Potential Games and the Inefficiency of Equilibrium

Size: px
Start display at page:

Download "Potential Games and the Inefficiency of Equilibrium"

Transcription

1 Optmzaton and Control o Ntork Potntal Gam and th Inny o Equlbrum Ljun Chn 3/8/216

2 Outln Potntal gam q Rv on tratg gam q Potntal gam atom and nonatom Inny o qulbrum q Th pr o anarhy and lh routng q Rour alloaton q Ntork dgn gam and th pr o tablty 2

3 Stratg gam q D: a gam n tratg orm a trpl q Notaton q q q N G { N S N u N } q th t o playr agnt q S th playr tratgy pa q u : S R th playr payo unton S S : th t o all prol o playr tratg 1 S2! S N 1 2! N : prol o tratg 1 2! 1 +1! N : th prol o tratg othr than playr 3

4 Potntal gam atom Dnton: A unton a potntal unton or gam or Whn t th gam alld a potntal gam. Dnton: A unton an ordnal potntal unton or gam or Whn t th gam alld an ordnal potntal gam. 4 S R Φ : G S S. u u Φ Φ. > Φ Φ > u u S R Φ : G S S Φ Φ

5 Eampl Gam Potntal

6 Equlbrum a pur tratgy Nah qulbrum or ordnal potntal gam Proo: I a potntal unton a pur tratgy Nah qulbrum 6 G. S Φ Φ Φ. Φ Φ u u u u. Φ Φ

7 I Φ ha a mamum at thn a pur tratgy Nah qulbrum o th ordnal gam. Evry nt ordnal potntal gam ha a pur tratgy Nah qulbrum. Contnuou ordnal potntal gam ha a pur tratgy Nah qulbrum th tratgy pa ompat and potntal ontnuou. 7

8 Congton gam Dnton: A ongton modl dnd a ollo q q N th t o playr M th t o alt or rour S { N M S N j M } q th t o th rour that playr an u q j k j th ot to ur ho u th rour j hn ur ar ung t Dnton: A ongton gam aoatd th a ongton modl a gam th ot k j j j { N S N N } k j 8

9 Evry ongton gam a potntal gam th potntal Congton gam hav many applaton q Ntork dgn Φ j j k 1 k j k. 9

10 Potntal gam nonatom Nonatom gam: th ur numbr nnt q N r la o nntmal playr q th ma o la playr q th raton o la playr that hoo tratgy q u ; th payo or a playr o la th Dnton: an qulbrum or all S > u Dnton: A nonatom gam a potntal gam thr t potntal unton Φ uh that u ; ; Φ. u ;. 1

11 Eampl: lh routng Condr a multommodty lo ntork q N our-dtnaton par ommodt V E q Eah ommodty ha a total rat and an u a t o path P q Th aggrgat tra among lnk : q lnk ot a nonngatv ontnuou nondrang unton o tra q Th ot ; r 11

12 Wardrop qulbrum: th ot o all th path atually ud ar qual and l than tho hh ould b prnd by a ngl ur on any unud path. { V E; r } a potntal gam th potntal Φ d. 12

13 Inny o qulbra Equlbra o tratg gam ar typally nnt Eampl: Pronr Dlmma D C 33 4 D C

14 Pgou ampl 1 t On ommodty th rat 1 q A unqu Wardrop qulbrum th all tra routd on th lor dg q A bttr lo: rout hal o th tra on ah o th to dg 14

15 Quton ar Th tn o qulbrum Quanty th nny o qulbrum Th onvrgn o qulbrum 15

16 Quanty th nny Pr o anarhy: quanty nny th rpt to om objtv unton pr o anarhy obj n valu o th ort qulbrum optmal obj n valu <1 or mamzaton; >1 or mnmzaton Intrtd n tuaton n hh an bound th pr o anarhy 16

17 Slh Routng At Wardrop qulbrum Th abov th KKT optmalty ondton or 17 mn ; ; r Φ r d :.t. mn

18 A lo or a Wardrop qulbrum and only t a global mnmum o th potntal unton Dn th objtv unton.. th ot o lo a Dnton: An optmal lo or th lo that mnmz. 18 } ; { r E V. Φ d C } ; { r E V C

19 Th pr o anarhy Th pr o anarhy ρ C C. Pgou ampl Suppo that γ y dy thn ρ γ. Pgou ampl th dgr-d polynomal ot q q ρ d d ρ 4 / y dy 3 19

20 Rour alloaton Condr a mpl ntork: th our ur har a lnk and th ntork lnk managr ant to alloat lnk rat uh that Sytm: ma. t. tlty unton ar not knon to th lnk managr 2

21 Markt-larng mhanm Eah ur ubmt a bd or llngn to pay th managr k to alloat th ntr lnk apaty and t a pr p uh that q A th ur ha a dmand unton D p p p q Th lnk managr hoo a pr to lar th markt D p / 21

22 Pr takng ur and ompttv qulbrum Th ur a pr takr: do not antpat th t o h paymnt on th pr It ratonal or th ur to mamz th ollong payo Klly 98 A par a ompttv qulbrum 22 p p u p p p u p u / or any

23 Thorm Klly 98: thr t a unqu ompttv qulbrum uh that olv th problm ytm. Proo: ondr th Lagrangan q At prmal-dual optmal 23 p p / p p D ' ' > p p p p

24 q Sn > at lat on potv. So p >. q Thu. q Lt p thn p a ompttv qulbrum and olv th problm Sytm. q In th a th unqun o ollo rom th unqun o p. / p 24

25 Pr antpatng ur and Nah qulbrum Pr antpatng ur ralz that th pr t aordng to p and ll adjut thr bd / aordngly. Th mak th modl a gam hr ur payo Johar 4 > u Condr Nah qulbrum uh that u u or all or all 25

26 Thorm Hajk t al: thr t a unqu Nah qulbrum. Morovr th rat ar unqu oluton o th ollong problm 26 t.. ˆ ma Gam: hr. 1 1 ˆ + dz z

27 Proo: q I a Nah qulbrum at lat to playr hav nonzro bd. u q Thn trtly onav and ontnuouly drntabl n. q Thn at qulbrum ' ' t t 1 t q Th abov ondton alo unt. t t t t t > 27

28 q Th problm Gam ha a unqu optmal thr t a p uh that ' 1 p > ' p p p. Morovr q Lt / p and p / t t. Thn p at th abov optmalty ondton. 28

29 Th pr o anarhy Aum hav Thn Sn hav Thn 29 1 dz z ˆ z z z z dz z 2 1 ˆ

30 Lt and ar th optma o problm Sytm and Gam hav Th pr o anarhy 3 ˆ ˆ / ρ

31 Tght bound Dn th JT bound by For any thr a rour alloaton gam th th pr o anarhy at mot. q Proo: rt not that an aum. q Dn a gam th q At optmal th ny q At qulbrum 31 ˆ n n n ʹ + β β > ε β + ε & < 2 ˆ ʹ 1 / 1 ˆ ˆ ˆ ˆ ' 1 1 ' 1 C ʹ ʹ

32 q Thn a th playr numbr go to nnty. q Thu th ny at qulbrum approahng In vry rour alloaton gam th pr o anarhy at lat. q Proo: lt and ar th optmal and qulbrum ˆ ˆ ˆ ˆ 1 C ʹ + ʹ + β + 1 ˆ ' β β

33 Th bound. q Proo: ttng ho th bound at mot 3/4. q Aum hav / β 1 2 & 1/ & <. 4 3 / 1 / / 1 / / 1 / 1 ˆ ʹ + ʹ +

34 Ntork dgn gam Condr a ntork or ah dg E q N our-dtnaton par playr q Eah playr an hoo a path q Th total ot V E th a nonngatv ot P q Lt n dnot th numbr o playr ho path ar ung dg. Eah o tho playr pay a har π o th ot q Th ot or ah playr ; / n / n 34

35 { V E; } a potntal gam th potntal unton Φ n j 1 Evry ntork dgn gam ha at lat on Nah qulbrum. j. 35

36 k t k 1+a playr and a > arbtrarly mall q To Nah qulbra: all hoo th uppr dg or all hoo th lor dg 36

37 Pr o tablty Pr o tablty pr o tablty objn valuo th bt qulbrum optmal objn valu Sn Φ 1 + 1/ 2 +! tablty at mot 1 + 1/ 2 +! + 1/ k. C + 1/ k C th pr o 37

Network Congestion Games

Network Congestion Games Ntwork Congstion Gams Assistant Profssor Tas A&M Univrsity Collg Station, TX TX Dallas Collg Station Austin Houston Bst rout dpnds on othrs Ntwork Congstion Gams Travl tim incrass with congstion Highway

More information

Equil. Properties of Reacting Gas Mixtures. So far have looked at Statistical Mechanics results for a single (pure) perfect gas

Equil. Properties of Reacting Gas Mixtures. So far have looked at Statistical Mechanics results for a single (pure) perfect gas Shool of roa Engnrng Equl. Prort of Ratng Ga Mxtur So far hav lookd at Stattal Mhan rult for a ngl (ur) rft ga hown how to gt ga rort (,, h, v,,, ) from artton funton () For nonratng rft ga mxtur, gt mxtur

More information

Supplementary Materials

Supplementary Materials 6 Supplmntary Matrials APPENDIX A PHYSICAL INTERPRETATION OF FUEL-RATE-SPEED FUNCTION A truck running on a road with grad/slop θ positiv if moving up and ngativ if moving down facs thr rsistancs: arodynamic

More information

Where k is either given or determined from the data and c is an arbitrary constant.

Where k is either given or determined from the data and c is an arbitrary constant. Exponntial growth and dcay applications W wish to solv an quation that has a drivativ. dy ky k > dx This quation says that th rat of chang of th function is proportional to th function. Th solution is

More information

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization THE UNIVERSITY OF MARYLAND COLLEGE PARK, MARYLAND Economcs 600: August, 007 Dynamc Part: Problm St 5 Problms on Dffrntal Equatons and Contnuous Tm Optmzaton Quston Solv th followng two dffrntal quatons.

More information

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b)

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b) 4. y = y = + 5. Find th quation of th tangnt lin for th function y = ( + ) 3 whn = 0. solution: First not that whn = 0, y = (1 + 1) 3 = 8, so th lin gos through (0, 8) and thrfor its y-intrcpt is 8. y

More information

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then SYSTEM PERFORMANCE Lctur 0: Stady-tat Error Stady-tat Error Lctur 0: Stady-tat Error Dr.alyana Vluvolu Stady-tat rror can b found by applying th final valu thorm and i givn by lim ( t) lim E ( ) t 0 providd

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

An N-Component Series Repairable System with Repairman Doing Other Work and Priority in Repair

An N-Component Series Repairable System with Repairman Doing Other Work and Priority in Repair Mor ppl Novmbr 8 N-Compo r Rparabl m h Rparma Dog Ohr ork a ror Rpar Jag Yag E-mal: jag_ag7@6om Xau Mg a uo hg ollag arb Normal Uvr Yaq ua Taoao ag uppor b h Fouao or h aural o b prov o Cha 5 uppor b h

More information

Week 3: Connected Subgraphs

Week 3: Connected Subgraphs Wk 3: Connctd Subgraphs Sptmbr 19, 2016 1 Connctd Graphs Path, Distanc: A path from a vrtx x to a vrtx y in a graph G is rfrrd to an xy-path. Lt X, Y V (G). An (X, Y )-path is an xy-path with x X and y

More information

Linked-List Implementation. Linked-lists for two sets. Multiple Operations. UNION Implementation. An Application of Disjoint-Set 1/9/2014

Linked-List Implementation. Linked-lists for two sets. Multiple Operations. UNION Implementation. An Application of Disjoint-Set 1/9/2014 Disjoint Sts Data Strutur (Chap. 21) A disjoint-st is a olltion ={S 1, S 2,, S k } o distint dynami sts. Eah st is idntiid by a mmbr o th st, alld rprsntativ. Disjoint st oprations: MAKE-SET(x): rat a

More information

Junction Tree Algorithm 1. David Barber

Junction Tree Algorithm 1. David Barber Juntion Tr Algorithm 1 David Barbr Univrsity Collg London 1 Ths slids aompany th book Baysian Rasoning and Mahin Larning. Th book and dmos an b downloadd from www.s.ul.a.uk/staff/d.barbr/brml. Fdbak and

More information

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 6: Heat Conduction: Thermal Stresses

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 6: Heat Conduction: Thermal Stresses 16.512, okt Proulon Prof. Manul Martnz-Sanhz Ltur 6: Hat Conduton: Thrmal Str Efft of Sold or Lqud Partl n Nozzl Flow An u n hhly alumnzd old rokt motor. 3 2Al + O 2 Al 2 O 2 3 m.. 2072 C, b.. 2980 C In

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r n r t d n 20 22 0: T P bl D n, l d t z d http:.h th tr t. r pd l 0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n.

More information

Integral Calculus What is integral calculus?

Integral Calculus What is integral calculus? Intgral Calulus What is intgral alulus? In diffrntial alulus w diffrntiat a funtion to obtain anothr funtion alld drivativ. Intgral alulus is onrnd with th opposit pross. Rvrsing th pross of diffrntiation

More information

6.1 Integration by Parts and Present Value. Copyright Cengage Learning. All rights reserved.

6.1 Integration by Parts and Present Value. Copyright Cengage Learning. All rights reserved. 6.1 Intgration by Parts and Prsnt Valu Copyright Cngag Larning. All rights rsrvd. Warm-Up: Find f () 1. F() = ln(+1). F() = 3 3. F() =. F() = ln ( 1) 5. F() = 6. F() = - Objctivs, Day #1 Studnts will b

More information

Engineering Differential Equations Practice Final Exam Solutions Fall 2011

Engineering Differential Equations Practice Final Exam Solutions Fall 2011 9.6 Enginring Diffrntial Equation Practic Final Exam Solution Fall 0 Problm. (0 pt.) Solv th following initial valu problm: x y = xy, y() = 4. Thi i a linar d.. bcau y and y appar only to th firt powr.

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Note If the candidate believes that e x = 0 solves to x = 0 or gives an extra solution of x = 0, then withhold the final accuracy mark.

Note If the candidate believes that e x = 0 solves to x = 0 or gives an extra solution of x = 0, then withhold the final accuracy mark. . (a) Eithr y = or ( 0, ) (b) Whn =, y = ( 0 + ) = 0 = 0 ( + ) = 0 ( )( ) = 0 Eithr = (for possibly abov) or = A 3. Not If th candidat blivs that = 0 solvs to = 0 or givs an tra solution of = 0, thn withhold

More information

A Stackelberg Strategy for Routing Flow over Time

A Stackelberg Strategy for Routing Flow over Time A Stacklbrg Stratgy for Routng Flow ovr Tm Umang Bhaskar Lsa Flschr Ellot Anshlvch Abstract Routng gams ar usd to to undrstand th mpact of ndvdual usrs dcsons on ntwork ffcncy. Most pror work on routng

More information

Random Process Part 1

Random Process Part 1 Random Procss Part A random procss t (, ζ is a signal or wavform in tim. t : tim ζ : outcom in th sampl spac Each tim w rapat th xprimnt, a nw wavform is gnratd. ( W will adopt t for short. Tim sampls

More information

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f n r t d n 20 2 : 6 T P bl D n, l d t z d http:.h th tr t. r pd l 22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r

More information

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C Tchniqus of Intgration c Donald Kridr and Dwight Lahr In this sction w ar going to introduc th first approachs to valuating an indfinit intgral whos intgrand dos not hav an immdiat antidrivativ. W bgin

More information

Combinatorial Networks Week 1, March 11-12

Combinatorial Networks Week 1, March 11-12 1 Nots on March 11 Combinatorial Ntwors W 1, March 11-1 11 Th Pigonhol Principl Th Pigonhol Principl If n objcts ar placd in hols, whr n >, thr xists a box with mor than on objcts 11 Thorm Givn a simpl

More information

Economics 201b Spring 2010 Solutions to Problem Set 3 John Zhu

Economics 201b Spring 2010 Solutions to Problem Set 3 John Zhu Economics 20b Spring 200 Solutions to Problm St 3 John Zhu. Not in th 200 vrsion of Profssor Andrson s ctur 4 Nots, th charactrization of th firm in a Robinson Cruso conomy is that it maximizs profit ovr

More information

Exchange rates in the long run (Purchasing Power Parity: PPP)

Exchange rates in the long run (Purchasing Power Parity: PPP) Exchang rats in th long run (Purchasing Powr Parity: PPP) Jan J. Michalk JJ Michalk Th law of on pric: i for a product i; P i = E N/ * P i Or quivalntly: E N/ = P i / P i Ida: Th sam product should hav

More information

Solutions to Supplementary Problems

Solutions to Supplementary Problems Solution to Supplmntary Problm Chaptr 5 Solution 5. Failur of th tiff clay occur, hn th ffctiv prur at th bottom of th layr bcom ro. Initially Total ovrburn prur at X : = 9 5 + = 7 kn/m Por atr prur at

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

n r t d n :4 T P bl D n, l d t z d   th tr t. r pd l n r t d n 20 20 :4 T P bl D n, l d t z d http:.h th tr t. r pd l 2 0 x pt n f t v t, f f d, b th n nd th P r n h h, th r h v n t b n p d f r nt r. Th t v v d pr n, h v r, p n th pl v t r, d b p t r b R

More information

Optimization. Nuno Vasconcelos ECE Department, UCSD

Optimization. Nuno Vasconcelos ECE Department, UCSD Optmzaton Nuno Vasconcelos ECE Department, UCSD Optmzaton many engneerng problems bol on to optmzaton goal: n mamum or mnmum o a uncton Denton: gven unctons, g,,...,k an h,,...m ene on some oman Ω R n

More information

MECH321 Dynamics of Engineering System Week 4 (Chapter 6)

MECH321 Dynamics of Engineering System Week 4 (Chapter 6) MH3 Dynamc of ngnrng Sytm Wk 4 (haptr 6). Bac lctrc crcut thor. Mathmatcal Modlng of Pav rcut 3. ompl mpdanc Approach 4. Mchancal lctrcal analogy 5. Modllng of Actv rcut: Opratonal Amplfr rcut Bac lctrc

More information

l f t n nd bj t nd x f r t l n nd rr n n th b nd p phl t f l br r. D, lv l, 8. h r t,., 8 6. http://hdl.handle.net/2027/miun.aey7382.0001.001 P bl D n http://www.hathitrust.org/access_use#pd Th r n th

More information

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v ll f x, h v nd d pr v n t fr tf l t th f nt r n r

More information

10. EXTENDING TRACTABILITY

10. EXTENDING TRACTABILITY Coping with NP-compltnss 0. EXTENDING TRACTABILITY ining small vrtx covrs solving NP-har problms on trs circular arc covrings vrtx covr in bipartit graphs Q. Suppos I n to solv an NP-complt problm. What

More information

Chapter 13 GMM for Linear Factor Models in Discount Factor form. GMM on the pricing errors gives a crosssectional

Chapter 13 GMM for Linear Factor Models in Discount Factor form. GMM on the pricing errors gives a crosssectional Chaptr 13 GMM for Linar Factor Modls in Discount Factor form GMM on th pricing rrors givs a crosssctional rgrssion h cas of xcss rturns Hors rac sting for charactristic sting for pricd factors: lambdas

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1870 Colby College Catalogue 1870-1871 Colby College Follow this and additional works at: http://digitalcommonscolbyedu/catalogs

More information

H NT Z N RT L 0 4 n f lt r h v d lt n r n, h p l," "Fl d nd fl d " ( n l d n l tr l t nt r t t n t nt t nt n fr n nl, th t l n r tr t nt. r d n f d rd n t th nd r nt r d t n th t th n r lth h v b n f

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1872 Colby College Catalogue 1872-1873 Colby College Follow this and additional works at: http://digitalcommonscolbyedu/catalogs

More information

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation Lctur Rlc nutrnos mpratur at nutrno dcoupln and today Effctv dnracy factor Nutrno mass lmts Saha quaton Physcal Cosmoloy Lnt 005 Rlc Nutrnos Nutrnos ar wakly ntractn partcls (lptons),,,,,,, typcal ractons

More information

Calculus II (MAC )

Calculus II (MAC ) Calculus II (MAC232-2) Tst 2 (25/6/25) Nam (PRINT): Plas show your work. An answr with no work rcivs no crdit. You may us th back of a pag if you nd mor spac for a problm. You may not us any calculators.

More information

ELEC 372 LECTURE NOTES, WEEK 11 Dr. Amir G. Aghdam Concordia University

ELEC 372 LECTURE NOTES, WEEK 11 Dr. Amir G. Aghdam Concordia University ELEC 37 LECTURE NOTES, WEE Dr Amir Aghdam Cncrdia Univrity Part f th nt ar adaptd frm th matrial in th fllwing rfrnc: Mdrn Cntrl Sytm by Richard C Drf and Rbrt H Bihp, Prntic Hall Fdback Cntrl f Dynamic

More information

Differential Equations

Differential Equations UNIT I Diffrntial Equations.0 INTRODUCTION W li in a world of intrrlatd changing ntitis. Th locit of a falling bod changs with distanc, th position of th arth changs with tim, th ara of a circl changs

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1866 Colby College Catalogue 1866-1867 Colby College Follow this and additional works at: http://digitalcommons.colby.edu/catalogs

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

Outline. Clustering: Similarity-Based Clustering. Supervised Learning vs. Unsupervised Learning. Clustering. Applications of Clustering

Outline. Clustering: Similarity-Based Clustering. Supervised Learning vs. Unsupervised Learning. Clustering. Applications of Clustering Clusterng: Smlarty-Based Clusterng CS4780/5780 Mahne Learnng Fall 2013 Thorsten Joahms Cornell Unversty Supervsed vs. Unsupervsed Learnng Herarhal Clusterng Herarhal Agglomeratve Clusterng (HAC) Non-Herarhal

More information

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk CMPS 2200 Fll 2017 Grps Crol Wnk Sls ourtsy o Crls Lsrson wt ns n tons y Crol Wnk 10/23/17 CMPS 2200 Intro. to Alortms 1 Grps Dnton. A rt rp (rp) G = (V, E) s n orr pr onsstn o st V o vrts (snulr: vrtx),

More information

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns Summary: Solvng a Homognous Sysm of Two Lnar Frs Ordr Equaons n Two Unknowns Gvn: A Frs fnd h wo gnvalus, r, and hr rspcv corrspondng gnvcors, k, of h coffcn mar A Dpndng on h gnvalus and gnvcors, h gnral

More information

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals. Chaptr 7 Th Hydrogn Atom Background: W hav discussd th PIB HO and th nrgy of th RR modl. In this chaptr th H-atom and atomic orbitals. * A singl particl moving undr a cntral forc adoptd from Scott Kirby

More information

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables.

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables. Chaptr Functions o Two Variabls Applid Calculus 61 Sction : Calculus o Functions o Two Variabls Now that ou hav som amiliarit with unctions o two variabls it s tim to start appling calculus to hlp us solv

More information

Section 11.6: Directional Derivatives and the Gradient Vector

Section 11.6: Directional Derivatives and the Gradient Vector Sction.6: Dirctional Drivativs and th Gradint Vctor Practic HW rom Stwart Ttbook not to hand in p. 778 # -4 p. 799 # 4-5 7 9 9 35 37 odd Th Dirctional Drivativ Rcall that a b Slop o th tangnt lin to th

More information

3) Use the average steady-state equation to determine the dose. Note that only 100 mg tablets of aminophylline are available here.

3) Use the average steady-state equation to determine the dose. Note that only 100 mg tablets of aminophylline are available here. PHA 5127 Dsigning A Dosing Rgimn Answrs provi by Jry Stark Mr. JM is to b start on aminophyllin or th tratmnt o asthma. H is a non-smokr an wighs 60 kg. Dsign an oral osing rgimn or this patint such that

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1871 Colby College Catalogue 1871-1872 Colby College Follow this and additional works at: http://digitalcommonscolbyedu/catalogs

More information

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices. Cptr 11: Trs 11.1 - Introuton to Trs Dnton 1 (Tr). A tr s onnt unrt rp wt no sp ruts. Tor 1. An unrt rp s tr n ony tr s unqu sp pt twn ny two o ts vrts. Dnton 2. A root tr s tr n w on vrtx s n snt s t

More information

Epistemic Foundations of Game Theory. Lecture 1

Epistemic Foundations of Game Theory. Lecture 1 Royal Nthrlands cadmy of rts and Scncs (KNW) Mastr Class mstrdam, Fbruary 8th, 2007 Epstmc Foundatons of Gam Thory Lctur Gacomo onanno (http://www.con.ucdavs.du/faculty/bonanno/) QUESTION: What stratgs

More information

EE750 Advanced Engineering Electromagnetics Lecture 17

EE750 Advanced Engineering Electromagnetics Lecture 17 EE75 Avan Engnrng Eltromagnt Ltur 7 D EM W onr a D ffrntal quaton of th form α α β f ut to p on Γ α α. n γ q on Γ whr Γ Γ Γ th ontour nlong th oman an n th unt outwar normal ot that th ounar onton ma a

More information

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t 2Â F b. Th h ph rd l nd r. l X. TH H PH RD L ND R. L X. F r, Br n, nd t h. B th ttr h ph rd. n th l f p t r l l nd, t t d t, n n t n, nt r rl r th n th n r l t f th f th th r l, nd d r b t t f nn r r pr

More information

Exercises for lectures 7 Steady state, tracking and disturbance rejection

Exercises for lectures 7 Steady state, tracking and disturbance rejection Exrc for lctur 7 Stady tat, tracng and dturbanc rjcton Martn Hromčí Automatc control 06-3-7 Frquncy rpon drvaton Automatcé řízní - Kybrnta a robota W lad a nuodal nput gnal to th nput of th ytm, gvn by

More information

1973 AP Calculus AB: Section I

1973 AP Calculus AB: Section I 97 AP Calculus AB: Sction I 9 Minuts No Calculator Not: In this amination, ln dnots th natural logarithm of (that is, logarithm to th bas ).. ( ) d= + C 6 + C + C + C + C. If f ( ) = + + + and ( ), g=

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd n r t d n 20 20 0 : 0 T P bl D n, l d t z d http:.h th tr t. r pd l 4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n,

More information

Strongly Connected Components

Strongly Connected Components Strongly Connctd Componnts Lt G = (V, E) b a dirctd graph Writ if thr is a path from to in G Writ if and is an quivalnc rlation: implis and implis s quivalnc classs ar calld th strongly connctd componnts

More information

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c.

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c. MA56 utorial Solutions Qustion a Intgrating fator is ln p p in gnral, multipl b p So b ln p p sin his kin is all a Brnoulli quation -- st Sin w fin Y, Y Y, Y Y p Qustion Dfin v / hn our quation is v μ

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

2. SIMPLE SOIL PROPETIES

2. SIMPLE SOIL PROPETIES 2. SIMPLE SOIL PROPETIES 2.1 EIGHT-OLUME RELATIONSHIPS It i oft rquir of th gotchical gir to collct, claify a ivtigat oil ampl. B it for ig of fouatio or i calculatio of arthork volum, trmiatio of oil

More information

Problem Set 6 Solutions

Problem Set 6 Solutions 6.04/18.06J Mathmatics for Computr Scinc March 15, 005 Srini Dvadas and Eric Lhman Problm St 6 Solutions Du: Monday, March 8 at 9 PM in Room 3-044 Problm 1. Sammy th Shark is a financial srvic providr

More information

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added 4.3, 4.4 Phas Equlbrum Dtrmn th slops of th f lns Rlat p and at qulbrum btwn two phass ts consdr th Gbbs functon dg η + V Appls to a homognous systm An opn systm whr a nw phas may form or a nw componnt

More information

,. *â â > V>V. â ND * 828.

,. *â â > V>V. â ND * 828. BL D,. *â â > V>V Z V L. XX. J N R â J N, 828. LL BL D, D NB R H â ND T. D LL, TR ND, L ND N. * 828. n r t d n 20 2 2 0 : 0 T http: hdl.h ndl.n t 202 dp. 0 02802 68 Th N : l nd r.. N > R, L X. Fn r f,

More information

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms CS 542 Avn Dt Stutu n Alotm Exm 2 Soluton Jontn Tun 4/2/202. (5 ont) Con n oton on t tton t tutu n w t n t 2 no. Wt t mllt num o no tt t tton t tutu oul ontn. Exln you nw. Sn n mut n you o u t n t, t n

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

Some Results on Interval Valued Fuzzy Neutrosophic Soft Sets ISSN

Some Results on Interval Valued Fuzzy Neutrosophic Soft Sets ISSN Som Rsults on ntrval Valud uzzy Nutrosophi Soft Sts SSN 239-9725. rokiarani Dpartmnt of Mathmatis Nirmala ollg for Womn oimbator amilnadu ndia. R. Sumathi Dpartmnt of Mathmatis Nirmala ollg for Womn oimbator

More information

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th n r t d n 20 2 :24 T P bl D n, l d t z d http:.h th tr t. r pd l 4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n

More information

Exercise 1. Sketch the graph of the following function. (x 2

Exercise 1. Sketch the graph of the following function. (x 2 Writtn tst: Fbruary 9th, 06 Exrcis. Sktch th graph of th following function fx = x + x, spcifying: domain, possibl asymptots, monotonicity, continuity, local and global maxima or minima, and non-drivability

More information

+ f. e f. Ch. 8 Inflation, Interest Rates & FX Rates. Purchasing Power Parity. Purchasing Power Parity

+ f. e f. Ch. 8 Inflation, Interest Rates & FX Rates. Purchasing Power Parity. Purchasing Power Parity Ch. 8 Inlation, Intrst Rats & FX Rats Topics Purchasing Powr Parity Intrnational Fishr Ect Purchasing Powr Parity Purchasing Powr Parity (PPP: Th purchasing powr o a consumr will b similar whn purchasing

More information

arxiv: v3 [cs.gt] 1 Jan 2019

arxiv: v3 [cs.gt] 1 Jan 2019 Pric of Anarchy in Ntworks with Htrognous Latncy Functions Sanjiv Kapoor and Junghwan Shin arxiv:407.299v3 [cs.gt] Jan 209 Abstract W addrss th prformanc of slfish ntwork routing in multi-commodity flows

More information

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018 Propositional Logic Combinatorial Problm Solving (CPS) Albrt Olivras Enric Rodríguz-Carbonll May 17, 2018 Ovrviw of th sssion Dfinition of Propositional Logic Gnral Concpts in Logic Rduction to SAT CNFs

More information

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th n r t d n 20 0 : T P bl D n, l d t z d http:.h th tr t. r pd l 46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l

More information

Topics covered. ECON6021 Microeconomic Analysis. Price Effects. Price effect I

Topics covered. ECON6021 Microeconomic Analysis. Price Effects. Price effect I Topics covrd ECON6 Microconomic nalsis Consumption Thor. Pric Chang. Pric Elasticitis 3. ncom Elasticitis 4. Markt Dmand P P P Pric ffct ' P Pric consumption curv (PCC) Or Pric pansion path (PEP) ( P,

More information

2. Laser physics - basics

2. Laser physics - basics . Lasr physics - basics Spontanous and stimulatd procsss Einstin A and B cofficints Rat quation analysis Gain saturation What is a lasr? LASER: Light Amplification by Stimulatd Emission of Radiation "light"

More information

AP Calculus BC Problem Drill 16: Indeterminate Forms, L Hopital s Rule, & Improper Intergals

AP Calculus BC Problem Drill 16: Indeterminate Forms, L Hopital s Rule, & Improper Intergals AP Calulus BC Problm Drill 6: Indtrminat Forms, L Hopital s Rul, & Impropr Intrgals Qustion No. of Instrutions: () Rad th problm and answr hois arfully () Work th problms on papr as ndd () Pik th answr

More information

An Application of Hardy-Littlewood Conjecture. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.China

An Application of Hardy-Littlewood Conjecture. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.China An Application of Hardy-Littlwood Conjctur JinHua Fi ChangLing Company of Elctronic Tchnology Baoji Shannxi P.R.China E-mail: fijinhuayoujian@msn.com Abstract. In this papr, w assum that wakr Hardy-Littlwood

More information

where: u: input y: output x: state vector A, B, C, D are const matrices

where: u: input y: output x: state vector A, B, C, D are const matrices Sa pac modl: linar: y or in om : Sa q : f, u Oupu q : y h, u u Du F Gu y H Ju whr: u: inpu y: oupu : a vcor,,, D ar con maric Eampl " $ & ' " $ & 'u y " & * * * * [ ],, D H D I " $ " & $ ' " & $ ' " &

More information

n

n p l p bl t n t t f Fl r d, D p rt nt f N t r l R r, D v n f nt r r R r, B r f l. n.24 80 T ll h, Fl. : Fl r d D p rt nt f N t r l R r, B r f l, 86. http://hdl.handle.net/2027/mdp.39015007497111 r t v n

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

GRAPHS IN SCIENCE. drawn correctly, the. other is not. Which. Best Fit Line # one is which?

GRAPHS IN SCIENCE. drawn correctly, the. other is not. Which. Best Fit Line # one is which? 5 9 Bt Ft L # 8 7 6 5 GRAPH IN CIENCE O of th thg ot oft a rto of a xrt a grah of o k. A grah a vual rrtato of ural ata ollt fro a xrt. o of th ty of grah you ll f ar bar a grah. Th o u ot oft a l grah,

More information

Multi-linear Systems and Invariant Theory. in the Context of Computer Vision and Graphics. Class 4: Mutli-View 3D-from-2D. CS329 Stanford University

Multi-linear Systems and Invariant Theory. in the Context of Computer Vision and Graphics. Class 4: Mutli-View 3D-from-2D. CS329 Stanford University Mult-lna Sytm and Invaant hoy n th Contxt of Comut Von and Gahc Cla 4: Mutl-Vw 3D-fom-D CS39 Stanfod Unvty Amnon Shahua Cla 4 Matal W Wll Cov oday Eola Gomty and Fundamntal Matx h lan+aallax modl and latv

More information

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming CPSC 665 : An Algorithmist s Toolkit Lctur 4 : 21 Jan 2015 Lcturr: Sushant Sachdva Linar Programming Scrib: Rasmus Kyng 1. Introduction An optimization problm rquirs us to find th minimum or maximum) of

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probability and Stochastic Procsss: A Frindly Introduction for Elctrical and Computr Enginrs Roy D. Yats and David J. Goodman Problm Solutions : Yats and Goodman,4.3. 4.3.4 4.3. 4.4. 4.4.4 4.4.6 4.. 4..7

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

ANALYSIS IN THE FREQUENCY DOMAIN

ANALYSIS IN THE FREQUENCY DOMAIN ANALYSIS IN THE FREQUENCY DOMAIN SPECTRAL DENSITY Dfinition Th spctral dnsit of a S.S.P. t also calld th spctrum of t is dfind as: + { γ }. jτ γ τ F τ τ In othr words, of th covarianc function. is dfind

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

Convex Optimization. Optimality conditions. (EE227BT: UC Berkeley) Lecture 9 (Optimality; Conic duality) 9/25/14. Laurent El Ghaoui.

Convex Optimization. Optimality conditions. (EE227BT: UC Berkeley) Lecture 9 (Optimality; Conic duality) 9/25/14. Laurent El Ghaoui. Convex Optmzaton (EE227BT: UC Berkeley) Lecture 9 (Optmalty; Conc dualty) 9/25/14 Laurent El Ghaou Organsatonal Mdterm: 10/7/14 (1.5 hours, n class, double-sded cheat sheet allowed) Project: Intal proposal

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information