Error Rates. Error vs Threshold. ROC Curve. Biometrics: A Pattern Recognition System. Pattern classification. Biometrics CSE 190 Lecture 3

Size: px
Start display at page:

Download "Error Rates. Error vs Threshold. ROC Curve. Biometrics: A Pattern Recognition System. Pattern classification. Biometrics CSE 190 Lecture 3"

Transcription

1 Biometrics: A Pattern Recognition System Yes/No Pattern classification Biometrics CSE 190 Lecture 3 Authentication False accept rate (FAR): Proportion of imposters accepted False reject rate (FRR): Proportion of genuine users rejected Failure to enroll rate (FTE): portion of population that cannot be enrolled Failure to acquire rate (FTA): portion of population that cannot be verified Enrollment Error Rates Error vs Threshold False Match (False Accept): Mistaking biometric measurements from two different persons to be from the same person; False Non-match (False reject): Mistaking two biometric measurements from the same person to be from two different persons FAR: False accept rate FRR: False reject rate (c) Jain 2004 (c) Jain 2004 ROC Curve Announcements Readings Project assignment on web page Accuracy requirements of a biometric system are application dependent (c) Jain

2 An Example 8 Pattern Classification Sorting incoming Duck on a conveyor according to vs. diseased Duck Bayesian Decision Theory Continuous Features (Sections ) 2

3 Introduction The sea bass/salmon example State of nature, prior State of nature is a random variable The catch of salmon and sea bass is equiprobable (The healthy of ducks probably isn t equiprobable). P(ω 1 ), P(ω 2 ) Prior probabilities P(ω 1 ) = P(ω 2 ) (uniform priors) Decision rule with only the prior information Decide ω 1 if P(ω 1 ) > P(ω 2 ) otherwise decide ω 2 Use of the class conditional information P(x ω 1 ) and P(x ω 2 ) describe the difference in lightness between populations of healthy and diseased ducks P(ω 1 ) + P( ω 2 ) = 1 (exclusivity and exhaustivity) Posterior, likelihood, evidence P(ω j x) = (P(x ω j ) * P (ω j )) / P(x) (BAYES RULE) In words, this can be said as: Posterior = (Likelihood * Prior) / Evidence Where in case of two categories Intuitive decision rule given the posterior probabilities: Given x: if P(ω 1 x) > P(ω 2 x) True state of nature = ω 1 if P(ω 1 x) < P(ω 2 x) True state of nature = ω 2 Why do this?: Whenever we observe a particular x, the probability of error is : P(error x) = P(ω 1 x) if we decide ω 2 P(error x) = P(ω 2 x) if we decide ω 1 3

4 19 Bayesian Decision Theory Continuous Features 20 Since decision rule is optimal for each feature value X, there is not better rule for all x. Generalization of the preceding ideas Use of more than one feature Use more than two states of nature Allowing actions and not only decide on the state of nature Introduce a loss of function (more general than the probability of error) Allowing actions other than classification primarily allows the possibility of rejection Refusing to make a decision in close or bad cases! Letting loss function state how costly each action taken is Bayesian Decision Theory Continuous Features 21 What is the Expected Loss for action α i? 22 Let X be a vector of features. For any given x the expected loss is Let {ω 1, ω 2,, ω c } be the set of c states of nature (or classes ) Let {α 1, α 2,, α a } be the set of possible actions Let λ(α i ω j ) be the loss for action α i when the state of nature is ω j R(α i x) is called the Conditional Risk (or Expected Loss) Overall risk R = Sum of all R(α i x) for i = 1,,a Conditional risk Minimizing R Minimizing R(α i x) for i = 1,, a 23 Given a measured feature vector x, which action should we take? Select the action α i for which R(α i x) is minimum R is minimum and R in this case is called the Bayes risk = best performance that can be achieved! 24 for i = 1,,a 4

5 Two-Category Classification α 1 : deciding ω 1 α 2 : deciding ω 2 λ ij = λ(α i ω j ) loss incurred for deciding ω i when the true state of nature is ω j 25 Our rule is the following: if R(α 1 x) < R(α 2 x) λ 11 P(ω 1 x) + λ 12 P(ω 2 x) < λ 21 P(ω 1 x) + λ 22 P(ω 2 x) action α 1 : decide ω 1 is taken This results in the equivalent rule : decide ω 1 if: 26 Conditional risk: R(α 1 x) = λ 11 P(ω 1 x) + λ 12 P(ω 2 x) R(α 2 x) = λ 21 P(ω 1 x) + λ 22 P(ω 2 x) (λ 21 - λ 11 ) P(x ω 1 ) P(ω 1 ) > (λ 12 - λ 22 ) P(x ω 2 ) P(ω 2 ) and decide ω 2 otherwise 27 x (λ 21 - λ 11 ) x (λ 12 - λ 22 ) 5

Pattern Classification

Pattern Classification Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors

More information

Bayesian Decision Theory

Bayesian Decision Theory Bayesian Decision Theory Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Bayesian Decision Theory Bayesian classification for normal distributions Error Probabilities

More information

Bayesian Decision Theory

Bayesian Decision Theory Bayesian Decision Theory Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2017 CS 551, Fall 2017 c 2017, Selim Aksoy (Bilkent University) 1 / 46 Bayesian

More information

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1 EEL 851: Biometrics An Overview of Statistical Pattern Recognition EEL 851 1 Outline Introduction Pattern Feature Noise Example Problem Analysis Segmentation Feature Extraction Classification Design Cycle

More information

Bayesian Decision Theory Lecture 2

Bayesian Decision Theory Lecture 2 Bayesian Decision Theory Lecture 2 Jason Corso SUNY at Buffalo 14 January 2009 J. Corso (SUNY at Buffalo) Bayesian Decision Theory Lecture 2 14 January 2009 1 / 58 Overview and Plan Covering Chapter 2

More information

Bayesian decision theory Introduction to Pattern Recognition. Lectures 4 and 5: Bayesian decision theory

Bayesian decision theory Introduction to Pattern Recognition. Lectures 4 and 5: Bayesian decision theory Bayesian decision theory 8001652 Introduction to Pattern Recognition. Lectures 4 and 5: Bayesian decision theory Jussi Tohka jussi.tohka@tut.fi Institute of Signal Processing Tampere University of Technology

More information

Bayesian Decision Theory

Bayesian Decision Theory Introduction to Pattern Recognition [ Part 4 ] Mahdi Vasighi Remarks It is quite common to assume that the data in each class are adequately described by a Gaussian distribution. Bayesian classifier is

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 3

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 3 CS434a/541a: attern Recognition rof. Olga Veksler Lecture 3 1 Announcements Link to error data in the book Reading assignment Assignment 1 handed out, due Oct. 4 lease send me an email with your name and

More information

Part 2 Elements of Bayesian Decision Theory

Part 2 Elements of Bayesian Decision Theory Part 2 Elements of Bayesian Decision Theory Machine Learning, Part 2, March 2017 Fabio Roli 1 Introduction ØStatistical pattern classification is grounded into Bayesian decision theory, therefore, knowing

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Lecture 3: Probability, Bayes Theorem, and Bayes Classification Peter Belhumeur Computer Science Columbia University Probability Should you play this game? Game: A fair

More information

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1)

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1) HW 1 due today Parameter Estimation Biometrics CSE 190 Lecture 7 Today s lecture was on the blackboard. These slides are an alternative presentation of the material. CSE190, Winter10 CSE190, Winter10 Chapter

More information

Minimum Error-Rate Discriminant

Minimum Error-Rate Discriminant Discriminants Minimum Error-Rate Discriminant In the case of zero-one loss function, the Bayes Discriminant can be further simplified: g i (x) =P (ω i x). (29) J. Corso (SUNY at Buffalo) Bayesian Decision

More information

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I SYDE 372 Introduction to Pattern Recognition Probability Measures for Classification: Part I Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 Why use probability

More information

Contents 2 Bayesian decision theory

Contents 2 Bayesian decision theory Contents Bayesian decision theory 3. Introduction... 3. Bayesian Decision Theory Continuous Features... 7.. Two-Category Classification... 8.3 Minimum-Error-Rate Classification... 9.3. *Minimax Criterion....3.

More information

Bayes Decision Theory

Bayes Decision Theory Bayes Decision Theory Minimum-Error-Rate Classification Classifiers, Discriminant Functions and Decision Surfaces The Normal Density 0 Minimum-Error-Rate Classification Actions are decisions on classes

More information

44 CHAPTER 2. BAYESIAN DECISION THEORY

44 CHAPTER 2. BAYESIAN DECISION THEORY 44 CHAPTER 2. BAYESIAN DECISION THEORY Problems Section 2.1 1. In the two-category case, under the Bayes decision rule the conditional error is given by Eq. 7. Even if the posterior densities are continuous,

More information

BAYESIAN DECISION THEORY

BAYESIAN DECISION THEORY Last updated: September 17, 2012 BAYESIAN DECISION THEORY Problems 2 The following problems from the textbook are relevant: 2.1 2.9, 2.11, 2.17 For this week, please at least solve Problem 2.3. We will

More information

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout :. The Multivariate Gaussian & Decision Boundaries..15.1.5 1 8 6 6 8 1 Mark Gales mjfg@eng.cam.ac.uk Lent

More information

Biometrics: Introduction and Examples. Raymond Veldhuis

Biometrics: Introduction and Examples. Raymond Veldhuis Biometrics: Introduction and Examples Raymond Veldhuis 1 Overview Biometric recognition Face recognition Challenges Transparent face recognition Large-scale identification Watch list Anonymous biometrics

More information

Nearest Neighbor Pattern Classification

Nearest Neighbor Pattern Classification Nearest Neighbor Pattern Classification T. M. Cover and P. E. Hart May 15, 2018 1 The Intro The nearest neighbor algorithm/rule (NN) is the simplest nonparametric decisions procedure, that assigns to unclassified

More information

Minimum Error Rate Classification

Minimum Error Rate Classification Minimum Error Rate Classification Dr. K.Vijayarekha Associate Dean School of Electrical and Electronics Engineering SASTRA University, Thanjavur-613 401 Table of Contents 1.Minimum Error Rate Classification...

More information

CSE555: Introduction to Pattern Recognition Midterm Exam Solution (100 points, Closed book/notes)

CSE555: Introduction to Pattern Recognition Midterm Exam Solution (100 points, Closed book/notes) CSE555: Introduction to Pattern Recognition Midterm Exam Solution (00 points, Closed book/notes) There are 5 questions in this exam. The last page is the Appendix that contains some useful formulas.. (5pts)

More information

Chapter 2. Binary and M-ary Hypothesis Testing 2.1 Introduction (Levy 2.1)

Chapter 2. Binary and M-ary Hypothesis Testing 2.1 Introduction (Levy 2.1) Chapter 2. Binary and M-ary Hypothesis Testing 2.1 Introduction (Levy 2.1) Detection problems can usually be casted as binary or M-ary hypothesis testing problems. Applications: This chapter: Simple hypothesis

More information

Lecture 3. STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher

Lecture 3. STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher Lecture 3 STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher Previous lectures What is machine learning? Objectives of machine learning Supervised and

More information

Detection theory 101 ELEC-E5410 Signal Processing for Communications

Detection theory 101 ELEC-E5410 Signal Processing for Communications Detection theory 101 ELEC-E5410 Signal Processing for Communications Binary hypothesis testing Null hypothesis H 0 : e.g. noise only Alternative hypothesis H 1 : signal + noise p(x;h 0 ) γ p(x;h 1 ) Trade-off

More information

p(x ω i 0.4 ω 2 ω

p(x ω i 0.4 ω 2 ω p(x ω i ).4 ω.3.. 9 3 4 5 x FIGURE.. Hypothetical class-conditional probability density functions show the probability density of measuring a particular feature value x given the pattern is in category

More information

Chapter 2 Bayesian Decision Theory. Pattern Recognition Soochow, Fall Semester 1

Chapter 2 Bayesian Decision Theory. Pattern Recognition Soochow, Fall Semester 1 Chapter 2 Bayesian Decision Theory Pattern Recognition Soochow, Fall Semester 1 Decision Theory Decision Make choice under uncertainty Pattern Recognition Pattern Category Given a test sample, its category

More information

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30 Problem Set MAS 6J/1.16J: Pattern Recognition and Analysis Due: 5:00 p.m. on September 30 [Note: All instructions to plot data or write a program should be carried out using Matlab. In order to maintain

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition Memorial University of Newfoundland Pattern Recognition Lecture 6 May 18, 2006 http://www.engr.mun.ca/~charlesr Office Hours: Tuesdays & Thursdays 8:30-9:30 PM EN-3026 Review Distance-based Classification

More information

What does Bayes theorem give us? Lets revisit the ball in the box example.

What does Bayes theorem give us? Lets revisit the ball in the box example. ECE 6430 Pattern Recognition and Analysis Fall 2011 Lecture Notes - 2 What does Bayes theorem give us? Lets revisit the ball in the box example. Figure 1: Boxes with colored balls Last class we answered

More information

Theoretical Statistical Correlation for Biometric Identification Performance

Theoretical Statistical Correlation for Biometric Identification Performance Theoretical Statistical Correlation for Biometric Identification Performance Michael E. Schuckers schuckers@stlawu.edu Theoretical Statistical Correlation for Biometric Identification Performance p. 1/20

More information

Bayesian Decision and Bayesian Learning

Bayesian Decision and Bayesian Learning Bayesian Decision and Bayesian Learning Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1 / 30 Bayes Rule p(x ω i

More information

Detection Theory. Chapter 3. Statistical Decision Theory I. Isael Diaz Oct 26th 2010

Detection Theory. Chapter 3. Statistical Decision Theory I. Isael Diaz Oct 26th 2010 Detection Theory Chapter 3. Statistical Decision Theory I. Isael Diaz Oct 26th 2010 Outline Neyman-Pearson Theorem Detector Performance Irrelevant Data Minimum Probability of Error Bayes Risk Multiple

More information

CMU-Q Lecture 24:

CMU-Q Lecture 24: CMU-Q 15-381 Lecture 24: Supervised Learning 2 Teacher: Gianni A. Di Caro SUPERVISED LEARNING Hypotheses space Hypothesis function Labeled Given Errors Performance criteria Given a collection of input

More information

Score calibration for optimal biometric identification

Score calibration for optimal biometric identification Score calibration for optimal biometric identification (see also NIST IBPC 2010 online proceedings: http://biometrics.nist.gov/ibpc2010) AI/GI/CRV 2010, Ottawa Dmitry O. Gorodnichy Head of Video Surveillance

More information

If you wish to cite this paper, please use the following reference:

If you wish to cite this paper, please use the following reference: This is an accepted version of a paper published in Proceedings of the st IEEE International Workshop on Information Forensics and Security (WIFS 2009). If you wish to cite this paper, please use the following

More information

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Probabilistic classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Topics Probabilistic approach Bayes decision theory Generative models Gaussian Bayes classifier

More information

Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution.

Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution. Hypothesis Testing Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution. Suppose the family of population distributions is indexed

More information

Machine detection of emotions: Feature Selection

Machine detection of emotions: Feature Selection Machine detection of emotions: Feature Selection Final Degree Dissertation Degree in Mathematics Leire Santos Moreno Supervisor: Raquel Justo Blanco María Inés Torres Barañano Leioa, 31 August 2016 Contents

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 1

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 1 CS434a/541a: Pattern Recognition Prof. Olga Veksler Lecture 1 1 Outline of the lecture Syllabus Introduction to Pattern Recognition Review of Probability/Statistics 2 Syllabus Prerequisite Analysis of

More information

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30

Problem Set 2. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 30 Problem Set 2 MAS 622J/1.126J: Pattern Recognition and Analysis Due: 5:00 p.m. on September 30 [Note: All instructions to plot data or write a program should be carried out using Matlab. In order to maintain

More information

Intro. ANN & Fuzzy Systems. Lecture 15. Pattern Classification (I): Statistical Formulation

Intro. ANN & Fuzzy Systems. Lecture 15. Pattern Classification (I): Statistical Formulation Lecture 15. Pattern Classification (I): Statistical Formulation Outline Statistical Pattern Recognition Maximum Posterior Probability (MAP) Classifier Maximum Likelihood (ML) Classifier K-Nearest Neighbor

More information

Machine Learning 2017

Machine Learning 2017 Machine Learning 2017 Volker Roth Department of Mathematics & Computer Science University of Basel 21st March 2017 Volker Roth (University of Basel) Machine Learning 2017 21st March 2017 1 / 41 Section

More information

Bayesian Learning. Bayesian Learning Criteria

Bayesian Learning. Bayesian Learning Criteria Bayesian Learning In Bayesian learning, we are interested in the probability of a hypothesis h given the dataset D. By Bayes theorem: P (h D) = P (D h)p (h) P (D) Other useful formulas to remember are:

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 143 Part IV

More information

From Bayes Theorem to Pattern Recognition via Bayes Rule

From Bayes Theorem to Pattern Recognition via Bayes Rule From Bayes Theorem to Pattern Recognition via Bayes Rule Slecture by Varun Vasudevan (partially based on Prof. Mireille Boutin s ECE 662 lecture) February 12, 2014 What will you learn from this slecture?

More information

Lecture 2. Conditional Probability

Lecture 2. Conditional Probability Math 408 - Mathematical Statistics Lecture 2. Conditional Probability January 18, 2013 Konstantin Zuev (USC) Math 408, Lecture 2 January 18, 2013 1 / 9 Agenda Motivation and Definition Properties of Conditional

More information

Bayesian Decision Theory Tutorial Visual Recognition Tutorial 1

Bayesian Decision Theory Tutorial Visual Recognition Tutorial 1 Bayesian Decision Theory Tutorial C4 36607 Visual Recognition Tutorial Tutorial the outline Bayesian decision making with discrete probabilities an eample Looking at continuous densities Bayesian decision

More information

Probability and (Bayesian) Data Analysis

Probability and (Bayesian) Data Analysis Department of Statistics The University of Auckland https://www.stat.auckland.ac.nz/ brewer/ Where to get everything To get all of the material (slides, code, exercises): git clone --recursive https://github.com/eggplantbren/madrid

More information

Machine Learning Linear Classification. Prof. Matteo Matteucci

Machine Learning Linear Classification. Prof. Matteo Matteucci Machine Learning Linear Classification Prof. Matteo Matteucci Recall from the first lecture 2 X R p Regression Y R Continuous Output X R p Y {Ω 0, Ω 1,, Ω K } Classification Discrete Output X R p Y (X)

More information

p(x ω i 0.4 ω 2 ω

p(x ω i 0.4 ω 2 ω p( ω i ). ω.3.. 9 3 FIGURE.. Hypothetical class-conditional probability density functions show the probability density of measuring a particular feature value given the pattern is in category ω i.if represents

More information

Pattern Recognition. Parameter Estimation of Probability Density Functions

Pattern Recognition. Parameter Estimation of Probability Density Functions Pattern Recognition Parameter Estimation of Probability Density Functions Classification Problem (Review) The classification problem is to assign an arbitrary feature vector x F to one of c classes. The

More information

Bayesian Decision Theory

Bayesian Decision Theory Bayesian Decision Theory 1/27 lecturer: authors: Jiri Matas, matas@cmp.felk.cvut.cz Václav Hlaváč, Jiri Matas Czech Technical University, Faculty of Electrical Engineering Department of Cybernetics, Center

More information

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION 1 Outline Basic terminology Features Training and validation Model selection Error and loss measures Statistical comparison Evaluation measures 2 Terminology

More information

Decision theory. 1 We may also consider randomized decision rules, where δ maps observed data D to a probability distribution over

Decision theory. 1 We may also consider randomized decision rules, where δ maps observed data D to a probability distribution over Point estimation Suppose we are interested in the value of a parameter θ, for example the unknown bias of a coin. We have already seen how one may use the Bayesian method to reason about θ; namely, we

More information

Announcements. Proposals graded

Announcements. Proposals graded Announcements Proposals graded Kevin Jamieson 2018 1 Hypothesis testing Machine Learning CSE546 Kevin Jamieson University of Washington October 30, 2018 2018 Kevin Jamieson 2 Anomaly detection You are

More information

Example - basketball players and jockeys. We will keep practical applicability in mind:

Example - basketball players and jockeys. We will keep practical applicability in mind: Sonka: Pattern Recognition Class 1 INTRODUCTION Pattern Recognition (PR) Statistical PR Syntactic PR Fuzzy logic PR Neural PR Example - basketball players and jockeys We will keep practical applicability

More information

a b = a T b = a i b i (1) i=1 (Geometric definition) The dot product of two Euclidean vectors a and b is defined by a b = a b cos(θ a,b ) (2)

a b = a T b = a i b i (1) i=1 (Geometric definition) The dot product of two Euclidean vectors a and b is defined by a b = a b cos(θ a,b ) (2) This is my preperation notes for teaching in sections during the winter 2018 quarter for course CSE 446. Useful for myself to review the concepts as well. More Linear Algebra Definition 1.1 (Dot Product).

More information

Expect Values and Probability Density Functions

Expect Values and Probability Density Functions Intelligent Systems: Reasoning and Recognition James L. Crowley ESIAG / osig Second Semester 00/0 Lesson 5 8 april 0 Expect Values and Probability Density Functions otation... Bayesian Classification (Reminder...3

More information

Detection theory. H 0 : x[n] = w[n]

Detection theory. H 0 : x[n] = w[n] Detection Theory Detection theory A the last topic of the course, we will briefly consider detection theory. The methods are based on estimation theory and attempt to answer questions such as Is a signal

More information

Generative classifiers: The Gaussian classifier. Ata Kaban School of Computer Science University of Birmingham

Generative classifiers: The Gaussian classifier. Ata Kaban School of Computer Science University of Birmingham Generative classifiers: The Gaussian classifier Ata Kaban School of Computer Science University of Birmingham Outline We have already seen how Bayes rule can be turned into a classifier In all our examples

More information

Lecture 18: Noise modeling and introduction to decision theory

Lecture 18: Noise modeling and introduction to decision theory Lecture 8: oise modeling and introduction to decision theory Learning Objectives: Hypothesis testing The receiver operator characteristic (ROC curve Bayes s Theorem, positive and negative predictive value

More information

Learning Methods for Linear Detectors

Learning Methods for Linear Detectors Intelligent Systems: Reasoning and Recognition James L. Crowley ENSIMAG 2 / MoSIG M1 Second Semester 2011/2012 Lesson 20 27 April 2012 Contents Learning Methods for Linear Detectors Learning Linear Detectors...2

More information

Machine Learning Lecture 2

Machine Learning Lecture 2 Machine Perceptual Learning and Sensory Summer Augmented 15 Computing Many slides adapted from B. Schiele Machine Learning Lecture 2 Probability Density Estimation 16.04.2015 Bastian Leibe RWTH Aachen

More information

BIOMETRIC verification systems are used to verify the

BIOMETRIC verification systems are used to verify the 86 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 1, JANUARY 2004 Likelihood-Ratio-Based Biometric Verification Asker M. Bazen and Raymond N. J. Veldhuis Abstract This paper

More information

Computer Vision. Pa0ern Recogni4on Concepts Part I. Luis F. Teixeira MAP- i 2012/13

Computer Vision. Pa0ern Recogni4on Concepts Part I. Luis F. Teixeira MAP- i 2012/13 Computer Vision Pa0ern Recogni4on Concepts Part I Luis F. Teixeira MAP- i 2012/13 What is it? Pa0ern Recogni4on Many defini4ons in the literature The assignment of a physical object or event to one of

More information

Sequential Decisions

Sequential Decisions Sequential Decisions A Basic Theorem of (Bayesian) Expected Utility Theory: If you can postpone a terminal decision in order to observe, cost free, an experiment whose outcome might change your terminal

More information

Review. More Review. Things to know about Probability: Let Ω be the sample space for a probability measure P.

Review. More Review. Things to know about Probability: Let Ω be the sample space for a probability measure P. 1 2 Review Data for assessing the sensitivity and specificity of a test are usually of the form disease category test result diseased (+) nondiseased ( ) + A B C D Sensitivity: is the proportion of diseased

More information

Bayes Classifiers. CAP5610 Machine Learning Instructor: Guo-Jun QI

Bayes Classifiers. CAP5610 Machine Learning Instructor: Guo-Jun QI Bayes Classifiers CAP5610 Machine Learning Instructor: Guo-Jun QI Recap: Joint distributions Joint distribution over Input vector X = (X 1, X 2 ) X 1 =B or B (drinking beer or not) X 2 = H or H (headache

More information

Bayes Formula. MATH 107: Finite Mathematics University of Louisville. March 26, 2014

Bayes Formula. MATH 107: Finite Mathematics University of Louisville. March 26, 2014 Bayes Formula MATH 07: Finite Mathematics University of Louisville March 26, 204 Test Accuracy Conditional reversal 2 / 5 A motivating question A rare disease occurs in out of every 0,000 people. A test

More information

When enough is enough: early stopping of biometrics error rate testing

When enough is enough: early stopping of biometrics error rate testing When enough is enough: early stopping of biometrics error rate testing Michael E. Schuckers Department of Mathematics, Computer Science and Statistics St. Lawrence University and Center for Identification

More information

ECE521 Lecture7. Logistic Regression

ECE521 Lecture7. Logistic Regression ECE521 Lecture7 Logistic Regression Outline Review of decision theory Logistic regression A single neuron Multi-class classification 2 Outline Decision theory is conceptually easy and computationally hard

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

Probability, Statistics, and Bayes Theorem Session 3

Probability, Statistics, and Bayes Theorem Session 3 Probability, Statistics, and Bayes Theorem Session 3 1 Introduction Now that we know what Bayes Theorem is, we want to explore some of the ways that it can be used in real-life situations. Often the results

More information

Data Mining Prof. Pabitra Mitra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur

Data Mining Prof. Pabitra Mitra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Data Mining Prof. Pabitra Mitra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture - 17 K - Nearest Neighbor I Welcome to our discussion on the classification

More information

Introduction to Machine Learning (Pattern recognition and model fitting) for Master students

Introduction to Machine Learning (Pattern recognition and model fitting) for Master students Introduction to Machine Learning (Pattern recognition and model fitting) for Master students Spring 007, ÖU/RAP Thorsteinn Rögnvaldsson thorsteinn.rognvaldsson@tech.oru.se Contents Machine learning algorithms

More information

Algorithmisches Lernen/Machine Learning

Algorithmisches Lernen/Machine Learning Algorithmisches Lernen/Machine Learning Part 1: Stefan Wermter Introduction Connectionist Learning (e.g. Neural Networks) Decision-Trees, Genetic Algorithms Part 2: Norman Hendrich Support-Vector Machines

More information

Biometric Hash based on Statistical Features of Online Signatures

Biometric Hash based on Statistical Features of Online Signatures Biometric Hash based on Statistical Features of Online Signatures Claus Vielhauer 1,2, Ralf Steinmetz 1, Astrid Mayerhöfer 3 1 Technical University Darmstadt Institute for Industrial Process- and System

More information

Model Averaging (Bayesian Learning)

Model Averaging (Bayesian Learning) Model Averaging (Bayesian Learning) We want to predict the output Y of a new case that has input X = x given the training examples e: p(y x e) = m M P(Y m x e) = m M P(Y m x e)p(m x e) = m M P(Y m x)p(m

More information

Topic 3: Hypothesis Testing

Topic 3: Hypothesis Testing CS 8850: Advanced Machine Learning Fall 07 Topic 3: Hypothesis Testing Instructor: Daniel L. Pimentel-Alarcón c Copyright 07 3. Introduction One of the simplest inference problems is that of deciding between

More information

Chapter Three. Hypothesis Testing

Chapter Three. Hypothesis Testing 3.1 Introduction The final phase of analyzing data is to make a decision concerning a set of choices or options. Should I invest in stocks or bonds? Should a new product be marketed? Are my products being

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

Concerns of the Psychophysicist. Three methods for measuring perception. Yes/no method of constant stimuli. Detection / discrimination.

Concerns of the Psychophysicist. Three methods for measuring perception. Yes/no method of constant stimuli. Detection / discrimination. Three methods for measuring perception Concerns of the Psychophysicist. Magnitude estimation 2. Matching 3. Detection/discrimination Bias/ Attentiveness Strategy/Artifactual Cues History of stimulation

More information

Conditional Probability. CS231 Dianna Xu

Conditional Probability. CS231 Dianna Xu Conditional Probability CS231 Dianna Xu 1 Boy or Girl? A couple has two children, one of them is a girl. What is the probability that the other one is also a girl? Assuming 50/50 chances of conceiving

More information

Machine Learning Lecture 2

Machine Learning Lecture 2 Announcements Machine Learning Lecture 2 Eceptional number of lecture participants this year Current count: 449 participants This is very nice, but it stretches our resources to their limits Probability

More information

Pattern Recognition and Machine Learning. Learning and Evaluation of Pattern Recognition Processes

Pattern Recognition and Machine Learning. Learning and Evaluation of Pattern Recognition Processes Pattern Recognition and Machine Learning James L. Crowley ENSIMAG 3 - MMIS Fall Semester 2016 Lesson 1 5 October 2016 Learning and Evaluation of Pattern Recognition Processes Outline Notation...2 1. The

More information

BAYES DECISION THEORY

BAYES DECISION THEORY BAYES DECISION THEORY PROF. ALAN YUILLE 1. How to make decisions in the presence of uncertainty? History 2 nd World War: Radar for detection aircraft, code-breaking, decryption. The task is to estimate

More information

Likelihood Ratio-Based Biometric Verification

Likelihood Ratio-Based Biometric Verification Likelihood Ratio-Based Biometric Verification Asker M. Bazen and Raymond N.J. Veldhuis University of Twente, Department of Electrical Engineering, Laboratory of Signals and Systems, P.O. box 27, 75 AE

More information

This is an accepted version of a paper published in Elsevier Information Fusion. If you wish to cite this paper, please use the following reference:

This is an accepted version of a paper published in Elsevier Information Fusion. If you wish to cite this paper, please use the following reference: This is an accepted version of a paper published in Elsevier Information Fusion. If you wish to cite this paper, please use the following reference: T. Murakami, T. Ohki, K. Takahashi, Optimal sequential

More information

INTRODUCTION TO BAYESIAN INFERENCE PART 2 CHRIS BISHOP

INTRODUCTION TO BAYESIAN INFERENCE PART 2 CHRIS BISHOP INTRODUCTION TO BAYESIAN INFERENCE PART 2 CHRIS BISHOP Personal Healthcare Revolution Electronic health records (CFH) Personal genomics (DeCode, Navigenics, 23andMe) X-prize: first $10k human genome technology

More information

MTMS Mathematical Statistics

MTMS Mathematical Statistics MTMS.01.099 Mathematical Statistics Lecture 12. Hypothesis testing. Power function. Approximation of Normal distribution and application to Binomial distribution Tõnu Kollo Fall 2016 Hypothesis Testing

More information

Bayesian decision making

Bayesian decision making Bayesian decision making Václav Hlaváč Czech Technical University in Prague Czech Institute of Informatics, Robotics and Cybernetics 166 36 Prague 6, Jugoslávských partyzánů 1580/3, Czech Republic http://people.ciirc.cvut.cz/hlavac,

More information

L2: Review of probability and statistics

L2: Review of probability and statistics Probability L2: Review of probability and statistics Definition of probability Axioms and properties Conditional probability Bayes theorem Random variables Definition of a random variable Cumulative distribution

More information

Lecture 2. Bayes Decision Theory

Lecture 2. Bayes Decision Theory Lecture 2. Bayes Decision Theory Prof. Alan Yuille Spring 2014 Outline 1. Bayes Decision Theory 2. Empirical risk 3. Memorization & Generalization; Advanced topics 1 How to make decisions in the presence

More information

Quantifying uncertainty & Bayesian networks

Quantifying uncertainty & Bayesian networks Quantifying uncertainty & Bayesian networks CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition,

More information

Lecture 1: Bayesian Framework Basics

Lecture 1: Bayesian Framework Basics Lecture 1: Bayesian Framework Basics Melih Kandemir melih.kandemir@iwr.uni-heidelberg.de April 21, 2014 What is this course about? Building Bayesian machine learning models Performing the inference of

More information

Bayes Rule. CS789: Machine Learning and Neural Network Bayesian learning. A Side Note on Probability. What will we learn in this lecture?

Bayes Rule. CS789: Machine Learning and Neural Network Bayesian learning. A Side Note on Probability. What will we learn in this lecture? Bayes Rule CS789: Machine Learning and Neural Network Bayesian learning P (Y X) = P (X Y )P (Y ) P (X) Jakramate Bootkrajang Department of Computer Science Chiang Mai University P (Y ): prior belief, prior

More information

Statistical Inference

Statistical Inference Statistical Inference Classical and Bayesian Methods Class 6 AMS-UCSC Thu 26, 2012 Winter 2012. Session 1 (Class 6) AMS-132/206 Thu 26, 2012 1 / 15 Topics Topics We will talk about... 1 Hypothesis testing

More information

Machine Learning. Yuh-Jye Lee. March 1, Lab of Data Science and Machine Intelligence Dept. of Applied Math. at NCTU

Machine Learning. Yuh-Jye Lee. March 1, Lab of Data Science and Machine Intelligence Dept. of Applied Math. at NCTU Machine Learning Yuh-Jye Lee Lab of Data Science and Machine Intelligence Dept. of Applied Math. at NCTU March 1, 2017 1 / 13 Bayes Rule Bayes Rule Assume that {B 1, B 2,..., B k } is a partition of S

More information