Physics 9 Wednesday, February 5, 2014

Size: px
Start display at page:

Download "Physics 9 Wednesday, February 5, 2014"

Transcription

1 Physics 9 Wednesday, February 5, 2014 HW3 (fluids) due Friday. I reserved DRL 3W2 from 6:30pm to 9:30pm on Wednesdays (usually Zoey) and Thursdays (usually Bill) for HW help. Quiz #1 (10 minutes at end of class) today, adapting some problem from HW1. All quizzes together are only 5% of course grade, just to motivate you to understand your homework. Calculator and one sheet of notes OK. Goal for the next two weeks is to gain some insight into how a combustion engine, a refrigerator, and a heat pump work.

2 One more thing about the Sun s rays... Remember that sun s intensity scales like intensity cos θ where θ is the angle between the sun s rays and the surface normal. In your senior studio work, you may see this in Ecotect!

3

4

5 What month is this?

6 About how much solar power is incident on one square meter of flat, level ground near Philadelphia, at noon on March 21? (Note that 70% 1350 W/m W.) (A) 1000 watts sin(40 ) 640 watts (B) 1000 watts cos(40 ) 770 watts (C) 1000 watts tan(40 ) 840 watts (D) 1000 watts (E) 1350 watts (This is somewhat artificial, since we re using some inexact numbers as input, but I want you to think about the geometry.)

7 About how much solar power is incident on one square meter of a vertical, south-facing window near Philadelphia, at noon on March 21? (Note that 70% 1350 W/m W.) (A) 1000 watts sin(40 ) 640 watts (B) 1000 watts cos(40 ) 770 watts (C) 1000 watts tan(40 ) 840 watts (D) 1000 watts (E) 1350 watts (This is somewhat artificial, since we re using some inexact numbers as input, but I want you to think about the geometry.)

8 Giancoli s illustration of solid / liquid / gas (You didn t read this chapter, but you ve probably seen this before.)

9 Atomic mass unit (u): 1 u = 1 gram mole = kg This is very close (within 1%) to the mass of a proton: m proton = kg A dozen eggs is 12 eggs. A mole of protons is N A = protons. A 12 C nucleus contains 6 protons + 6 neutrons. So a carbon atom has a mass of 12 u, or 12 g/mol. A mole of protons has a mass (within 1%) of 1.0 gram. A mole of 12 C atoms has a mass (by definition of mole) of exactly 12 grams.

10 An oxygen nucleus contains 8 protons + 8 neutrons = 16 nucleons A hydrogen nucleus contains just 1 proton. What is the mass of a mole of water (H 2 O) molecules? (A) kg (B) kg (C) kg (D) kg (E) kg

11 Ideal gas law Anybody remember this from high school chemistry? PV = nrt R = J mol K R = L atm mol K Notice that temperature is measured in K (kelvin). To get temperature in K, take temperature in C and add

12 By the way, how does a temperature difference T = 1 K compare with a temperature difference T = 1 C? (A) A temperature difference of 1 kelvin is bigger than a temperature difference of 1 degree Celsius. (B) A temperature difference of 1 kelvin is smaller than a temperature difference of 1 degree Celsius. (C) A temperature difference of 1 kelvin is the same as a temperature difference of 1 degree Celsius.

13 By the way, how does a temperature difference T = 1 F compare with a temperature difference T = 1 C? (A) A temperature difference of 1 degree Farenheit is 1.8 as large as temperature difference of 1 degree Celsius. (B) A temperature difference of 1 degree Celsius is 1.8 as large as temperature difference of 1 degree Farenheit. (C) A temperature difference of 1 degree Farenheit is the same as a temperature difference of 1 degree Celsius.

14 What is the final pressure P f of a sealed bottle of air after you raise its temperature from 27 C to 57 C? (A) P f = 0.47 P i (B) P f = 0.9 P i (C) P f = 1.1 P i (D) P f = 2.1 P i (E) not enough information to decide

15 A cylinder initially contains one liter of air at atmospheric pressure. I then compress the gas isothermally (i.e. at constant temperature) to half its initial volume. What is the final pressure of the gas (in atmospheres)? (A) P f = 0.50 atm (B) P f = 0.71 atm (C) P f = 1.00 atm (D) P f = 1.41 atm (E) P f = 2.00 atm (F) not enough information to decide

16 The ideal gas law you learned in high school chemistry was: PV = nrt R = J mol K R = L atm mol K The analogous ideal gas law from Mazur s Chapter 19 is: PV = Nk B T where k B is Boltzmann s constant. A key difference is that N counts molecules, while n counts moles of molecules. k B = J K Q: what do you get when you divide J mol K by /mol?

17 Boltzmann s constant k B = J/K 1 2 k BT is the average thermal energy per degree of freedom. A single atom of monotomic gas can move from place to place in three dimensions, but can t rotate or vibrate, so it has 3 d.o.f. 1 2 mv 2 rms = 3 2 k BT The average energy of an atom or molecule is directly proportional to temperature. v rms means the root mean squared speed. 3kB T v rms = m for an ideal gas. The lighter molecules tend to move faster!

18 Boltzmann s constant v rms = 3kB T for an ideal gas. The lighter molecules tend to move faster! For helium gas (4 g/mol) at room temperature, m v rms 1360 m/s For nitrogen gas (N 2, 28 g/mol) at 298 K, v rms 520 m/s For gasoline vapor (C 8 H 18, 114 g/mol) at 298 K, v rms 260 m/s We saw this in action in the diffusion video: lower-mass molecules diffused farther in a given time than the more massive ones.

19 Nitrogen (N 2 ) makes up about 78% of the air we breathe, while oxygen (O 2 ) accounts for approximately 21%. On average, are the nitrogen or the oxygen molecules moving faster? (The mass of an N 2 molecule is 28 amu, while the mass of an O 2 molecule is 32 amu.) (A) The rms speed of the N 2 molecules is as large as the rms speed of the O 2 molecules, so the N 2 molecules move slightly faster, on average (B) The rms speed of the N 2 molecules is as large as the rms speed of the O 2 molecules, so the N 2 molecules move slightly faster, on average. (C) The rms speed of the O 2 molecules is as large as the rms speed of the N 2 molecules, so the O 2 molecules move slightly faster, on average (D) The rms speed of the O 2 molecules is as large as the rms speed of the N 2 molecules, so the O 2 molecules move slightly faster, on average.

20 A gas atom of mass m moves in a straight line with speed v or 2v in a box with length L or 2L, as shown below. The atom collides elastically with the right wall, travels to the left wall, collides elastically, returns to the right wall and repeats this process. In which case does the atom exert the largest average force on the walls?

21 Bigger thermal energy higher rms speed larger force per unit area (pressure) Smaller volume particles collide more often with walls larger force per unit area (pressure) More particles in container collisions with walls occur more often larger force per unit area (pressure) P = Nk BT V 1 2 mv 2 rms = 3 2 k BT

22 Physics 9 Homework Quiz #1 ( ). 10 minutes. Work alone. Closed book, one page of handwritten notes OK. Calculator OK but not needed. Relax! All quizzes together make up only 5% of course grade. 80% semester quiz total gets full credit. I decide to make my own guitar-like instrument, using a string that has a length of 1.00 m and a mass of kg. The string is held fixed at both ends, under tension of 100 N. I pluck the middle of the string and let the string vibrate in a standing-wave pattern. (a) Sketch the motion of the string when it is oscillating at its fundamental (lowest) frequency. (b) What is the wavelength λ (for the standing wave on the string) when the string is vibrating at this fundamental frequency? (c) Which of the following expressions for the speed of wave propagation on the string is correct? (Circle your choice.) (d) Using your answer from part (c), what is the speed of wave propagation on the string? The answer should be a number, with correct units. (e) What is the fundamental frequency (in hertz) for the vibrating string?

23 Physics 9 Wednesday, February 5, 2014 HW3 (fluids) due Friday. I reserved DRL 3W2 from 6:30pm to 9:30pm on Wednesdays (usually Zoey) and Thursdays (usually Bill) for HW help. Goal for the next two weeks is to gain some insight into how a combustion engine, a refrigerator, and a heat pump work.

Physics 9 Monday, March 21, 2016

Physics 9 Monday, March 21, 2016 Physics 9 Monday, March 21, 2016 Turn in HW7. Pick up HW8 handout (due next Monday). We ll spend a week or two on heat, then move into electricity and circuits. Meanwhile, you ll start reading about electricity.

More information

Red Sox - Yankees. Baseball can not get more exciting than these games. Physics 121, April 17, Kinetic theory of gases.

Red Sox - Yankees. Baseball can not get more exciting than these games. Physics 121, April 17, Kinetic theory of gases. Red Sox - Yankees. Baseball can not get more exciting than these games. Physics 121, April 17, 2008. Kinetic theory of gases. http://eml.ou.edu/physics/module/thermal/ketcher/idg4.avi Physics 121. April

More information

Atomic Mass and Atomic Mass Number. Moles and Molar Mass. Moles and Molar Mass

Atomic Mass and Atomic Mass Number. Moles and Molar Mass. Moles and Molar Mass Atomic Mass and Atomic Mass Number The mass of an atom is determined primarily by its most massive constituents: protons and neutrons in its nucleus. The sum of the number of protons and neutrons is called

More information

Laws versus Theories

Laws versus Theories Announcements Text HW due tomorrow (Friday) Online HW #3 (Type 1) due Monday, September 17 by 7:00 p.m. Online HW #3 (Type 2) due Wednesday, September 19 by 7:00 p.m. Lab write-up for Gases Lab due Wednesday,

More information

Physics 1501 Lecture 35

Physics 1501 Lecture 35 Physics 1501: Lecture 35 Todays Agenda Announcements Homework #11 (Dec. 2) and #12 (Dec. 9): 2 lowest dropped Honors students: see me after the class! Todays topics Chap.16: Temperature and Heat» Latent

More information

MP203 Statistical and Thermal Physics. Jon-Ivar Skullerud and James Smith

MP203 Statistical and Thermal Physics. Jon-Ivar Skullerud and James Smith MP203 Statistical and Thermal Physics Jon-Ivar Skullerud and James Smith October 3, 2017 1 Contents 1 Introduction 3 1.1 Temperature and thermal equilibrium.................... 4 1.1.1 The zeroth law of

More information

Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov

Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov 18-23 2015 MSU Physics 231 Fall 2015 1 homework 3 rd midterm final Thursday 8-10 pm makeup Friday final 9-11 am MSU

More information

Unit Outline. I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI.

Unit Outline. I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI. Unit 10: Gases Unit Outline I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI. Real Gases I. Opening thoughts Have you ever: Seen a hot air balloon?

More information

PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz

PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz PHY101: Major Concepts in Physics I Photo: J. M. Schwarz Announcements We will be talking about the laws of thermodynamics today, which will help get you ready for next week s lab on the Stirling engine.

More information

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Laws Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Properties 1) Gases have mass - the density of the gas is very low in comparison to solids and liquids, which make it

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

7. (2) Of these elements, which has the greatest number of atoms in a mole? a. hydrogen (H) b. oxygen (O) c. iron (Fe) d. gold (Au) e. all tie.

7. (2) Of these elements, which has the greatest number of atoms in a mole? a. hydrogen (H) b. oxygen (O) c. iron (Fe) d. gold (Au) e. all tie. General Physics I Exam 5 - Chs. 13,14,15 - Heat, Kinetic Theory, Thermodynamics Dec. 14, 2010 Name Rec. Instr. Rec. Time For full credit, make your work clear to the grader. Show formulas used, essential

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

Homework: 13, 14, 18, 20, 24 (p )

Homework: 13, 14, 18, 20, 24 (p ) Homework: 13, 14, 18, 0, 4 (p. 531-53) 13. A sample of an ideal gas is taken through the cyclic process abca shown in the figure below; at point a, T=00 K. (a) How many moles of gas are in the sample?

More information

Chapter 14. The Ideal Gas Law and Kinetic Theory

Chapter 14. The Ideal Gas Law and Kinetic Theory Chapter 14 The Ideal Gas Law and Kinetic Theory 14.1 Molecular Mass, the Mole, and Avogadro s Number The atomic number of an element is the # of protons in its nucleus. Isotopes of an element have different

More information

Announcements 13 Nov 2014

Announcements 13 Nov 2014 Announcements 13 Nov 2014 1. Prayer 2. Exam 3 starts on Tues Nov 25 a. Covers Ch 9-12, HW 18-24 b. Late fee on Wed after Thanksgiving, 3 pm c. Closes on Thursday after Thanksgiving, 3 pm d. Jerika review

More information

CHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER

CHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER CHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER This brief chapter provides an introduction to thermodynamics. The goal is to use phenomenological descriptions of the microscopic details of matter in order

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

Gases. Measuring Temperature Fahrenheit ( o F): Exceptions to the Ideal Gas Law. Kinetic Molecular Theory

Gases. Measuring Temperature Fahrenheit ( o F): Exceptions to the Ideal Gas Law. Kinetic Molecular Theory Ideal gas: a gas in which all collisions between atoms or molecules are perfectly elastic (no energy lost) there are no intermolecular attractive forces Think of an ideal gas as a collection of perfectly

More information

Thermodynamics. Atoms are in constant motion, which increases with temperature.

Thermodynamics. Atoms are in constant motion, which increases with temperature. Thermodynamics SOME DEFINITIONS: THERMO related to heat DYNAMICS the study of motion SYSTEM an object or set of objects ENVIRONMENT the rest of the universe MICROSCOPIC at an atomic or molecular level

More information

Summary of Gas Laws V T. Boyle s Law (T and n constant) Charles Law (p and n constant) Combined Gas Law (n constant) 1 =

Summary of Gas Laws V T. Boyle s Law (T and n constant) Charles Law (p and n constant) Combined Gas Law (n constant) 1 = Summary of Gas Laws Boyle s Law (T and n constant) p 1 V 1 = p 2 V 2 Charles Law (p and n constant) V 1 = T 1 V T 2 2 Combined Gas Law (n constant) pv 1 T 1 1 = pv 2 T 2 2 1 Ideal Gas Equation pv = nrt

More information

Videos 1. Crash course Partial pressures: YuWy6fYEaX9mQQ8oGr 2. Crash couse Effusion/Diffusion:

Videos 1. Crash course Partial pressures:   YuWy6fYEaX9mQQ8oGr 2. Crash couse Effusion/Diffusion: Videos 1. Crash course Partial pressures: https://youtu.be/jbqtqcunyza?list=pl8dpuualjxtphzz YuWy6fYEaX9mQQ8oGr 2. Crash couse Effusion/Diffusion: https://youtu.be/tlrzafu_9kg?list=pl8dpuualjxtph zzyuwy6fyeax9mqq8ogr

More information

Chapter 5. The Gas Laws

Chapter 5. The Gas Laws Chapter 5 The Gas Laws 1 Pressure Force per unit area. Gas molecules fill container. Molecules move around and hit sides. Collisions are the force. Container has the area. Measured with a barometer. 2

More information

Chapter 10 Notes: Gases

Chapter 10 Notes: Gases Chapter 10 Notes: Gases Watch Bozeman Videos & other videos on my website for additional help: Big Idea 2: Gases 10.1 Characteristics of Gases Read p. 398-401. Answer the Study Guide questions 1. Earth

More information

Fluids Bernoulli s equation conclusion

Fluids Bernoulli s equation conclusion Chapter 11 Fluids Bernoulli s equation conclusion 11.9 Bernoulli s Equation W NC = ( P 2! P 1 )V W NC = E 1! E 2 = 1 mv 2 + mgy 2 1 1 ( )! ( 1 "v 2 + "gy 2 2 2 ) ( P 2! P 1 ) = 1 "v 2 + "gy 2 1 1 NC Work

More information

Unit 08 Review: The KMT and Gas Laws

Unit 08 Review: The KMT and Gas Laws Unit 08 Review: The KMT and Gas Laws It may be helpful to view the animation showing heating curve and changes of state: http://cwx.prenhall.com/petrucci/medialib/media_portfolio/text_images/031_changesstate.mov

More information

6. (6) Show all the steps of how to convert 50.0 F into its equivalent on the Kelvin scale.

6. (6) Show all the steps of how to convert 50.0 F into its equivalent on the Kelvin scale. General Physics I Quiz 8 - Ch. 13 - Temperature & Kinetic Theory July 30, 2009 Name: Make your work clear to the grader. Show formulas used. Give correct units and significant figures. Partial credit is

More information

Fluids Bernoulli s equation conclusion

Fluids Bernoulli s equation conclusion Chapter 11 Fluids Bernoulli s equation conclusion 11.9 Bernoulli s Equation W NC = ( P 2! P 1 )V W NC = E 1! E 2 = 1 mv 2 + mgy 2 1 1 ( )! ( 1 "v 2 + "gy 2 2 2 ) ( P 2! P 1 ) = 1 "v 2 + "gy 2 1 1 NC Work

More information

Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature

Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature Bởi: OpenStaxCollege We have developed macroscopic definitions of pressure and temperature. Pressure is the force divided by

More information

Gases Over View. Schweitzer

Gases Over View. Schweitzer Gases Over View Schweitzer Collision theory Describing Ideal gases Particles are very far apart relative to their size. Particles are traveling very fast Particles are traveling in straight lines Collisions

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

Gases. Characteristics of Gases. Unlike liquids and solids, gases

Gases. Characteristics of Gases. Unlike liquids and solids, gases Gases Characteristics of Gases Unlike liquids and solids, gases expand to fill their containers; are highly compressible; have extremely low densities. 1 Pressure Pressure is the amount of force applied

More information

Although different gasses may differ widely in their chemical properties, they share many physical properties

Although different gasses may differ widely in their chemical properties, they share many physical properties IV. Gases (text Chapter 9) A. Overview of Chapter 9 B. Properties of gases 1. Ideal gas law 2. Dalton s law of partial pressures, etc. C. Kinetic Theory 1. Particulate model of gases. 2. Temperature and

More information

(2) The volume of molecules is negligible in comparison to the volume of gas. (3) Molecules of a gas moves randomly in all direction.

(2) The volume of molecules is negligible in comparison to the volume of gas. (3) Molecules of a gas moves randomly in all direction. 9.1 Kinetic Theory of Gases : Assumption (1) The molecules of a gas are identical, spherical and perfectly elastic point masses. (2) The volume of molecules is negligible in comparison to the volume of

More information

A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings.

A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Chapter 5 Gases Chapter 5 A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Copyright Cengage Learning. All rights reserved

More information

CH301 Unit 1 GAS LAWS, KINETIC MOLECULAR THEORY, GAS MIXTURES

CH301 Unit 1 GAS LAWS, KINETIC MOLECULAR THEORY, GAS MIXTURES CH301 Unit 1 GAS LAWS, KINETIC MOLECULAR THEORY, GAS MIXTURES Goals for Our Second Review Your first exam is in about 1 week! Recap the ideal gas law Kinetic Molecular Theory 3 important relationships

More information

Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature

Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature Any physical property that changes with temperature is called a thermometric property and can be used to measure

More information

CHEMISTRY NOTES Chapter 12. The Behavior of Gases

CHEMISTRY NOTES Chapter 12. The Behavior of Gases Goals : To gain an understanding of : 1. The kinetic theory of matter. 2. Avogadro's hypothesis. 3. The behavior of gases and the gas laws. NOTES: CHEMISTRY NOTES Chapter 12 The Behavior of Gases The kinetic

More information

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed.

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. by Steven S. Zumdahl & Donald J. DeCoste University of Illinois Chapter 13 Gases Properties of

More information

Chapter 11. Preview. Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures

Chapter 11. Preview. Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures Preview Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures Section 1 Gases and Pressure Lesson Starter Make a list of gases you already know about. Separate your list into elements,

More information

10/12/10. Chapter 16. A Macroscopic Description of Matter. Chapter 16. A Macroscopic Description of Matter. State Variables.

10/12/10. Chapter 16. A Macroscopic Description of Matter. Chapter 16. A Macroscopic Description of Matter. State Variables. Chapter 16. A Macroscopic Description of Matter Macroscopic systems are characterized as being either solid, liquid, or gas. These are called the phases of matter, and in this chapter we ll be interested

More information

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Zeroeth Law Two systems individually in thermal equilibrium with a third system (such

More information

Ch Kinetic Theory. 1.All matter is made of atoms and molecules that act like tiny particles.

Ch Kinetic Theory. 1.All matter is made of atoms and molecules that act like tiny particles. Ch. 15.1 Kinetic Theory 1.All matter is made of atoms and molecules that act like tiny particles. Kinetic Theory 2.These tiny particles are always in motion. The higher the temperature, the faster the

More information

Agenda. Chapter 10, Problem 26. All matter is made of atoms. Atomic Structure 4/8/14. What is the structure of matter? Atomic Terminology

Agenda. Chapter 10, Problem 26. All matter is made of atoms. Atomic Structure 4/8/14. What is the structure of matter? Atomic Terminology Agenda Today: HW Quiz, Thermal physics (i.e., heat) Thursday: Finish thermal physics, atomic structure (lots of review from chemistry!) Chapter 10, Problem 26 A boy reaches out of a window and tosses a

More information

Chapter 13: Temperature, Kinetic Theory and Gas Laws

Chapter 13: Temperature, Kinetic Theory and Gas Laws Chapter 1: Temperature, Kinetic Theory and Gas Laws Zeroth Law of Thermodynamics (law of equilibrium): If objects A and B are separately in thermal equilibrium with a third object C, then A and B are in

More information

Chapter 12. Answers to examination-style questions. Answers Marks Examiner s tips

Chapter 12. Answers to examination-style questions. Answers Marks Examiner s tips (a) v esc = gr = (.6 740 0 3 ) ½ = 400 m s (370 m s to 3 sig figs) (b) (i) Mean kinetic energy = 3_ kt =.5.38 0 3 400 = 8.3 0 J (ii) Mass of an oxygen molecule m= molar mass/n A 0.03 = kg 6.0 0 3 Rearranging

More information

A).5 atm B) 1 atm C) 1.5 atm D) 2 atm E) it is impossible to tell

A).5 atm B) 1 atm C) 1.5 atm D) 2 atm E) it is impossible to tell 1. ne atmosphere is equivalent to A) 1.00 g ml 1 B) 22,400 ml ) 273 K D) 760. mmhg E) 298 K 2. A cylinder contains 2.50 L of air at a pressure of 5.00 atmospheres. At what volume, will the air exert a

More information

Section Using Gas Laws to Solve Problems

Section Using Gas Laws to Solve Problems Gases and Gas Laws Section 13.2 Using Gas Laws to Solve Problems Kinetic Molecular Theory Particles of matter are ALWAYS in motion Volume of individual particles is zero. Consists of large number of particles

More information

STATES OF MATTER STATES OF MATTER. The Four States of Matter 3/5/2015. Solid. Liquid Commonly found on Gas Earth Plasma

STATES OF MATTER STATES OF MATTER. The Four States of Matter 3/5/2015. Solid. Liquid Commonly found on Gas Earth Plasma Unit 10: States of Matter Lesson 10.1: States and Their Changes (Review) STATES OF MATTER The Four States of Matter Solid } Liquid Commonly found on Gas Earth Plasma STATES OF MATTER Based upon particle

More information

STATES OF MATTER STATES OF MATTER. The Four States of Matter 3/5/2015

STATES OF MATTER STATES OF MATTER. The Four States of Matter 3/5/2015 The Four States of Matter Unit 10: States of Matter Lesson 10.1: States and Their Changes (Review) Solid } Liquid Commonly found on Gas Earth Plasma Based upon particle arrangement Based upon energy of

More information

Physics 231 Lecture 30. Main points of today s lecture: Ideal gas law:

Physics 231 Lecture 30. Main points of today s lecture: Ideal gas law: Physics 231 Lecture 30 Main points of today s lecture: Ideal gas law: PV = nrt = Nk BT 2 N 1 2 N 3 3 V 2 3 V 2 2 P = m v = KE ; KE KE = kbt Phases of Matter Slide 12-16 Ideal Gas: properties Approximate

More information

Kinetic Molecular Theory and Gas Law Honors Packet. Name: Period: Date: Requirements for honors credit: Read all notes in packet

Kinetic Molecular Theory and Gas Law Honors Packet. Name: Period: Date: Requirements for honors credit: Read all notes in packet Kinetic Molecular Theory and Gas Law Honors Packet Name: Period: Date: Requirements for honors credit: Read all notes in packet Watch the 10 Brighstorm videos shown on the right and take Cornell notes

More information

Some Vocabulary. Chapter 10. Zeroth Law of Thermodynamics. Thermometers

Some Vocabulary. Chapter 10. Zeroth Law of Thermodynamics. Thermometers Chapter 0 Some Vocabulary Thermal Physics, Temperature and Heat Thermodynamics: Study of energy transfers (engines) Changes of state (solid, liquid, gas...) Heat: Transfer of microscopic thermal energy

More information

QuickCheck. Collisions between molecules. Collisions between molecules

QuickCheck. Collisions between molecules. Collisions between molecules Collisions between molecules We model molecules as rigid spheres of radius r as shown at the right. The mean free path of a molecule is the average distance it travels between collisions. The average time

More information

Chapter 14. The Ideal Gas Law and Kinetic Theory

Chapter 14. The Ideal Gas Law and Kinetic Theory Chapter 14 The Ideal Gas Law and Kinetic Theory 14.1 Molecular Mass, the Mole, and Avogadro s Number To facilitate comparison of the mass of one atom with another, a mass scale know as the atomic mass

More information

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Zeroeth Law Two systems individually in thermal equilibrium with a third

More information

Properties of Gases. 5 important gas properties:

Properties of Gases. 5 important gas properties: Gases Chapter 12 Properties of Gases 5 important gas properties: 1) Gases have an indefinite shape 2) Gases have low densities 3) Gases can compress 4) Gases can expand 5) Gases mix completely with other

More information

Lesson 12. Luis Anchordoqui. Physics 168. Tuesday, November 28, 17

Lesson 12. Luis Anchordoqui. Physics 168. Tuesday, November 28, 17 Lesson 12 Physics 168 1 Temperature and Kinetic Theory of Gases 2 Atomic Theory of Matter On microscopic scale, arrangements of molecules in solids, liquids, and gases are quite different 3 Temperature

More information

density (in g/l) = molar mass in grams / molar volume in liters (i.e., 22.4 L)

density (in g/l) = molar mass in grams / molar volume in liters (i.e., 22.4 L) Unit 9: The Gas Laws 9.5 1. Write the formula for the density of any gas at STP. Name: KEY Text Questions from Corwin density (in g/l) = molar mass in grams / molar volume in liters (i.e., 22.4 L) Ch.

More information

Rate of Heating and Cooling

Rate of Heating and Cooling Rate of Heating and Cooling 35 T [ o C] Example: Heating and cooling of Water E 30 Cooling S 25 Heating exponential decay 20 0 100 200 300 400 t [sec] Newton s Law of Cooling T S > T E : System S cools

More information

OUTLINE. States of Matter, Forces of Attraction Phase Changes Gases The Ideal Gas Law Gas Stoichiometry

OUTLINE. States of Matter, Forces of Attraction Phase Changes Gases The Ideal Gas Law Gas Stoichiometry UNIT 6 GASES OUTLINE States of Matter, Forces of Attraction Phase Changes Gases The Ideal Gas Law Gas Stoichiometry STATES OF MATTER Remember that all matter exists in three physical states: Solid Liquid

More information

Moving Observer and Source. Demo 4C - 02 Doppler. Molecular Picture of Gas PHYSICS 220. Lecture 22. Combine: f o = f s (1-v o /v) / (1-v s /v)

Moving Observer and Source. Demo 4C - 02 Doppler. Molecular Picture of Gas PHYSICS 220. Lecture 22. Combine: f o = f s (1-v o /v) / (1-v s /v) PHYSICS 220 Lecture 22 Temperature and Ideal Gas Moving Observer and Source Combine: f o = f s (1-v o /v) / (1-v s /v) A: You are driving along the highway at 65 mph, and behind you a police car, also

More information

Gases and Kinetic Molecular Theory

Gases and Kinetic Molecular Theory 1 Gases and Kinetic Molecular Theory 1 CHAPTER GOALS 1. Comparison of Solids, Liquids, and Gases. Composition of the Atmosphere and Some Common Properties of Gases 3. Pressure 4. Boyle s Law: The Volume-Pressure

More information

Collisions between molecules

Collisions between molecules Collisions between molecules We model molecules as rigid spheres of radius r as shown at the right. The mean free path of a molecule is the average distance it travels between collisions. The average time

More information

Lecture Outline Chapter 17. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 17. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 17 Physics, 4 th Edition James S. Walker Chapter 17 Phases and Phase Changes Ideal Gases Kinetic Theory Units of Chapter 17 Solids and Elastic Deformation Phase Equilibrium and

More information

Temperature, Thermal Expansion and the Gas Laws

Temperature, Thermal Expansion and the Gas Laws Temperature, Thermal Expansion and the Gas Laws z x Physics 053 Lecture Notes Temperature,Thermal Expansion and the Gas Laws Temperature and Thermometers Thermal Equilibrium Thermal Expansion The Ideal

More information

Gases. A gas. Difference between gas and vapor: Why Study Gases?

Gases. A gas. Difference between gas and vapor: Why Study Gases? Gases Chapter 5 Gases A gas Uniformly fills any container. Is easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Difference between gas and vapor: A gas is a substance

More information

Understanding KMT using Gas Properties and States of Matter

Understanding KMT using Gas Properties and States of Matter Understanding KMT using Gas Properties and States of Matter Learning Goals: Students will be able to describe matter in terms of particle motion. The description should include Diagrams to support the

More information

Physics 8 Monday, September 16, 2013

Physics 8 Monday, September 16, 2013 Physics 8 Monday, September 16, 2013 Today: ch5 (energy). Read ch6 (relative motion) for Weds. Handing out printed HW3 now due Friday. (I put the PDF up online over the weekend.) Learning physics is both

More information

Engr. Yvonne Ligaya F. Musico Chemical Engineering Department

Engr. Yvonne Ligaya F. Musico Chemical Engineering Department GASEOUS STATE Engr. Yvonne Ligaya F. Musico Chemical Engineering Department TOPICS Objective Properties of Gases Kinetic Molecular Theory of Gases Gas Laws OBJECTIVES Determine how volume, pressure and

More information

Chapter 13. Kinetic Theory (Kinetikos- Moving ) Based on the idea that particles of matter are always in motion

Chapter 13. Kinetic Theory (Kinetikos- Moving ) Based on the idea that particles of matter are always in motion Chapter 3 Kinetic Theory (Kinetikos- Moving ) Based on the idea that particles of matter are always in motion The motion has consequences Behavior of Gases Physical Properties of Gases Ideal Gas an imaginary

More information

Chapter 10 Practice. Name: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 10 Practice. Name: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Score: 0 / 18 points (0%) [3 open ended questions not graded] Chapter 10 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A sample of gas

More information

Chapter 5 The Gaseous State

Chapter 5 The Gaseous State Chapter 5 The Gaseous State Contents and Concepts Gas Laws We will investigate the quantitative relationships that describe the behavior of gases. 1. Gas Pressure and Its Measurement 2. Empirical Gas Laws

More information

Revision Guide for Chapter 13

Revision Guide for Chapter 13 Matter: very simple Revision Guide for Chapter Contents Student s Checklist Revision Notes Ideal gas... Ideal gas laws... Assumptions of kinetic theory of gases... 5 Internal energy... 6 Specific thermal

More information

Chapter 10. Thermal Physics

Chapter 10. Thermal Physics Chapter 10 Thermal Physics Thermal Physics Thermal physics is the study of Temperature Heat How these affect matter Thermal Physics, cont Descriptions require definitions of temperature, heat and internal

More information

Module 5: Rise and Fall of the Clockwork Universe. You should be able to demonstrate and show your understanding of:

Module 5: Rise and Fall of the Clockwork Universe. You should be able to demonstrate and show your understanding of: OCR B Physics H557 Module 5: Rise and Fall of the Clockwork Universe You should be able to demonstrate and show your understanding of: 5.2: Matter Particle model: A gas consists of many very small, rapidly

More information

Part One: The Gas Laws. gases (low density, easy to compress)

Part One: The Gas Laws. gases (low density, easy to compress) CHAPTER FIVE: THE GASEOUS STATE Part One: The Gas Laws A. Introduction. 1. Comparison of three states of matter: fluids (flow freely) solids condensed states liquids (high density, hard to compress) gases

More information

Chapter 10, Thermal Physics

Chapter 10, Thermal Physics CHAPTER 10 1. If it is given that 546 K equals 273 C, then it follows that 400 K equals: a. 127 C b. 150 C c. 473 C d. 1 200 C 2. A steel wire, 150 m long at 10 C, has a coefficient of linear expansion

More information

If the dividing wall were allowed to move, which of the following statements would not be true about its equilibrium position?

If the dividing wall were allowed to move, which of the following statements would not be true about its equilibrium position? PHYS 213 Exams Database Midterm (A) A block slides across a rough surface, eventually coming to a stop. 1) What happens to the block's internal thermal energy and entropy? a. and both stay the same b.

More information

Downloaded from

Downloaded from Chapter 13 (Kinetic Theory) Q1. A cubic vessel (with face horizontal + vertical) contains an ideal gas at NTP. The vessel is being carried by a rocket which is moving at a speed of500 ms in vertical direction.

More information

Physics 8 Wednesday, October 11, 2017

Physics 8 Wednesday, October 11, 2017 Physics 8 Wednesday, October 11, 2017 HW5 due Friday. It s really Friday this week! Homework study/help sessions (optional): Bill will be in DRL 2C6 Wednesdays from 4 6pm (today). Grace will be in DRL

More information

Physics 8 Wednesday, October 30, 2013

Physics 8 Wednesday, October 30, 2013 Physics 8 Wednesday, October 30, 2013 HW9 (due Friday) is 7 conceptual + 8 calculation problems. Of the 8 calculation problems, 4 or 5 are from Chapter 11, and 3 or 4 are from Chapter 12. 7pm HW sessions:

More information

Conceptual Chemistry

Conceptual Chemistry Conceptual Chemistry Objective 1 Describe, at the molecular level, the difference between a gas, liquid, and solid phase. Solids Definite shape Definite volume Particles are vibrating and packed close

More information

Physics 8 Wednesday, September 9, 2015

Physics 8 Wednesday, September 9, 2015 Physics 8 Wednesday, September 9, 2015 http://positron.hep.upenn.edu/physics8 You read Mazur Chapter 5 ( energy ) for today. Handing back HW1. HW2 (from Ch3,4) due Friday. Homework study sessions (optional):

More information

10 TEMPERATURE, THERMAL EXPANSION, IDEAL GAS LAW, AND KINETIC THEORY OF GASES.

10 TEMPERATURE, THERMAL EXPANSION, IDEAL GAS LAW, AND KINETIC THEORY OF GASES. 10 TEMPERATURE, THERMAL EXPANSION, IDEAL GAS LAW, AND KINETIC THEORY OF GASES. Key words: Atoms, Molecules, Atomic Theory of Matter, Molecular Mass, Solids, Liquids, and Gases, Thermodynamics, State Variables,

More information

Practice Problems. Unit 11 - Gas Laws. CRHS Academic Chemistry. Due Date Assignment On-Time (100) Late (70)

Practice Problems. Unit 11 - Gas Laws. CRHS Academic Chemistry. Due Date Assignment On-Time (100) Late (70) Name Period CRHS Academic Chemistry Unit 11 - Gas Laws Practice Problems Due Date Assignment On-Time (100) Late (70) 11.1 11.2 11.3 11.4 Warm-Up EC Notes, Homework, Exam Reviews and Their KEYS located

More information

PHYSICS - CLUTCH CH 19: KINETIC THEORY OF IDEAL GASSES.

PHYSICS - CLUTCH CH 19: KINETIC THEORY OF IDEAL GASSES. !! www.clutchprep.com CONCEPT: ATOMIC VIEW OF AN IDEAL GAS Remember! A gas is a type of fluid whose volume can change to fill a container - What makes a gas ideal? An IDEAL GAS is a gas whose particles

More information

Reactions Involving Gases

Reactions Involving Gases Chapter 5 Gases Reactions Involving Gases in reactions of gases, the amount of a gas is often given as a volume the ideal gas law allows us to convert from the volume of the gas to moles; then we can use

More information

CHEM 116 Phase Changes and Phase Diagrams

CHEM 116 Phase Changes and Phase Diagrams CHEM 116 Phase Changes and Phase Diagrams Lecture 4 Prof. Sevian Please turn in extra credit assignments at the very beginning of class. Today s agenda Finish chapter 10 Partial pressures Vapor pressure

More information

The Kinetic Theory of Gases

The Kinetic Theory of Gases PHYS102 Previous Exam Problems CHAPTER 19 The Kinetic Theory of Gases Ideal gas RMS speed Internal energy Isothermal process Isobaric process Isochoric process Adiabatic process General process 1. Figure

More information

17-6 The Gas Laws and Absolute Temperature

17-6 The Gas Laws and Absolute Temperature 17-6 The Gas Laws and Absolute Temperature The relationship between the volume, pressure, temperature, and mass of a gas is called an equation of state. We will deal here with gases that are not too dense.

More information

Lecture PowerPoints. Chapter 13 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 13 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 13 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Physics 5D PRACTICE FINAL EXAM Fall 2013

Physics 5D PRACTICE FINAL EXAM Fall 2013 Print your name: Physics 5D PRACTICE FINAL EXAM Fall 2013 Real Exam is Wednesday December 11 Thimann Lecture 3 4:00-7:00 pm Closed book exam two 8.5x11 sheets of notes ok Note: Avogadro s number N A =

More information

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law Handout : Ideal gas, internal energy, work and heat Ideal gas law For a gas at pressure p, volume V and absolute temperature T, ideal gas law states that pv = nrt, where n is the number of moles and R

More information

SCH 3UI Unit 08 Outline: Kinetic Molecular Theory and the Gas Laws. The States of Matter Characteristics of. Solids, Liquids and Gases

SCH 3UI Unit 08 Outline: Kinetic Molecular Theory and the Gas Laws. The States of Matter Characteristics of. Solids, Liquids and Gases SCH 3UI Unit 08 Outline: Kinetic Molecular Theory and the Gas Laws Lesson Topics Covered Handouts to Print 1 Note: The States of Matter solids, liquids and gases state and the polarity of molecules the

More information

CHEM 116 The Ideal Gas Model: Its Usefulness and Conditions Where it Breaks Down

CHEM 116 The Ideal Gas Model: Its Usefulness and Conditions Where it Breaks Down Uass oston, Chem 116 CHE 116 The Ideal Gas odel: Its Usefulness and Conditions Where it reaks Down Lecture 3 Prof. Sevian Last Thursday Today Today s agenda Some uses of the ideal gas equation Typical

More information

Kinetic Theory of Gases

Kinetic Theory of Gases Kinetic Theory of Gases Modern Physics September 7 and 12, 2016 1 Intro In this section, we will relate macroscopic properties of gases (like Pressure, Temperature) to the behavior of the microscopic components

More information

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law Handout : Ideal gas, internal energy, work and heat Ideal gas law For a gas at pressure p, volume V and absolute temperature T, ideal gas law states that pv = nrt, where n is the number of moles and R

More information

Gases! n Properties! n Kinetic Molecular Theory! n Variables! n The Atmosphere! n Gas Laws!

Gases! n Properties! n Kinetic Molecular Theory! n Variables! n The Atmosphere! n Gas Laws! Gases n Properties n Kinetic Molecular Theory n Variables n The Atmosphere n Gas Laws Properties of a Gas n No definite shape or volume n Gases expand to fill any container n Thus they take the shape of

More information

4. 1 mole = 22.4 L at STP mole/volume interconversions at STP

4. 1 mole = 22.4 L at STP mole/volume interconversions at STP Ch. 10 Gases and the Ideal Gas Law(s) Chem 210 Jasperse Ch. 10 Handouts 1 10.1 The Atmosphere 1. Earth surrounded by gas 2. Major components: Nitrogen 78% Oxygen 21% Miscellaneous: All

More information