Concerns of the Psychophysicist. Three methods for measuring perception. Yes/no method of constant stimuli. Detection / discrimination.

Size: px
Start display at page:

Download "Concerns of the Psychophysicist. Three methods for measuring perception. Yes/no method of constant stimuli. Detection / discrimination."

Transcription

1 Three methods for measuring perception Concerns of the Psychophysicist. Magnitude estimation 2. Matching 3. Detection/discrimination Bias/ Attentiveness Strategy/Artifactual Cues History of stimulation Who controls stimulation Detection / discrimination Yes/no method of constant stimuli In a detection experiment, the subject's task is to detect small differences in the stimuli. Procedures for detection/discrimination experiments Method of adjustment Method of limits Yes-o/method of constant stimuli Forced choice Percent yes responses Tone intensity Do these data indicate that Laurie s threshold is lower than Chris s threshold? Forced Choice Present signal on some trials, no signal on other trials (catch trials). Subject is forced to respond on every trial either Yes the thing was presented or o it wasn t. If they're not sure then they must guess. Advantage: With the forced-choice method, we have both types of trials so we can count both the number of hits and the number of false alarms to get an estimate of discriminability independent on the criterion. Versions: Yes-no, 2AFC, 2IFC

2 Forced choice: four possible outcomes yes no Information acquisition yes no present Hit Miss present Hit Miss absent False alarm Correct reject absent False alarm Correct reject shift yes no Information and criterion Two components to the decision-making: signal strength and criterion. present Hit Miss Signal strength: Acquiring more information is good. The effect of information is to increase the likelihood of getting either a hit or a correct rejection, while reducing the likelihood of an outcome in the two error boxes. absent False alarm Correct reject : Different people may have different bias/ criterion. Some may may choose to err toward yes decisions. Others may choose to be more conservative and say no more often. : probability of occurrence curves The criterion

3 Applications of SDT: Examples Vision Detection (something vs. nothing) Discrimination (lower vs greater level of: intensity, contrast, depth, slant, size, frequency, loudness,... Memory (internal response = trace strength = familiarity) eurometric function/discrimination by neurons (internal response = spike count) Hits (response yes on signal trial) Correct rejects (response no on no-signal trial) Misses (response no on signal trial) False Alarms (response yes on no-signal trial) shift

4 Discriminability (d-prime, d ) Discriminability (d-prime, d ) d-prime is the distance between the and curves d d = separation spread = signal noise Receiver Operating Characteristic (ROC) SDT: Gaussian Case z[p(cr)] z[p(h)] 0 c d x d = z[p(h)] + z[p(cr)] = z[p(h)] " z[p(fa)] c = z[p(cr)] = p(x = c S + ) p(x = c ) = e"(c " d )2 / 2 e "c2 / 2 G(x;µ,) = 2" e(x µ) 2 / 2 2 ROC: Gaussian Case Optimal Payoff Matrix Response Yes o c c 2 Yes V S + o V S + z(p(h)) Stimulus V Yes V o z(p(fa))

5 Optimal Optimal Response Yes o E(Yes x) = V Yes S + p(s + x) +V Yes p( x) Stimulus Yes V S + V Yes o V S + V o E(o x) = V o S + p(s + x) +V o p( x) Say yes if E(Yes x) E(o x) E(Yes x) = V Yes S + p(s + x) +V Yes p( x) E(o x) = V o S + p(s + x) +V o p( x) Say yes if p(s + x) p( x) V o Yes "V = V Yes o S + "V S + V(Correct ) V(Correct S + ) Say yes if E(Yes x) E(o x) Aside: Bayes Rule Apply Bayes Rule A A & B B Posterior Likelihood Prior p(x S + )p(s + ) p(s + x) = p(x) uisance normalizing term p(a B) = probability of A given that B is asserted to be true = p(a & B) = p(b)p(a B) = p(a)p(b A) p(a B) = p(b A)p(A) p(b) p(a & B) p(b) Posterior odds p( x) = p(s + x) p( x) p(x )p(), hence p(x) = " Likelihood ratio p(x S + ) p(x ) & " p(s + ) p() & Prior odds Optimal Likelihood Ratio Say yes if i.e., if p(s + x) p( x) p(x S + ) p(x ) V(Correct ) V(Correct S + ) p() V(Correct ) p(s + ) V(Correct S + ) = " Example, if equal priors and equal payoffs, say yes if the likelihood ratio is greater than one: Optimal binary decisions are a function of the likelihood ratio (it is a sufficient statistic, i.e., no more information is needed or useful). p(x ) LR p(x ) log(p(x )) log(lr) log(p(x )) x x

6 Gaussian Unequal Variance Gaussian Unequal Variance LR c c 2 p(x ) SDT (suboptimal): Say yes if x c 2 p(x ) Optimal strategy: Say yes if x c 2 or x " c x Gaussian Unequal Variance Poisson Distribution Counting distribution for processes consisting of events that occur randomly at a fixed rate events/sec. c The time until the next event occurs follows an exponential distribution: p(t) = e "t Since is the rate, then over a period of " seconds, the expected count is ". The distribution of event count is Poisson: p(k) = e" (") k k p(k) = e" (") k k 0.4 " = 0.2 Poisson Distribution Probability Poisson Distribution SDT p(k) = e" (") k k " = 3 " = Response LR(k) " & S + ( ' " noise signal k

7 2-IFC and SDT 2-IFC and SDT " Say Interval 2 d 2 Say Interval & 0 d P(Correct) = P(( d,) > (0,)) = P(( d,) " (0,) > 0) = P(( d, 2) > 0) = P(( d / 2,) > 0) = P((0,) < d / 2) d " x2 d " x Where (µ,) means a random variable with mean µ and SD. " " ote: the criterion is d / 2 away from each peak. 2-IFC and the Yes-o ROC Measuring thresholds Low intensity High intensity Hits P( c) 0 0 False Alarms P(Correct in 2-IFC) = " P(S = c)p( c)dc = Area under the ROC dp(s = c) = P(S = c)dc Proportion Correct 0 Signal intensity Signal Strength d 3 2 Signal intensity Assumptions: x signal strength, " constant Aside: 2-IFC and Estimation of Threshold General Gaussian Classification Frequently one wishes to estimate the signal strength corresponding to a fixed, arbitrary value of d, defined as threshold signal strength. For this, one can measure performance at multiple signal strengths, estimate d for each, fit a function (as in the previous slide) and interpolate to estimate threshold. Staircase methods are often used as a more timeefficient method. The signal strength tested on each trial is based on the data collected so far, trying to concentrate testing at levels that are most informative. Methods: -up/-down (for PSE: point of subjective equality), -up/2-down, etc., QUEST, APE, PEST,... " & Say Class A d " x2 " " Say Class B d " x

8 General Gaussian Classification General Gaussian Classification The d-dimensional Gaussian distribution: p( x) = exp (2) d / 2 " / 2 & 2 ( x µ) T " ( x µ) ' ) ( In 2 dimensions: Mahalanobis distance p( x) = exp 2 " / 2 & 2 ( x µ) T " ( x µ) ' ) ( " = the covariance matrix " = 2 * x * xy ' & ) 2 &* xy * y ( ) µ y µ x General Gaussian Classification General Gaussian Classification Say Category A if exp LR( (2) d / 2 / 2 " 2 ( x µ A ) T " A ( x ' & µ A )) A ( x) = exp (2) d / 2 / 2 " 2 ( x µ B ) T " B ( x > ' & µ B )) B ( Take log and simplify. Say Category A if ( x µ B ) T " B ( x µ B ) ( x µ A ) T " A ( x µ A ) = MD( x, µ B ) MD( x, µ A ) > C which is a quadratic in x. General Gaussian Classification Application: Absolute Threshold Question: What is the minimal number of photons required for a stimulus to be visible under the best of viewing conditions? Hecht, Schlaer & Pirenne (942)

9 Sensitivity by Eccentricity Spatial Summation Spatial Summation Temporal Summation Choice of Wavelength The Data

10 Stimulus Variability (Poisson) Model with no Subject Variability Model with no Subject Variability Model with no Subject Variability Model with Subject Variability Application: Ideal Observer Question: What is the minimal contrast required to carry out various detection and discrimination tasks? Geisler (989)

11 Sequential Ideal Observer Point-Spread Function Idealized Receptor Lattice Poisson Statistics Ideal Discriminator Example: 2-Point Resolution Given two known possible targets A and B with expected photon absorbtions ai and bi and actual photon catches Zi in receptor i, respectively, calculate the likelihood ratio p(zi ai)/p(zi bi), take the log, do some algebra and discover the following quantity is monotonic in likelihood ratio: ( Z = Z i ln ai / bi i ) Decisions are thus based on an ideal receptive field.

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing Linear recurrent networks Simpler, much more amenable to analytic treatment E.g. by choosing + ( + ) = Firing rates can be negative Approximates dynamics around fixed point Approximation often reasonable

More information

Encoding or decoding

Encoding or decoding Encoding or decoding Decoding How well can we learn what the stimulus is by looking at the neural responses? We will discuss two approaches: devise and evaluate explicit algorithms for extracting a stimulus

More information

Bayesian Decision Theory

Bayesian Decision Theory Introduction to Pattern Recognition [ Part 4 ] Mahdi Vasighi Remarks It is quite common to assume that the data in each class are adequately described by a Gaussian distribution. Bayesian classifier is

More information

!) + log(t) # n i. The last two terms on the right hand side (RHS) are clearly independent of θ and can be

!) + log(t) # n i. The last two terms on the right hand side (RHS) are clearly independent of θ and can be Supplementary Materials General case: computing log likelihood We first describe the general case of computing the log likelihood of a sensory parameter θ that is encoded by the activity of neurons. Each

More information

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout :. The Multivariate Gaussian & Decision Boundaries..15.1.5 1 8 6 6 8 1 Mark Gales mjfg@eng.cam.ac.uk Lent

More information

Bayesian Decision Theory

Bayesian Decision Theory Bayesian Decision Theory Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2017 CS 551, Fall 2017 c 2017, Selim Aksoy (Bilkent University) 1 / 46 Bayesian

More information

12/2/15. G Perception. Bayesian Decision Theory. Laurence T. Maloney. Perceptual Tasks. Testing hypotheses. Estimation

12/2/15. G Perception. Bayesian Decision Theory. Laurence T. Maloney. Perceptual Tasks. Testing hypotheses. Estimation G89.2223 Perception Bayesian Decision Theory Laurence T. Maloney Perceptual Tasks Testing hypotheses signal detection theory psychometric function Estimation previous lecture Selection of actions this

More information

Signal detection theory

Signal detection theory Signal detection theory z p[r -] p[r +] - + Role of priors: Find z by maximizing P[correct] = p[+] b(z) + p[-](1 a(z)) Is there a better test to use than r? z p[r -] p[r +] - + The optimal

More information

Mathematical Tools for Neuroscience (NEU 314) Princeton University, Spring 2016 Jonathan Pillow. Homework 8: Logistic Regression & Information Theory

Mathematical Tools for Neuroscience (NEU 314) Princeton University, Spring 2016 Jonathan Pillow. Homework 8: Logistic Regression & Information Theory Mathematical Tools for Neuroscience (NEU 34) Princeton University, Spring 206 Jonathan Pillow Homework 8: Logistic Regression & Information Theory Due: Tuesday, April 26, 9:59am Optimization Toolbox One

More information

Supplementary Figure 1. Characterization of the single-photon quantum light source based on spontaneous parametric down-conversion (SPDC).

Supplementary Figure 1. Characterization of the single-photon quantum light source based on spontaneous parametric down-conversion (SPDC). .2 Classical light source.8 g (2) ().6.4.2 EMCCD SPAD 2 3.2.4.6.8..2.4.6.8.2 Mean number of photon pairs per pump pulse 4 5 6 7 8 9 2 3 4 Supplementary Figure. Characterization of the single-photon quantum

More information

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet.

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. CS 189 Spring 013 Introduction to Machine Learning Final You have 3 hours for the exam. The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. Please

More information

Bayes Decision Theory

Bayes Decision Theory Bayes Decision Theory Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr 1 / 16

More information

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30 Problem Set 2 MAS 622J/1.126J: Pattern Recognition and Analysis Due: 5:00 p.m. on September 30 [Note: All instructions to plot data or write a program should be carried out using Matlab. In order to maintain

More information

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017

The Bayesian Brain. Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester. May 11, 2017 The Bayesian Brain Robert Jacobs Department of Brain & Cognitive Sciences University of Rochester May 11, 2017 Bayesian Brain How do neurons represent the states of the world? How do neurons represent

More information

Machine Learning Linear Classification. Prof. Matteo Matteucci

Machine Learning Linear Classification. Prof. Matteo Matteucci Machine Learning Linear Classification Prof. Matteo Matteucci Recall from the first lecture 2 X R p Regression Y R Continuous Output X R p Y {Ω 0, Ω 1,, Ω K } Classification Discrete Output X R p Y (X)

More information

Advanced Herd Management Probabilities and distributions

Advanced Herd Management Probabilities and distributions Advanced Herd Management Probabilities and distributions Anders Ringgaard Kristensen Slide 1 Outline Probabilities Conditional probabilities Bayes theorem Distributions Discrete Continuous Distribution

More information

Probability Theory for Machine Learning. Chris Cremer September 2015

Probability Theory for Machine Learning. Chris Cremer September 2015 Probability Theory for Machine Learning Chris Cremer September 2015 Outline Motivation Probability Definitions and Rules Probability Distributions MLE for Gaussian Parameter Estimation MLE and Least Squares

More information

p(x ω i 0.4 ω 2 ω

p(x ω i 0.4 ω 2 ω p(x ω i ).4 ω.3.. 9 3 4 5 x FIGURE.. Hypothetical class-conditional probability density functions show the probability density of measuring a particular feature value x given the pattern is in category

More information

COM336: Neural Computing

COM336: Neural Computing COM336: Neural Computing http://www.dcs.shef.ac.uk/ sjr/com336/ Lecture 2: Density Estimation Steve Renals Department of Computer Science University of Sheffield Sheffield S1 4DP UK email: s.renals@dcs.shef.ac.uk

More information

Minimum Error-Rate Discriminant

Minimum Error-Rate Discriminant Discriminants Minimum Error-Rate Discriminant In the case of zero-one loss function, the Bayes Discriminant can be further simplified: g i (x) =P (ω i x). (29) J. Corso (SUNY at Buffalo) Bayesian Decision

More information

Bayes Theorem. Jan Kracík. Department of Applied Mathematics FEECS, VŠB - TU Ostrava

Bayes Theorem. Jan Kracík. Department of Applied Mathematics FEECS, VŠB - TU Ostrava Jan Kracík Department of Applied Mathematics FEECS, VŠB - TU Ostrava Introduction Bayes theorem fundamental theorem in probability theory named after reverend Thomas Bayes (1701 1761) discovered in Bayes

More information

Exercise Sheet 4: Covariance and Correlation, Bayes theorem, and Linear discriminant analysis

Exercise Sheet 4: Covariance and Correlation, Bayes theorem, and Linear discriminant analysis Exercise Sheet 4: Covariance and Correlation, Bayes theorem, and Linear discriminant analysis Younesse Kaddar. Covariance and Correlation Assume that we have recorded two neurons in the two-alternative-forced

More information

Bayesian probability theory and generative models

Bayesian probability theory and generative models Bayesian probability theory and generative models Bruno A. Olshausen November 8, 2006 Abstract Bayesian probability theory provides a mathematical framework for peforming inference, or reasoning, using

More information

Probability Density Functions

Probability Density Functions Statistical Methods in Particle Physics / WS 13 Lecture II Probability Density Functions Niklaus Berger Physics Institute, University of Heidelberg Recap of Lecture I: Kolmogorov Axioms Ingredients: Set

More information

BASIC VISUAL SCIENCE CORE

BASIC VISUAL SCIENCE CORE BASIC VISUAL SCIENCE CORE Absolute and Increment Thresholds Ronald S. Harwerth Fall, 2016 1. Psychophysics of Vision 2. Light and Dark Adaptation Michael Kalloniatis and Charles Luu 1 The Neuron Doctrine

More information

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I SYDE 372 Introduction to Pattern Recognition Probability Measures for Classification: Part I Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 Why use probability

More information

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation.

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. CS 189 Spring 2015 Introduction to Machine Learning Midterm You have 80 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. No calculators or electronic items.

More information

Detection theory. H 0 : x[n] = w[n]

Detection theory. H 0 : x[n] = w[n] Detection Theory Detection theory A the last topic of the course, we will briefly consider detection theory. The methods are based on estimation theory and attempt to answer questions such as Is a signal

More information

Bayesian Inference. Will Penny. 24th February Bayesian Inference. Will Penny. Bayesian Inference. References

Bayesian Inference. Will Penny. 24th February Bayesian Inference. Will Penny. Bayesian Inference. References 24th February 2011 Given probabilities p(a), p(b), and the joint probability p(a, B), we can write the conditional probabilities p(b A) = p(a B) = p(a, B) p(a) p(a, B) p(b) Eliminating p(a, B) gives p(b

More information

Stephen Scott.

Stephen Scott. 1 / 35 (Adapted from Ethem Alpaydin and Tom Mitchell) sscott@cse.unl.edu In Homework 1, you are (supposedly) 1 Choosing a data set 2 Extracting a test set of size > 30 3 Building a tree on the training

More information

Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z).

Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z). Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z). For example P(X.04) =.8508. For z < 0 subtract the value from,

More information

Generative classifiers: The Gaussian classifier. Ata Kaban School of Computer Science University of Birmingham

Generative classifiers: The Gaussian classifier. Ata Kaban School of Computer Science University of Birmingham Generative classifiers: The Gaussian classifier Ata Kaban School of Computer Science University of Birmingham Outline We have already seen how Bayes rule can be turned into a classifier In all our examples

More information

Lecture 16. Lectures 1-15 Review

Lecture 16. Lectures 1-15 Review 18.440: Lecture 16 Lectures 1-15 Review Scott Sheffield MIT 1 Outline Counting tricks and basic principles of probability Discrete random variables 2 Outline Counting tricks and basic principles of probability

More information

PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH

PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH The First Step: SAMPLE SIZE DETERMINATION THE ULTIMATE GOAL The most important, ultimate step of any of clinical research is to do draw inferences;

More information

Bayesian Decision Theory Lecture 2

Bayesian Decision Theory Lecture 2 Bayesian Decision Theory Lecture 2 Jason Corso SUNY at Buffalo 14 January 2009 J. Corso (SUNY at Buffalo) Bayesian Decision Theory Lecture 2 14 January 2009 1 / 58 Overview and Plan Covering Chapter 2

More information

3 Neural Decoding. 3.1 Encoding and Decoding. (r 1, r 2,..., r N ) for N neurons is a list of spike-count firing rates, although,

3 Neural Decoding. 3.1 Encoding and Decoding. (r 1, r 2,..., r N ) for N neurons is a list of spike-count firing rates, although, 3 Neural Decoding 3.1 Encoding and Decoding In chapters 1 and 2, we considered the problem of predicting neural responses to known stimuli. The nervous system faces the reverse problem, determining what

More information

Introduction to Bayesian Learning. Machine Learning Fall 2018

Introduction to Bayesian Learning. Machine Learning Fall 2018 Introduction to Bayesian Learning Machine Learning Fall 2018 1 What we have seen so far What does it mean to learn? Mistake-driven learning Learning by counting (and bounding) number of mistakes PAC learnability

More information

Supplemental Data: Appendix

Supplemental Data: Appendix Supplemental Data: Appendix A Demonstration of model identifiability A.1 Identifiability of of 2-ADC model In this section, we demonstrate that there is a one-to-one mapping from the set of parameters

More information

Population Coding. Maneesh Sahani Gatsby Computational Neuroscience Unit University College London

Population Coding. Maneesh Sahani Gatsby Computational Neuroscience Unit University College London Population Coding Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit University College London Term 1, Autumn 2010 Coding so far... Time-series for both spikes and stimuli Empirical

More information

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Probabilistic classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Topics Probabilistic approach Bayes decision theory Generative models Gaussian Bayes classifier

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 1

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 1 CS434a/541a: Pattern Recognition Prof. Olga Veksler Lecture 1 1 Outline of the lecture Syllabus Introduction to Pattern Recognition Review of Probability/Statistics 2 Syllabus Prerequisite Analysis of

More information

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1)

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1) HW 1 due today Parameter Estimation Biometrics CSE 190 Lecture 7 Today s lecture was on the blackboard. These slides are an alternative presentation of the material. CSE190, Winter10 CSE190, Winter10 Chapter

More information

44 CHAPTER 2. BAYESIAN DECISION THEORY

44 CHAPTER 2. BAYESIAN DECISION THEORY 44 CHAPTER 2. BAYESIAN DECISION THEORY Problems Section 2.1 1. In the two-category case, under the Bayes decision rule the conditional error is given by Eq. 7. Even if the posterior densities are continuous,

More information

Lecture 11. Probability Theory: an Overveiw

Lecture 11. Probability Theory: an Overveiw Math 408 - Mathematical Statistics Lecture 11. Probability Theory: an Overveiw February 11, 2013 Konstantin Zuev (USC) Math 408, Lecture 11 February 11, 2013 1 / 24 The starting point in developing the

More information

Intro to Probability. Andrei Barbu

Intro to Probability. Andrei Barbu Intro to Probability Andrei Barbu Some problems Some problems A means to capture uncertainty Some problems A means to capture uncertainty You have data from two sources, are they different? Some problems

More information

1 Probabilities. 1.1 Basics 1 PROBABILITIES

1 Probabilities. 1.1 Basics 1 PROBABILITIES 1 PROBABILITIES 1 Probabilities Probability is a tricky word usually meaning the likelyhood of something occuring or how frequent something is. Obviously, if something happens frequently, then its probability

More information

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu Logistic Regression Review 10-601 Fall 2012 Recitation September 25, 2012 TA: Selen Uguroglu!1 Outline Decision Theory Logistic regression Goal Loss function Inference Gradient Descent!2 Training Data

More information

Pattern Recognition. Parameter Estimation of Probability Density Functions

Pattern Recognition. Parameter Estimation of Probability Density Functions Pattern Recognition Parameter Estimation of Probability Density Functions Classification Problem (Review) The classification problem is to assign an arbitrary feature vector x F to one of c classes. The

More information

Exam 3, Math Fall 2016 October 19, 2016

Exam 3, Math Fall 2016 October 19, 2016 Exam 3, Math 500- Fall 06 October 9, 06 This is a 50-minute exam. You may use your textbook, as well as a calculator, but your work must be completely yours. The exam is made of 5 questions in 5 pages,

More information

Probability. Paul Schrimpf. January 23, Definitions 2. 2 Properties 3

Probability. Paul Schrimpf. January 23, Definitions 2. 2 Properties 3 Probability Paul Schrimpf January 23, 2018 Contents 1 Definitions 2 2 Properties 3 3 Random variables 4 3.1 Discrete........................................... 4 3.2 Continuous.........................................

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 524 Detection and Estimation Theory Joseph A. O Sullivan Samuel C. Sachs Professor Electronic Systems and Signals Research Laboratory Electrical and Systems Engineering Washington University 2 Urbauer

More information

Signal Detection Theory With Finite Mixture Distributions: Theoretical Developments With Applications to Recognition Memory

Signal Detection Theory With Finite Mixture Distributions: Theoretical Developments With Applications to Recognition Memory Psychological Review Copyright 2002 by the American Psychological Association, Inc. 2002, Vol. 109, No. 4, 710 721 0033-295X/02/$5.00 DOI: 10.1037//0033-295X.109.4.710 Signal Detection Theory With Finite

More information

Linear Classification: Probabilistic Generative Models

Linear Classification: Probabilistic Generative Models Linear Classification: Probabilistic Generative Models Sargur N. University at Buffalo, State University of New York USA 1 Linear Classification using Probabilistic Generative Models Topics 1. Overview

More information

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary ECE 830 Spring 207 Instructor: R. Willett Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics Executive summary In the last lecture we saw that the likelihood

More information

Statistical Methods for Astronomy

Statistical Methods for Astronomy Statistical Methods for Astronomy Probability (Lecture 1) Statistics (Lecture 2) Why do we need statistics? Useful Statistics Definitions Error Analysis Probability distributions Error Propagation Binomial

More information

Detection theory 101 ELEC-E5410 Signal Processing for Communications

Detection theory 101 ELEC-E5410 Signal Processing for Communications Detection theory 101 ELEC-E5410 Signal Processing for Communications Binary hypothesis testing Null hypothesis H 0 : e.g. noise only Alternative hypothesis H 1 : signal + noise p(x;h 0 ) γ p(x;h 1 ) Trade-off

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 524 Detection and Estimation Theory Joseph A. O Sullivan Samuel C. Sachs Professor Electronic Systems and Signals Research Laboratory Electrical and Systems Engineering Washington University 2 Urbauer

More information

p(x ω i 0.4 ω 2 ω

p(x ω i 0.4 ω 2 ω p( ω i ). ω.3.. 9 3 FIGURE.. Hypothetical class-conditional probability density functions show the probability density of measuring a particular feature value given the pattern is in category ω i.if represents

More information

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Topics Discriminant functions Logistic regression Perceptron Generative models Generative vs. discriminative

More information

2. What are the tradeoffs among different measures of error (e.g. probability of false alarm, probability of miss, etc.)?

2. What are the tradeoffs among different measures of error (e.g. probability of false alarm, probability of miss, etc.)? ECE 830 / CS 76 Spring 06 Instructors: R. Willett & R. Nowak Lecture 3: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics Executive summary In the last lecture we

More information

Recipes for the Linear Analysis of EEG and applications

Recipes for the Linear Analysis of EEG and applications Recipes for the Linear Analysis of EEG and applications Paul Sajda Department of Biomedical Engineering Columbia University Can we read the brain non-invasively and in real-time? decoder 1001110 if YES

More information

{ p if x = 1 1 p if x = 0

{ p if x = 1 1 p if x = 0 Discrete random variables Probability mass function Given a discrete random variable X taking values in X = {v 1,..., v m }, its probability mass function P : X [0, 1] is defined as: P (v i ) = Pr[X =

More information

Dept. of Linguistics, Indiana University Fall 2015

Dept. of Linguistics, Indiana University Fall 2015 L645 Dept. of Linguistics, Indiana University Fall 2015 1 / 34 To start out the course, we need to know something about statistics and This is only an introduction; for a fuller understanding, you would

More information

Machine Learning, Midterm Exam: Spring 2009 SOLUTION

Machine Learning, Midterm Exam: Spring 2009 SOLUTION 10-601 Machine Learning, Midterm Exam: Spring 2009 SOLUTION March 4, 2009 Please put your name at the top of the table below. If you need more room to work out your answer to a question, use the back of

More information

Chapter 9: The Perceptron

Chapter 9: The Perceptron Chapter 9: The Perceptron 9.1 INTRODUCTION At this point in the book, we have completed all of the exercises that we are going to do with the James program. These exercises have shown that distributed

More information

Distribusi Binomial, Poisson, dan Hipergeometrik

Distribusi Binomial, Poisson, dan Hipergeometrik Distribusi Binomial, Poisson, dan Hipergeometrik CHAPTER TOPICS The Probability of a Discrete Random Variable Covariance and Its Applications in Finance Binomial Distribution Poisson Distribution Hypergeometric

More information

Neural Decoding. Chapter Encoding and Decoding

Neural Decoding. Chapter Encoding and Decoding Chapter 3 Neural Decoding 3.1 Encoding and Decoding In chapters 1 and 2, we considered the problem of predicting neural responses to known stimuli. The nervous system faces the reverse problem, determining

More information

1 Probabilities. 1.1 Basics 1 PROBABILITIES

1 Probabilities. 1.1 Basics 1 PROBABILITIES 1 PROBABILITIES 1 Probabilities Probability is a tricky word usually meaning the likelyhood of something occuring or how frequent something is. Obviously, if something happens frequently, then its probability

More information

Lecture 01: Introduction

Lecture 01: Introduction Lecture 01: Introduction Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South Carolina Lecture 01: Introduction

More information

Error Rates. Error vs Threshold. ROC Curve. Biometrics: A Pattern Recognition System. Pattern classification. Biometrics CSE 190 Lecture 3

Error Rates. Error vs Threshold. ROC Curve. Biometrics: A Pattern Recognition System. Pattern classification. Biometrics CSE 190 Lecture 3 Biometrics: A Pattern Recognition System Yes/No Pattern classification Biometrics CSE 190 Lecture 3 Authentication False accept rate (FAR): Proportion of imposters accepted False reject rate (FRR): Proportion

More information

Decision making and problem solving Lecture 1. Review of basic probability Monte Carlo simulation

Decision making and problem solving Lecture 1. Review of basic probability Monte Carlo simulation Decision making and problem solving Lecture 1 Review of basic probability Monte Carlo simulation Why probabilities? Most decisions involve uncertainties Probability theory provides a rigorous framework

More information

CME 106: Review Probability theory

CME 106: Review Probability theory : Probability theory Sven Schmit April 3, 2015 1 Overview In the first half of the course, we covered topics from probability theory. The difference between statistics and probability theory is the following:

More information

LDA, QDA, Naive Bayes

LDA, QDA, Naive Bayes LDA, QDA, Naive Bayes Generative Classification Models Marek Petrik 2/16/2017 Last Class Logistic Regression Maximum Likelihood Principle Logistic Regression Predict probability of a class: p(x) Example:

More information

Data Modeling & Analysis Techniques. Probability & Statistics. Manfred Huber

Data Modeling & Analysis Techniques. Probability & Statistics. Manfred Huber Data Modeling & Analysis Techniques Probability & Statistics Manfred Huber 2017 1 Probability and Statistics Probability and statistics are often used interchangeably but are different, related fields

More information

Pattern Classification

Pattern Classification Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors

More information

Multivariate statistical methods and data mining in particle physics

Multivariate statistical methods and data mining in particle physics Multivariate statistical methods and data mining in particle physics RHUL Physics www.pp.rhul.ac.uk/~cowan Academic Training Lectures CERN 16 19 June, 2008 1 Outline Statement of the problem Some general

More information

DETECTION theory deals primarily with techniques for

DETECTION theory deals primarily with techniques for ADVANCED SIGNAL PROCESSING SE Optimum Detection of Deterministic and Random Signals Stefan Tertinek Graz University of Technology turtle@sbox.tugraz.at Abstract This paper introduces various methods for

More information

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30 Problem Set MAS 6J/1.16J: Pattern Recognition and Analysis Due: 5:00 p.m. on September 30 [Note: All instructions to plot data or write a program should be carried out using Matlab. In order to maintain

More information

Machine Learning Lecture 5

Machine Learning Lecture 5 Machine Learning Lecture 5 Linear Discriminant Functions 26.10.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Fundamentals Bayes Decision Theory

More information

UNIT-2: MULTIPLE RANDOM VARIABLES & OPERATIONS

UNIT-2: MULTIPLE RANDOM VARIABLES & OPERATIONS UNIT-2: MULTIPLE RANDOM VARIABLES & OPERATIONS In many practical situations, multiple random variables are required for analysis than a single random variable. The analysis of two random variables especially

More information

Review of Basic Probability

Review of Basic Probability Review of Basic Probability Erik G. Learned-Miller Department of Computer Science University of Massachusetts, Amherst Amherst, MA 01003 September 16, 2009 Abstract This document reviews basic discrete

More information

CSE555: Introduction to Pattern Recognition Midterm Exam Solution (100 points, Closed book/notes)

CSE555: Introduction to Pattern Recognition Midterm Exam Solution (100 points, Closed book/notes) CSE555: Introduction to Pattern Recognition Midterm Exam Solution (00 points, Closed book/notes) There are 5 questions in this exam. The last page is the Appendix that contains some useful formulas.. (5pts)

More information

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 2: Multivariate Gaussians

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 2: Multivariate Gaussians Engineering Part IIB: Module F Statistical Pattern Processing University of Cambridge Engineering Part IIB Module F: Statistical Pattern Processing Handout : Multivariate Gaussians. Generative Model Decision

More information

6.867 Machine Learning

6.867 Machine Learning 6.867 Machine Learning Problem Set 2 Due date: Wednesday October 6 Please address all questions and comments about this problem set to 6867-staff@csail.mit.edu. You will need to use MATLAB for some of

More information

Statistics for Managers Using Microsoft Excel (3 rd Edition)

Statistics for Managers Using Microsoft Excel (3 rd Edition) Statistics for Managers Using Microsoft Excel (3 rd Edition) Chapter 4 Basic Probability and Discrete Probability Distributions 2002 Prentice-Hall, Inc. Chap 4-1 Chapter Topics Basic probability concepts

More information

Single Maths B: Introduction to Probability

Single Maths B: Introduction to Probability Single Maths B: Introduction to Probability Overview Lecturer Email Office Homework Webpage Dr Jonathan Cumming j.a.cumming@durham.ac.uk CM233 None! http://maths.dur.ac.uk/stats/people/jac/singleb/ 1 Introduction

More information

Probability and Probability Distributions. Dr. Mohammed Alahmed

Probability and Probability Distributions. Dr. Mohammed Alahmed Probability and Probability Distributions 1 Probability and Probability Distributions Usually we want to do more with data than just describing them! We might want to test certain specific inferences about

More information

ECLT 5810 Linear Regression and Logistic Regression for Classification. Prof. Wai Lam

ECLT 5810 Linear Regression and Logistic Regression for Classification. Prof. Wai Lam ECLT 5810 Linear Regression and Logistic Regression for Classification Prof. Wai Lam Linear Regression Models Least Squares Input vectors is an attribute / feature / predictor (independent variable) The

More information

AST 418/518 Instrumentation and Statistics

AST 418/518 Instrumentation and Statistics AST 418/518 Instrumentation and Statistics Class Website: http://ircamera.as.arizona.edu/astr_518 Class Texts: Practical Statistics for Astronomers, J.V. Wall, and C.R. Jenkins Measuring the Universe,

More information

The Diffusion Model of Speeded Choice, from a Rational Perspective

The Diffusion Model of Speeded Choice, from a Rational Perspective The Diffusion Model of Speeded Choice, from a Rational Perspective Matt Jones, University of Colorado August 7, 017 1 Binary Decision Tasks This chapter considers tasks in which an experimental subject

More information

Computational Genomics

Computational Genomics Computational Genomics http://www.cs.cmu.edu/~02710 Introduction to probability, statistics and algorithms (brief) intro to probability Basic notations Random variable - referring to an element / event

More information

Sociology 6Z03 Review II

Sociology 6Z03 Review II Sociology 6Z03 Review II John Fox McMaster University Fall 2016 John Fox (McMaster University) Sociology 6Z03 Review II Fall 2016 1 / 35 Outline: Review II Probability Part I Sampling Distributions Probability

More information

Exercise 1: Basics of probability calculus

Exercise 1: Basics of probability calculus : Basics of probability calculus Stig-Arne Grönroos Department of Signal Processing and Acoustics Aalto University, School of Electrical Engineering stig-arne.gronroos@aalto.fi [21.01.2016] Ex 1.1: Conditional

More information

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events LECTURE 1 1 Introduction The first part of our adventure is a highly selective review of probability theory, focusing especially on things that are most useful in statistics. 1.1 Sample spaces and events

More information

Math Review Sheet, Fall 2008

Math Review Sheet, Fall 2008 1 Descriptive Statistics Math 3070-5 Review Sheet, Fall 2008 First we need to know about the relationship among Population Samples Objects The distribution of the population can be given in one of the

More information

CS4705. Probability Review and Naïve Bayes. Slides from Dragomir Radev

CS4705. Probability Review and Naïve Bayes. Slides from Dragomir Radev CS4705 Probability Review and Naïve Bayes Slides from Dragomir Radev Classification using a Generative Approach Previously on NLP discriminative models P C D here is a line with all the social media posts

More information

Probability Review. Chao Lan

Probability Review. Chao Lan Probability Review Chao Lan Let s start with a single random variable Random Experiment A random experiment has three elements 1. sample space Ω: set of all possible outcomes e.g.,ω={1,2,3,4,5,6} 2. event

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Econ 325: Introduction to Empirical Economics Lecture 2 Probability Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 3-1 3.1 Definition Random Experiment a process leading to an uncertain

More information

Introduction to Signal Detection and Classification. Phani Chavali

Introduction to Signal Detection and Classification. Phani Chavali Introduction to Signal Detection and Classification Phani Chavali Outline Detection Problem Performance Measures Receiver Operating Characteristics (ROC) F-Test - Test Linear Discriminant Analysis (LDA)

More information