Convex Optimization. Optimality conditions. (EE227BT: UC Berkeley) Lecture 9 (Optimality; Conic duality) 9/25/14. Laurent El Ghaoui.

Size: px
Start display at page:

Download "Convex Optimization. Optimality conditions. (EE227BT: UC Berkeley) Lecture 9 (Optimality; Conic duality) 9/25/14. Laurent El Ghaoui."

Transcription

1 Convex Optmzaton (EE227BT: UC Berkeley) Lecture 9 (Optmalty; Conc dualty) 9/25/14 Laurent El Ghaou Organsatonal Mdterm: 10/7/14 (1.5 hours, n class, double-sded cheat sheet allowed) Project: Intal proposal by 10/28/14 Project mdpont revew: 11/4/14 Project fnal report: Fnals week Optmalty condtons Optmalty condtons mn f 0 (x) f (x) 0, = 1,..., m. Recall: f 0 (x ), x x 0 for all feasble x X Can we smplfy ths usng Lagrangan? g(λ) = nf x L(x, λ) := f 0 (x) + λ f (x) Assume strong dualty and that both p and d attaned! Thus, there exsts a par (x, λ ) such that p = f 0 (x ) = d = g(λ ) = mn L(x, λ ) L(x, λ ) f 0 (x ) = p x Thus, equaltes hold n above chan. x argmn x L(x, λ ).

2 Optmalty condtons x argmn x L(x, λ ). If f 0, f 1,..., f m are dfferentable, ths mples x L(x, λ ) x=x = f 0 (x ) + λ f (x ) = 0. Moreover, snce L(x, λ ) = f 0 (x ), we also have λ f (x ) = 0. But λ 0 and f (x ) 0, so complementary slackness λ f (x ) = 0, = 1,..., m. KKT Optmalty condtons Karush-Kuhn-Tucker Condtons (KKT) f (x ) 0, = 1,..., m (prmal feasblty) λ 0, = 1,..., m (dual feasblty) λ f (x ) = 0, = 1,..., m (compl. slackness) x L(x, λ ) x=x = 0 (Lagrangan statonarty) We showed: f strong dualty holds, and (x, λ ) exst, then KKT condtons are necessary for par (x, λ ) to be optmal If problem s convex, then KKT also suffcent Exercse: Prove the above suffcency of KKT. Hnt: Use that L(x, λ ) s convex, and conclude from KKT condtons that g(λ ) = f 0 (x ), so that (x, λ ) optmal prmal-dual par. Read Ch. 5 of BV Mnmax Example: Lasso-lke problem p := mn x Ax b 2 + λ x 1. x 1 = max x T v v 1 x 2 = max x T u u 2 1. p = mn max x u,v = max mn u,v x = max u,v = max u Saddle-pont formulaton u T (b Ax) + v T x u 2 1, u T (b Ax) + x T v u 2 1, u T b, A T u = v, u 2 1, v λ u T b, u 2 1, A T u λ. v λ v λ

3 Mnmax problems Mnmax theory treats problems nvolvng a combnaton of mnmzaton and maxmzaton Let X and Y be arbtrary nonempty sets Let φ : X Y R ± nf over y Y, followed by sup over x X sup nf φ(x, y) = sup ψ(y(x)) sup over x X, followed by nf over y Y nf sup φ(x, y) = nf ξ(x(y)) When are nf sup and sup nf equal? Weak mnmax Theorem Let φ : X Y R ± be any functon. Then, Proof: sup nf φ(x, y) nf x, y, x, y, x, sup φ(x, y) nf φ(x, y) φ(x, y) x X nf φ(x, y) sup φ(x, y ) x X y Y sup nf φ(x, y) sup φ(x, y ) x X y Y = sup nf φ(x, y) nf x X sup y Y φ(x, y ). Exercse: Show that weak dualty s follows from above mnmax nequalty. Hnt: Use φ = L (Lagrangan), and sutably choose y. Strong mnmax If nf sup equals sup nf, common value called saddle-value Value exsts f there s a saddle-pont,.e., par (x, y ) φ(x, y ) φ(x, y ) φ(x, y) for all x X, y Y. Exercse: Verfy above nequalty! Strong mnmax Classes of problems dual to each other can be generated by studyng classes of functons φ, More nterestng queston: Startng from the prmal problem over X, how to ntroduce a space Y and a useful functon φ on X Y so that we have a saddle-pont? Suffcent condtons for saddle-pont Functon φ s contnuous, and It s convex-concave (φ(, y) convex for every y Y, and φ(x, ) concave for every x X ), and Both X and Y are convex; one of them s compact.

4 Strong mnmax Def. Let φ be as before. A pont (x, y ) s a saddle-pont of φ (mn over X and max over Y) ff the nfmum n the expresson nf sup φ(x, y) s attaned at x, and the supremum n the expresson sup nf φ(x, y) s attaned at y, and these two extrema are equal. x argmn max φ(x, y) y argmax mn φ(x, y). x argmn Optmalty va mnmax max φ(x, y) y Pont (x, y ) s a saddle-pont f and only f argmax mn φ(x, y). 0 φ(x, y ) = x φ(x, y ) y φ(x, y ) When φ s of convex-concave form, yelds KKT condtons. Conc dualty Consder lnear program LP Dualty Correspondng dual s mn c T x Ax b. max b T λ A T λ + c = 0, λ 0. LP dualty facts: If ether p or d fnte, then p = d, and both prmal, dual problem have optmal solutons If p =, then d = (follows from weak-dualty) If d =, then p = (agan, weak-dualty) Proof: See lecture notes. If LP s feasble, strong dualty holds.

5 Consder SOCP SOCP Dualty mn f T x A x + b 2 c T x + d, = 1,..., m. Lagrangan (ordnary) L(x, λ) := f T x + λ ( A x + b 2 c T x + d ) Recall that x 2 = sup u T x u 2 1. λ A x + b 2 = max u (λ u ) T (A x + b ) u 2 1 = max v v T (A x + b ) v 2 λ Thus, wth v 1,..., v m also as dual varables we have p = nf x sup f T x + v T λ,v 1,...,v m (A x + b ) λ (c T x + d ) s.t. v 2 λ, = 1,..., m. The dual problem s SOCP Dualty d = sup nf λ,v 1,...,v m x f T x + v T (A x + b ) λ (c T x + d ) s.t. v 2 λ, = 1,..., m. Inner mnmzaton over x very easy (unconstraned) f + AT v λ c = 0 Dual problem becomes d = sup λ T d + v T λ,v 1,...,v m s.t. f + AT v λ c = 0, v 2 λ, = 1,..., m. Also an SOCP, lke the prmal Apply Slater to obtan a condton for strong dualty. b SDP prmal form SDP dualty p := mn Tr(CX ), s.t. Tr(A X ) = b, = 1,..., m, X 0. How to handle the matrx constrant X 0? Introduce conc Lagrangan L(X, ν, Y ) := Tr(CX ) + ν (Tr(A X ) b ) Tr(YX ) where we have a matrx dual varable Y 0. Note: Tr(YX ) 0; so p sup ν,y L(X, ν, Y ) for any feasble X As before, p d := sup ν,y 0 nf X L(X, ν, Y ) Smplfyng nf X L, we obtan dual functon b T ν f C g(ν, Y ) = ν A Y = 0, otherwse. SDP Dualty Dual problem max ν,y 0 max ν b T ν s.t. C ν A = Y 0 b T ν s.t. ν A C. Ths s the conc form we saw n Lecture 5! Weak-dualty: Tr(CX ) ν T b for any feasble par (X, ν) Strong-dualty: If prmal strctly feasble,x 0 such that Tr(A X ) = b, for = 1,..., m, we have strong dualty. Alternatvely, f dual strctly feasble, we have strong dualty. But, contrary to LPs, feasblty alone does not suffce!

6 Example: falure of strong dualty Prmal problem x p = mn x 2 0 x 1 x 2 0. X 0 x 2 0 [ ] x1 x Any prmal feasble requres 2 0; x x and x Thus, we have x 2 = 0, whereby p = 0. Prmal obj: Tr(CX ) wth c 23 = c 32 = 1/2 (rest zeros). Lagrangan: Tr([C X ] T Y ) Example: falure of strong dualty Tr([C X ] T Y ) = (x 2 + 1)y 11 x 1 y 22 + x 2 2x 2 y 23 = y 11 x 1 y 22 + x 2 x 2 y 11 2x 2 y 23. g(y ) = nf X 0 Tr([C X ]T Y ) = Dual functon y 11 y 22 = 0, 1 y 11 2y 23 = 0 Dual SDP otherwse. d = max Y 0 y 11, y 22 = 0, 1 y 11 2y 23 = 0. Any feasble Y satsfes, y 23 = 0 (snce y 22 = 0) Thus y 11 = 1, so d = 1. dualty gap: p d = 1 S. Boyd, EE364b Sldes References Bertsekas, Nonlnear Programmng

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution.

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution. Solutons HW #2 Dual of general LP. Fnd the dual functon of the LP mnmze subject to c T x Gx h Ax = b. Gve the dual problem, and make the mplct equalty constrants explct. Soluton. 1. The Lagrangan s L(x,

More information

Lagrange Multipliers Kernel Trick

Lagrange Multipliers Kernel Trick Lagrange Multplers Kernel Trck Ncholas Ruozz Unversty of Texas at Dallas Based roughly on the sldes of Davd Sontag General Optmzaton A mathematcal detour, we ll come back to SVMs soon! subject to: f x

More information

SELECTED SOLUTIONS, SECTION (Weak duality) Prove that the primal and dual values p and d defined by equations (4.3.2) and (4.3.3) satisfy p d.

SELECTED SOLUTIONS, SECTION (Weak duality) Prove that the primal and dual values p and d defined by equations (4.3.2) and (4.3.3) satisfy p d. SELECTED SOLUTIONS, SECTION 4.3 1. Weak dualty Prove that the prmal and dual values p and d defned by equatons 4.3. and 4.3.3 satsfy p d. We consder an optmzaton problem of the form The Lagrangan for ths

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014)

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014) 0-80: Advanced Optmzaton and Randomzed Methods Lecture : Convex functons (Jan 5, 04) Lecturer: Suvrt Sra Addr: Carnege Mellon Unversty, Sprng 04 Scrbes: Avnava Dubey, Ahmed Hefny Dsclamer: These notes

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpenCourseWare http://ocw.mt.edu 6.854J / 18.415J Advanced Algorthms Fall 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocw.mt.edu/terms. 18.415/6.854 Advanced Algorthms

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

Proseminar Optimierung II. Victor A. Kovtunenko SS 2012/2013: LV

Proseminar Optimierung II. Victor A. Kovtunenko SS 2012/2013: LV Prosemnar Optmerung II Vctor A. Kovtunenko Insttute for Mathematcs and Scentfc Computng, Karl-Franzens Unversty of Graz, Henrchstr. 36, 8010 Graz, Austra; Lavrent ev Insttute of Hydrodynamcs, Sberan Dvson

More information

Some modelling aspects for the Matlab implementation of MMA

Some modelling aspects for the Matlab implementation of MMA Some modellng aspects for the Matlab mplementaton of MMA Krster Svanberg krlle@math.kth.se Optmzaton and Systems Theory Department of Mathematcs KTH, SE 10044 Stockholm September 2004 1. Consdered optmzaton

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem.

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem. prnceton u. sp 02 cos 598B: algorthms and complexty Lecture 20: Lft and Project, SDP Dualty Lecturer: Sanjeev Arora Scrbe:Yury Makarychev Today we wll study the Lft and Project method. Then we wll prove

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

COS 521: Advanced Algorithms Game Theory and Linear Programming

COS 521: Advanced Algorithms Game Theory and Linear Programming COS 521: Advanced Algorthms Game Theory and Lnear Programmng Moses Charkar February 27, 2013 In these notes, we ntroduce some basc concepts n game theory and lnear programmng (LP). We show a connecton

More information

The General Nonlinear Constrained Optimization Problem

The General Nonlinear Constrained Optimization Problem St back, relax, and enjoy the rde of your lfe as we explore the condtons that enable us to clmb to the top of a concave functon or descend to the bottom of a convex functon whle constraned wthn a closed

More information

Support Vector Machines. Jie Tang Knowledge Engineering Group Department of Computer Science and Technology Tsinghua University 2012

Support Vector Machines. Jie Tang Knowledge Engineering Group Department of Computer Science and Technology Tsinghua University 2012 Support Vector Machnes Je Tang Knowledge Engneerng Group Department of Computer Scence and Technology Tsnghua Unversty 2012 1 Outlne What s a Support Vector Machne? Solvng SVMs Kernel Trcks 2 What s a

More information

Maximal Margin Classifier

Maximal Margin Classifier CS81B/Stat41B: Advanced Topcs n Learnng & Decson Makng Mamal Margn Classfer Lecturer: Mchael Jordan Scrbes: Jana van Greunen Corrected verson - /1/004 1 References/Recommended Readng 1.1 Webstes www.kernel-machnes.org

More information

Supplement: Proofs and Technical Details for The Solution Path of the Generalized Lasso

Supplement: Proofs and Technical Details for The Solution Path of the Generalized Lasso Supplement: Proofs and Techncal Detals for The Soluton Path of the Generalzed Lasso Ryan J. Tbshran Jonathan Taylor In ths document we gve supplementary detals to the paper The Soluton Path of the Generalzed

More information

The Second Anti-Mathima on Game Theory

The Second Anti-Mathima on Game Theory The Second Ant-Mathma on Game Theory Ath. Kehagas December 1 2006 1 Introducton In ths note we wll examne the noton of game equlbrum for three types of games 1. 2-player 2-acton zero-sum games 2. 2-player

More information

Advanced Introduction to Machine Learning Homework 1 Solutions October 6, 2014

Advanced Introduction to Machine Learning Homework 1 Solutions October 6, 2014 10-715 Advanced Introducton to Machne Learnng Homewor 1 Solutons October 6, 2014 1 Regresson Samy 1.1 Mult-Tas Regreson 1. The Cost functon can be decomposed as, J 0 Θ Y j,: Θ j,: X 2 j1 where Y j,:, Θ

More information

p(z) = 1 a e z/a 1(z 0) yi a i x (1/a) exp y i a i x a i=1 n i=1 (y i a i x) inf 1 (y Ax) inf Ax y (1 ν) y if A (1 ν) = 0 otherwise

p(z) = 1 a e z/a 1(z 0) yi a i x (1/a) exp y i a i x a i=1 n i=1 (y i a i x) inf 1 (y Ax) inf Ax y (1 ν) y if A (1 ν) = 0 otherwise Dustn Lennon Math 582 Convex Optmzaton Problems from Boy, Chapter 7 Problem 7.1 Solve the MLE problem when the nose s exponentally strbute wth ensty p(z = 1 a e z/a 1(z 0 The MLE s gven by the followng:

More information

Perfect Competition and the Nash Bargaining Solution

Perfect Competition and the Nash Bargaining Solution Perfect Competton and the Nash Barganng Soluton Renhard John Department of Economcs Unversty of Bonn Adenauerallee 24-42 53113 Bonn, Germany emal: rohn@un-bonn.de May 2005 Abstract For a lnear exchange

More information

Lecture 6: Conic Optimization September 8

Lecture 6: Conic Optimization September 8 IE 598: Big Data Optimization Fall 2016 Lecture 6: Conic Optimization September 8 Lecturer: Niao He Scriber: Juan Xu Overview In this lecture, we finish up our previous discussion on optimality conditions

More information

Mixed Taxation and Production Efficiency

Mixed Taxation and Production Efficiency Floran Scheuer 2/23/2016 Mxed Taxaton and Producton Effcency 1 Overvew 1. Unform commodty taxaton under non-lnear ncome taxaton Atknson-Stgltz (JPubE 1976) Theorem Applcaton to captal taxaton 2. Unform

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

FIRST AND SECOND ORDER NECESSARY OPTIMALITY CONDITIONS FOR DISCRETE OPTIMAL CONTROL PROBLEMS

FIRST AND SECOND ORDER NECESSARY OPTIMALITY CONDITIONS FOR DISCRETE OPTIMAL CONTROL PROBLEMS Yugoslav Journal of Operatons Research 6 (6), umber, 53-6 FIRST D SECOD ORDER ECESSRY OPTIMLITY CODITIOS FOR DISCRETE OPTIML COTROL PROBLEMS Boban MRIKOVIĆ Faculty of Mnng and Geology, Unversty of Belgrade

More information

Natural Language Processing and Information Retrieval

Natural Language Processing and Information Retrieval Natural Language Processng and Informaton Retreval Support Vector Machnes Alessandro Moschtt Department of nformaton and communcaton technology Unversty of Trento Emal: moschtt@ds.untn.t Summary Support

More information

Lecture 20: November 7

Lecture 20: November 7 0-725/36-725: Convex Optmzaton Fall 205 Lecturer: Ryan Tbshran Lecture 20: November 7 Scrbes: Varsha Chnnaobreddy, Joon Sk Km, Lngyao Zhang Note: LaTeX template courtesy of UC Berkeley EECS dept. Dsclamer:

More information

Appendix B. Criterion of Riemann-Stieltjes Integrability

Appendix B. Criterion of Riemann-Stieltjes Integrability Appendx B. Crteron of Remann-Steltes Integrablty Ths note s complementary to [R, Ch. 6] and [T, Sec. 3.5]. The man result of ths note s Theorem B.3, whch provdes the necessary and suffcent condtons for

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Problems; Algorithms - A) SUVRIT SRA Massachusetts Institute of Technology PKU Summer School on Data Science (July 2017) Course materials http://suvrit.de/teaching.html

More information

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14 APPROXIMAE PRICES OF BASKE AND ASIAN OPIONS DUPON OLIVIER Prema 14 Contents Introducton 1 1. Framewor 1 1.1. Baset optons 1.. Asan optons. Computng the prce 3. Lower bound 3.1. Closed formula for the prce

More information

NP-Completeness : Proofs

NP-Completeness : Proofs NP-Completeness : Proofs Proof Methods A method to show a decson problem Π NP-complete s as follows. (1) Show Π NP. (2) Choose an NP-complete problem Π. (3) Show Π Π. A method to show an optmzaton problem

More information

Lecture 17: Lee-Sidford Barrier

Lecture 17: Lee-Sidford Barrier CSE 599: Interplay between Convex Optmzaton and Geometry Wnter 2018 Lecturer: Yn Tat Lee Lecture 17: Lee-Sdford Barrer Dsclamer: Please tell me any mstake you notced. In ths lecture, we talk about the

More information

OPTIMALITY CONDITIONS FOR NONLINEAR PROGRAMMING WITH MIXED CONSTRAINTS AND ρ -LOCALLY ARCWISE CONNECTED FUNCTIONS

OPTIMALITY CONDITIONS FOR NONLINEAR PROGRAMMING WITH MIXED CONSTRAINTS AND ρ -LOCALLY ARCWISE CONNECTED FUNCTIONS HE PUBLSHNG HOUSE PROCEEDNGS OF HE ROMANAN ACADEMY, Seres A, OF HE ROMANAN ACADEMY Volume 7, Number /6, pp - OPMALY CONDONS FOR NONLNEAR PROGRAMMNG WH MXED CONSRANS AND ρ -LOCALLY ARCWSE CONNECED FUNCONS

More information

Lecture: Duality of LP, SOCP and SDP

Lecture: Duality of LP, SOCP and SDP 1/33 Lecture: Duality of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2017.html wenzw@pku.edu.cn Acknowledgement:

More information

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numerical methods for pricing American type derivatives Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

More information

PROBLEM SET 7 GENERAL EQUILIBRIUM

PROBLEM SET 7 GENERAL EQUILIBRIUM PROBLEM SET 7 GENERAL EQUILIBRIUM Queston a Defnton: An Arrow-Debreu Compettve Equlbrum s a vector of prces {p t } and allocatons {c t, c 2 t } whch satsfes ( Gven {p t }, c t maxmzes βt ln c t subject

More information

Economics 101. Lecture 4 - Equilibrium and Efficiency

Economics 101. Lecture 4 - Equilibrium and Efficiency Economcs 0 Lecture 4 - Equlbrum and Effcency Intro As dscussed n the prevous lecture, we wll now move from an envronment where we looed at consumers mang decsons n solaton to analyzng economes full of

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

Convex Optimization & Lagrange Duality

Convex Optimization & Lagrange Duality Convex Optimization & Lagrange Duality Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Convex optimization Optimality condition Lagrange duality KKT

More information

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India February 2008

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India February 2008 Game Theory Lecture Notes By Y. Narahar Department of Computer Scence and Automaton Indan Insttute of Scence Bangalore, Inda February 2008 Chapter 10: Two Person Zero Sum Games Note: Ths s a only a draft

More information

1 Convex Optimization

1 Convex Optimization Convex Optmzaton We wll consder convex optmzaton problems. Namely, mnmzaton problems where the objectve s convex (we assume no constrants for now). Such problems often arse n machne learnng. For example,

More information

Worst-Case Robust Multiuser Transmit Beamforming Using Semidefinite Relaxation: Duality and Implications

Worst-Case Robust Multiuser Transmit Beamforming Using Semidefinite Relaxation: Duality and Implications Worst-Case Robust Multuser Transmt Beamforg Usng Semdefnte Relaxaton: Dualty and mplcatons Tsung-Hu Chang, Wng-Kn Ma, and Chong-Yung Ch nsttute of Commun. Eng. & Dept. of Elect. Eng. Natonal Tsng Hua Unversty,

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

Lecture 3: Dual problems and Kernels

Lecture 3: Dual problems and Kernels Lecture 3: Dual problems and Kernels C4B Machne Learnng Hlary 211 A. Zsserman Prmal and dual forms Lnear separablty revsted Feature mappng Kernels for SVMs Kernel trck requrements radal bass functons SVM

More information

Lecture: Duality.

Lecture: Duality. Lecture: Duality http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/35 Lagrange dual problem weak and strong

More information

Computing Correlated Equilibria in Multi-Player Games

Computing Correlated Equilibria in Multi-Player Games Computng Correlated Equlbra n Mult-Player Games Chrstos H. Papadmtrou Presented by Zhanxang Huang December 7th, 2005 1 The Author Dr. Chrstos H. Papadmtrou CS professor at UC Berkley (taught at Harvard,

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

ECE 534: Elements of Information Theory. Solutions to Midterm Exam (Spring 2006)

ECE 534: Elements of Information Theory. Solutions to Midterm Exam (Spring 2006) ECE 534: Elements of Informaton Theory Solutons to Mdterm Eam (Sprng 6) Problem [ pts.] A dscrete memoryless source has an alphabet of three letters,, =,, 3, wth probabltes.4,.4, and., respectvely. (a)

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

On the Global Linear Convergence of the ADMM with Multi-Block Variables

On the Global Linear Convergence of the ADMM with Multi-Block Variables On the Global Lnear Convergence of the ADMM wth Mult-Block Varables Tany Ln Shqan Ma Shuzhong Zhang May 31, 01 Abstract The alternatng drecton method of multplers ADMM has been wdely used for solvng structured

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Konstantn Tretyakov (kt@ut.ee) MTAT.03.227 Machne Learnng So far Supervsed machne learnng Lnear models Least squares regresson Fsher s dscrmnant, Perceptron, Logstc model Non-lnear

More information

THE STRUCTURED DISTANCE TO ILL-POSEDNESS FOR CONIC SYSTEMS. A.S. Lewis. April 18, 2003

THE STRUCTURED DISTANCE TO ILL-POSEDNESS FOR CONIC SYSTEMS. A.S. Lewis. April 18, 2003 THE STRUCTURED DISTANCE TO ILL-POSEDNESS FOR CONIC SYSTEMS A.S. Lews Aprl 18, 2003 Key words: condton number, conc system, dstance to nfeasblty, structured sngular values, sublnear maps, surjectvty AMS

More information

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Duality Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Lagrangian Consider the optimization problem in standard form

More information

( ) 2 ( ) ( ) Problem Set 4 Suggested Solutions. Problem 1

( ) 2 ( ) ( ) Problem Set 4 Suggested Solutions. Problem 1 Problem Set 4 Suggested Solutons Problem (A) The market demand functon s the soluton to the followng utlty-maxmzaton roblem (UMP): The Lagrangean: ( x, x, x ) = + max U x, x, x x x x st.. x + x + x y x,

More information

6) Derivatives, gradients and Hessian matrices

6) Derivatives, gradients and Hessian matrices 30C00300 Mathematcal Methods for Economsts (6 cr) 6) Dervatves, gradents and Hessan matrces Smon & Blume chapters: 14, 15 Sldes by: Tmo Kuosmanen 1 Outlne Defnton of dervatve functon Dervatve notatons

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

Lecture 6: Support Vector Machines

Lecture 6: Support Vector Machines Lecture 6: Support Vector Machnes Marna Melă mmp@stat.washngton.edu Department of Statstcs Unversty of Washngton November, 2018 Lnear SVM s The margn and the expected classfcaton error Maxmum Margn Lnear

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Compiled by David Rosenberg Abstract Boyd and Vandenberghe s Convex Optimization book is very well-written and a pleasure to read. The

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Konstantn Tretyakov (kt@ut.ee) MTAT.03.227 Machne Learnng So far So far Supervsed machne learnng Lnear models Non-lnear models Unsupervsed machne learnng Generc scaffoldng So far

More information

General viscosity iterative method for a sequence of quasi-nonexpansive mappings

General viscosity iterative method for a sequence of quasi-nonexpansive mappings Avalable onlne at www.tjnsa.com J. Nonlnear Sc. Appl. 9 (2016), 5672 5682 Research Artcle General vscosty teratve method for a sequence of quas-nonexpansve mappngs Cuje Zhang, Ynan Wang College of Scence,

More information

Inexact Alternating Minimization Algorithm for Distributed Optimization with an Application to Distributed MPC

Inexact Alternating Minimization Algorithm for Distributed Optimization with an Application to Distributed MPC Inexact Alternatng Mnmzaton Algorthm for Dstrbuted Optmzaton wth an Applcaton to Dstrbuted MPC Ye Pu, Coln N. Jones and Melane N. Zelnger arxv:608.0043v [math.oc] Aug 206 Abstract In ths paper, we propose

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Convex Optimization Boyd & Vandenberghe. 5. Duality

Convex Optimization Boyd & Vandenberghe. 5. Duality 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

coordinates. Then, the position vectors are described by

coordinates. Then, the position vectors are described by Revewng, what we have dscussed so far: Generalzed coordnates Any number of varables (say, n) suffcent to specfy the confguraton of the system at each nstant to tme (need not be the mnmum number). In general,

More information

Lagrangian Duality and Convex Optimization

Lagrangian Duality and Convex Optimization Lagrangian Duality and Convex Optimization David Rosenberg New York University February 11, 2015 David Rosenberg (New York University) DS-GA 1003 February 11, 2015 1 / 24 Introduction Why Convex Optimization?

More information

Support Vector Machines

Support Vector Machines CS 2750: Machne Learnng Support Vector Machnes Prof. Adrana Kovashka Unversty of Pttsburgh February 17, 2016 Announcement Homework 2 deadlne s now 2/29 We ll have covered everythng you need today or at

More information

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 ) Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

More information

University of California, Davis Date: June 22, 2009 Department of Agricultural and Resource Economics. PRELIMINARY EXAMINATION FOR THE Ph.D.

University of California, Davis Date: June 22, 2009 Department of Agricultural and Resource Economics. PRELIMINARY EXAMINATION FOR THE Ph.D. Unversty of Calforna, Davs Date: June 22, 29 Department of Agrcultural and Resource Economcs Department of Economcs Tme: 5 hours Mcroeconomcs Readng Tme: 2 mnutes PRELIMIARY EXAMIATIO FOR THE Ph.D. DEGREE

More information

MEM Chapter 4b. LMI Lab commands

MEM Chapter 4b. LMI Lab commands 1 MEM8-7 Chapter 4b LMI Lab commands setlms lmvar lmterm getlms lmedt lmnbr matnbr lmnfo feasp dec2mat evallm showlm setmvar mat2dec mncx dellm delmvar gevp 2 Intalzng the LMI System he descrpton of an

More information

14 Lagrange Multipliers

14 Lagrange Multipliers Lagrange Multplers 14 Lagrange Multplers The Method of Lagrange Multplers s a powerful technque for constraned optmzaton. Whle t has applcatons far beyond machne learnng t was orgnally developed to solve

More information

CSCE 790S Background Results

CSCE 790S Background Results CSCE 790S Background Results Stephen A. Fenner September 8, 011 Abstract These results are background to the course CSCE 790S/CSCE 790B, Quantum Computaton and Informaton (Sprng 007 and Fall 011). Each

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Support Vector Machines. Vibhav Gogate The University of Texas at dallas Support Vector Machnes Vbhav Gogate he Unversty of exas at dallas What We have Learned So Far? 1. Decson rees. Naïve Bayes 3. Lnear Regresson 4. Logstc Regresson 5. Perceptron 6. Neural networks 7. K-Nearest

More information

Lab session: numerical simulations of sponateous polarization

Lab session: numerical simulations of sponateous polarization Lab sesson: numercal smulatons of sponateous polarzaton Emerc Boun & Vncent Calvez CNRS, ENS Lyon, France CIMPA, Hammamet, March 2012 Spontaneous cell polarzaton: the 1D case The Hawkns-Voturez model for

More information

Fuzzy Approaches for Multiobjective Fuzzy Random Linear Programming Problems Through a Probability Maximization Model

Fuzzy Approaches for Multiobjective Fuzzy Random Linear Programming Problems Through a Probability Maximization Model Fuzzy Approaches for Multobjectve Fuzzy Random Lnear Programmng Problems Through a Probablty Maxmzaton Model Htosh Yano and Kota Matsu Abstract In ths paper, two knds of fuzzy approaches are proposed for

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

Duality in linear programming

Duality in linear programming MPRA Munch Personal RePEc Archve Dualty n lnear programmng Mhaela Albc and Dela Teselos and Raluca Prundeanu and Ionela Popa Unversty Constantn Brancoveanu Ramncu Valcea 7 January 00 Onlne at http://mpraubun-muenchende/986/

More information

THE ARIMOTO-BLAHUT ALGORITHM FOR COMPUTATION OF CHANNEL CAPACITY. William A. Pearlman. References: S. Arimoto - IEEE Trans. Inform. Thy., Jan.

THE ARIMOTO-BLAHUT ALGORITHM FOR COMPUTATION OF CHANNEL CAPACITY. William A. Pearlman. References: S. Arimoto - IEEE Trans. Inform. Thy., Jan. THE ARIMOTO-BLAHUT ALGORITHM FOR COMPUTATION OF CHANNEL CAPACITY Wllam A. Pearlman 2002 References: S. Armoto - IEEE Trans. Inform. Thy., Jan. 1972 R. Blahut - IEEE Trans. Inform. Thy., July 1972 Recall

More information

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES BÂRZĂ, Slvu Faculty of Mathematcs-Informatcs Spru Haret Unversty barza_slvu@yahoo.com Abstract Ths paper wants to contnue

More information

Lecture 18: Optimization Programming

Lecture 18: Optimization Programming Fall, 2016 Outline Unconstrained Optimization 1 Unconstrained Optimization 2 Equality-constrained Optimization Inequality-constrained Optimization Mixture-constrained Optimization 3 Quadratic Programming

More information

REAL ANALYSIS I HOMEWORK 1

REAL ANALYSIS I HOMEWORK 1 REAL ANALYSIS I HOMEWORK CİHAN BAHRAN The questons are from Tao s text. Exercse 0.0.. If (x α ) α A s a collecton of numbers x α [0, + ] such that x α

More information

Exercise Solutions to Real Analysis

Exercise Solutions to Real Analysis xercse Solutons to Real Analyss Note: References refer to H. L. Royden, Real Analyss xersze 1. Gven any set A any ɛ > 0, there s an open set O such that A O m O m A + ɛ. Soluton 1. If m A =, then there

More information

Welfare Properties of General Equilibrium. What can be said about optimality properties of resource allocation implied by general equilibrium?

Welfare Properties of General Equilibrium. What can be said about optimality properties of resource allocation implied by general equilibrium? APPLIED WELFARE ECONOMICS AND POLICY ANALYSIS Welfare Propertes of General Equlbrum What can be sad about optmalty propertes of resource allocaton mpled by general equlbrum? Any crteron used to compare

More information

Maximizing the number of nonnegative subsets

Maximizing the number of nonnegative subsets Maxmzng the number of nonnegatve subsets Noga Alon Hao Huang December 1, 213 Abstract Gven a set of n real numbers, f the sum of elements of every subset of sze larger than k s negatve, what s the maxmum

More information

Minimax Optimal Control of Stochastic Uncertain Systems with Relative Entropy Constraints

Minimax Optimal Control of Stochastic Uncertain Systems with Relative Entropy Constraints [IEEE Trans. Aut. Control, 45, 398-412, 2000] Mnmax Optmal Control of Stochastc Uncertan Systems wth Relatve Entropy Constrants Ian R. Petersen Matthew R. James Paul Dupus Abstract Ths paper consders a

More information

Global Optimization of Truss. Structure Design INFORMS J. N. Hooker. Tallys Yunes. Slide 1

Global Optimization of Truss. Structure Design INFORMS J. N. Hooker. Tallys Yunes. Slide 1 Slde 1 Global Optmzaton of Truss Structure Desgn J. N. Hooker Tallys Yunes INFORMS 2010 Truss Structure Desgn Select sze of each bar (possbly zero) to support the load whle mnmzng weght. Bar szes are dscrete.

More information

Communication Complexity 16:198: February Lecture 4. x ij y ij

Communication Complexity 16:198: February Lecture 4. x ij y ij Communcaton Complexty 16:198:671 09 February 2010 Lecture 4 Lecturer: Troy Lee Scrbe: Rajat Mttal 1 Homework problem : Trbes We wll solve the thrd queston n the homework. The goal s to show that the nondetermnstc

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Hidden Markov Models & The Multivariate Gaussian (10/26/04)

Hidden Markov Models & The Multivariate Gaussian (10/26/04) CS281A/Stat241A: Statstcal Learnng Theory Hdden Markov Models & The Multvarate Gaussan (10/26/04) Lecturer: Mchael I. Jordan Scrbes: Jonathan W. Hu 1 Hdden Markov Models As a bref revew, hdden Markov models

More information

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010 I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec - Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0

More information

Linear precoding via conic optimization for fixed MIMO receivers

Linear precoding via conic optimization for fixed MIMO receivers Lnear precodng va conc optmzaton for fxed MIMO recevers Am Wesel, Yonna C Eldar, and Shlomo Shama (Shtz) Department of Electrcal Engneerng Technon - Israel Insttute of Technology June 8, 004 Abstract We

More information