTIONS 1 and 2, and THREE othe questions.

More information

The Combined Effect of Chemical reaction, Radiation, MHD on Mixed Convection Heat and Mass Transfer Along a Vertical Moving Surface

The Combined Effect of Chemical reaction, Radiation, MHD on Mixed Convection Heat and Mass Transfer Along a Vertical Moving Surface Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-966 Vol. 5, Issue (Decembe ), pp. 53 53 (Peviously, Vol. 5, Issue, pp. 63 6) Applications and Applied Mathematics: An Intenational Jounal (AAM)

More information

16.1 Permanent magnets

16.1 Permanent magnets Unit 16 Magnetism 161 Pemanent magnets 16 The magnetic foce on moving chage 163 The motion of chaged paticles in a magnetic field 164 The magnetic foce exeted on a cuent-caying wie 165 Cuent loops and

More information

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion AH Mechanics Checklist (Unit ) AH Mechanics Checklist (Unit ) Cicula Motion No. kill Done 1 Know that cicula motion efes to motion in a cicle of constant adius Know that cicula motion is conveniently descibed

More information

4. Electrodynamic fields

4. Electrodynamic fields 4. Electodynamic fields D. Rakhesh Singh Kshetimayum 1 4.1 Intoduction Electodynamics Faaday s law Maxwell s equations Wave equations Lenz s law Integal fom Diffeential fom Phaso fom Bounday conditions

More information

Three dimensional flow analysis in Axial Flow Compressors

Three dimensional flow analysis in Axial Flow Compressors 1 Thee dimensional flow analysis in Axial Flow Compessos 2 The ealie assumption on blade flow theoies that the flow inside the axial flow compesso annulus is two dimensional means that adial movement of

More information

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212 PHYS 1 Look ove Chapte sections 1-8 xamples, 4, 5, PHYS 111 Look ove Chapte 16 sections 7-9 examples 6, 7, 8, 9 Things To Know 1) What is an lectic field. ) How to calculate the electic field fo a point

More information

Falls in the realm of a body force. Newton s law of gravitation is:

Falls in the realm of a body force. Newton s law of gravitation is: GRAVITATION Falls in the ealm of a body foce. Newton s law of avitation is: F GMm = Applies to '' masses M, (between thei centes) and m. is =. diectional distance between the two masses Let ˆ, thus F =

More information

J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS

J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS J. N. E DDY ENEGY PINCIPLES AND VAIATIONAL METHODS IN APPLIED MECHANICS T H I D E DI T IO N JN eddy - 1 MEEN 618: ENEGY AND VAIATIONAL METHODS A EVIEW OF VECTOS AND TENSOS ead: Chapte 2 CONTENTS Physical

More information

Thermodynamic Head Loss in a Channel with Combined Radiation and Convection Heat Transfer

Thermodynamic Head Loss in a Channel with Combined Radiation and Convection Heat Transfer Jounal of Poe and Enegy Engineeing, 04,, 57-63 Published Online Septembe 04 in SciRes. http://.scip.og/jounal/jpee http://dx.doi.og/0.436/jpee.04.9009 hemodynamic Head Loss in a Channel ith Combined Radiation

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electical and Compute Engineeing, Conell Univesity ECE 303: Electomagnetic Fields and Waves Fall 007 Homewok 8 Due on Oct. 19, 007 by 5:00 PM Reading Assignments: i) Review the lectue notes.

More information

Section 11. Timescales Radiation transport in stars

Section 11. Timescales Radiation transport in stars Section 11 Timescales 11.1 Radiation tanspot in stas Deep inside stas the adiation eld is vey close to black body. Fo a black-body distibution the photon numbe density at tempeatue T is given by n = 2

More information