Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry

Size: px
Start display at page:

Download "Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry"

Transcription

1

2 Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry

3 Zeroeth Law Two systems individually in thermal equilibrium with a third system (such as a thermometer) are in thermal equilibrium with each other. That is, there is no flow of heat within a system in thermal equilibrium

4 1st Law of Thermo The change of internal energy of a system due to a temperature or phase change is given by (next chapter): Temperature Change: Q = mcδt Phase Change: Q = ml Q is positive when the system GAINS heat and negative when it LOSES heat.

5 2nd Law of Thermo Heat flows spontaneously from a substance at a higher temperature to a substance at a lower temperature and does not flow spontaneously in the reverse direction. Heat flows from hot to cold. Alternative: Irreversible processes must have an increase in Entropy; Reversible processes have no change in Entropy. Entropy is a measure of disorder in a system

6 3rd Law of Thermo It is not possible to lower the temperature of any system to absolute zero.

7 Absolute Zero In a constant volume thermometer, readings are virtually independent of the gas used If the lines for various gases are extended, the pressure is always zero when the temperature is o C This temperature is called absolute zero

8 Absolute Temperature Scale Absolute zero is used as the basis of the absolute temperature scale The size of the degree on the absolute scale is the same as the size of the degree on the Celsius scale To convert: T C = T

9 Absolute Temperature Scale, K The absolute temperature scale is based on two fixed points Adopted by in 1954 by the International Committee on Weights and Measures One point is absolute zero The other point is the triple point of water This is the combination of temperature and pressure where ice, water, and steam can all coexist

10 Phase Change: Triple Point A temperature and pressure at which all three phases exist in equilibrium. Lines of equilibrium Freezing-Melting Evaporation -Condensation Sublimation

11 Temperature is measured by a thermometer. Kelvin is the Absolute Scale. o 9 o T( F) = T( C) o 5 o T( C) = T( F) 32 9 o T( K) = T( C)

12

13

14 What is "room temperature" (68 degrees F) in Celsius and Kelvin? o 5 o T( C) = T( F) 32 9 = o o T( K) = T( C) = K o = 20 C Do book quiz 2!

15 30 is HOT. 20 is NICE. 10 is CHILLY. Zero is ICE!

16

17 Thermal Expansion: Linear Δ L = αl ΔT Coefficients determined experimentally! 0

18 Thermal Expansion: Volume Δ V = βv ΔT β ~ 3α 0

19 Thermal Expansion: Linear

20 Thermal Expansion: Linear The coefficient of linear expansion of steel is 12 x 10-6 / C. A railroad track is made of individual rails of steel 1.0 km in length. By what length would these rails change between a cold day when the temperature is -10 C and a hot day at 30 C? Δ L= αl ΔT 6 o 3 o o Δ L= (12 x10 / C)(10 m)(30 C ( 10 C)) 0 Δ L =.48m

21 Thermal Expansion: Linear Δ L= αl ΔT What change in temperature is needed to fill the gap, 1.3 x 10-3 m? 0 α brass = 19x10 C α = 23x10 C AL Δ +Δ = 3 Lbrass LAl 1.3x10 m 3 1.3x10 m o Δ T = = C α L + α L brass brass Al Al

22 Thermal Expansion When the temperature of a metal ring increases, does the hole become larger? Smaller? Or stay same?

23

24 Circle Expansion The coefficient of linear expansion of aluminum is 23 x 10-6 /C. A circular hole in an aluminum plate is cm in diameter at 0 C. What is the diameter of the hole if the temperature of the plate is raised to 100 C? Δ L= αl ΔT = 0 6 o (23x10 / C)(2.725 cm)100 C o = 6.3x10 3 cm d = 2.731cm

25 Fluids: Liquids & Gases Fluids are substances that are free to flow. Atoms and molecules are free to move. They take the shape of their containers. Cannot withstand or exert shearing forces. Liquids: Incompressible (density constant) Gases: Compressible (density depends on pressure) Parameters to describe Fluids: Density: ρ = mass/volume Pressure: P = Force/Area [P] = N/m 2 = 1 Pascal (Pa)

26 Liquid Units There are 1000 liters in 1 cubic meter! 1 liter = 10-3 m 3 = 10 3 cm 3 1 liter of water has a mass of 1 kg and a weight of 9.8N. 1kg 1000kg ρ = = H2 0 liter m 3

27 Density ρ = Density of C: ρ water = 1g/cm 3 = 1000 kg/m 3 = 1kg/liter Density of 0 C: m V ρ Air = 1.29x10-3 g/cm 3 = 1.29 kg/m 3 Density depends on temperature! Most substances EXPAND upon heating. How does that change their densities? ρ = m V m = ρv REDUCES DENSITY!

28 Water: The Exception C: ρ water =1000 kg/m 3 0 C: ρ ice = 917 kg/m 3 Note: The graph is for ice water only. Ice is not on the graph!

29 Thermal Expansion: Water Water Expands when it cools below 4 C! Thus, the solid state is less dense than the liquid state:

30 Thermometer, Liquid in Glass A common type of thermometer is a liquid-in-glass The material in the capillary tube expands as it is heated The liquid is usually mercury or alcohol

31 Pressure in a fluid is due to the weight P = Force Area of a fluid. P mg ( ρv ) g = = A A ( ρ Ah) g = A = ρgh Pressure depends on Depth!

32 Pressure Acts ONLY Perpendicularly to the Surface Pressure depends on depth.

33 Pressure IN a Fluid Is due to the weight of the fluid above you Depends on Depth and Density Only Does NOT depend on how much water is present Acts perpendicular to surfaces (no shearing) Pressure s add At a particular depth, pressure is exerted equally in ALL directions including sideways (empirical fact)

34 The Atmosphere At sea level, the atmosphere has a density of about 1.29 kg/m 3. The average density up to 120 km is about 8.59 x10-2 kg/m 3.

35 The Atmosphere A square meter extending up through the atmosphere has a mass of about 10,000 kg and a weight of about 100,000 N. 1 N/m 2 is a Pascal. 5 1 = = 14.7 atm x Pa psi

36 Measuring Pressure 5 1atm = 1.013x10 Pa Why is the pressure at X equal to atmospheric pressure? P = ρgh Because if it didn t, the mercury would be pushed out of the dish! P = ρ mercury gh h h = ρ P mercury g 2 101,300 N / m = 13,600 kg / m x9.8 m / s 3 2 ρ mercury = 13.6ρ water ρ = 1000 kg / m water 3 h = 760mm

37 Measuring Pressure Can a barometer be made with Water instead of Mercury? P h = = ρ water P ρ water gh g h = 2 101,300 N / m 1000 kg / m x9.8 m / s 3 2 ρ mercury = 13.6ρ water ρ = 1000 kg / m water 3 h = 10.3m (Notice: 10.3m is just 13.6 x 760mm!)

38 Barometers Measuring Air Pressure Fluid in the tube adjusts until the weight of the fluid column balances the atmospheric force exerted on the reservoir. 10.3m Not to Scale!!! Mercury Barometer Water Barometer 5 1atm = 1.013x10 Pa = 760mm

39 Absolute vs. Gauge Pressure Absolute Pressure: P = P + ρ gh 0 Guage Pressure: P0 = ρgh Guage pressure is what you measure in your tires Absoulte pressure is the pressure at B and is what is used in PV = nrt

40 Why does the water stop when the top is closed? Pressure is greater in the fluid at the spout due to weight of water so water flows. Hand covers top and water keeps flowing until the pressure is reduced to 1 atm by increasing volume of air above the fluid just like with a closed barometer!

41 The absolute Pressure P of an ideal gas is directly proportional to the absolute (Kelvin) temperature T and the number of moles n of the gas and inversely proportional to the volume V of the gas: P V = nrt n = # moles R = 8.31 J/(mol-K) Universal Gas Constant

42 P V = nrt n = # moles R = 8.31 J/(mol-K) Universal Gas Constant Note: PV is units of Energy!

43 Atomic Units The Basics Atomic Number: # protons Atomic Mass: # atomic mass units (u) Atomic Mass Unit: 1/12 mass of C-12 atom amu = u = 1.66 x kg Atomic Mass of C = u (1% is C-13) Mass of 1 C = (12.011u) (1.66 x kg/u)

44 Moles and Avogadro s Number N A = x mol -1 Mole (mol) = # atoms or molecules (particles) as are in 12 grams of Carbon-12: 1 mole = x particles Avogadro s Number: the number of particles in one mole: N A = x mol -1 # moles n contained in a sample of N particles: n = N/ N A # particles in a sample is: N = n N A

45 More on Moles The mass / mol for any substance has the same numerical value as its atomic mass: mass/mol C-12 = 12 g / mol mass/mol Li = g / mol n = mass / (mass/mole) = mass / atomic mass n = mass / atomic mass

46 Q: How many moles are in 1 kg of Sodium? mass/mole = atomic mass Na: g / mol n = mass / (mass/mole) = 1000 g / ( g/mol) = 43.5 moles Q: How many atoms in 1 kg of Sodium? # particles in a sample is: N = n N A N = (43.5mol) x mol -1 = 2.62 x atoms

47 P V = nrt n = # moles R = 8.31 J/(mol-K) Universal Gas Constant PV = Nkt N= # particles k =1.38 x J/K Boltzmann s Constant Note: PV is units of Energy!

48 The only interaction between particles are elastic collisions (no sticky - no loss of KE) This requires LOW DENSITY Excellent Approximation for O, N, Ar, room temperature and pressures State is described by the Ideal Gas Law Non Ideal are Van der Waals gases

49 Ideal Gas Problem An ideal gas with a fixed number of molecules is maintained at a constant pressure. At 30.0 C, the volume of the gas is 1.50 m 3. What is the volume of the gas when the temperature is increased to 75.0 C? PV = nrt 1 1 PV = nrt 2 2 V = = V T 1 1 T 2 2 V T = V T = 348K 1.5m 1.72m 303K = 3 3

50 Hot Question Suppose you apply a flame to 1 liter of water for a certain time and its temperature rises by 10 degrees C. If you apply the same flame for the same time to 2 liters of water, by how much will its temperature rise? a) 1 degree b) 5 degrees c) 10 degrees d) zero degrees

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Zeroeth Law Two systems individually in thermal equilibrium with a third

More information

Archimedes Principle

Archimedes Principle Archimedes Principle applies in air the more air an object displaces, the greater the buoyant force on it if an object displaces its weight, it hovers at a constant altitude if an object displaces less

More information

Temperature, Thermal Expansion and the Gas Laws

Temperature, Thermal Expansion and the Gas Laws Temperature, Thermal Expansion and the Gas Laws z x Physics 053 Lecture Notes Temperature,Thermal Expansion and the Gas Laws Temperature and Thermometers Thermal Equilibrium Thermal Expansion The Ideal

More information

Unit Outline. I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI.

Unit Outline. I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI. Unit 10: Gases Unit Outline I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI. Real Gases I. Opening thoughts Have you ever: Seen a hot air balloon?

More information

Chapter 6: The States of Matter

Chapter 6: The States of Matter Spencer L. Seager Michael R. Slabaugh www.cengage.com/chemistry/seager Chapter 6: The States of Matter PHYSICAL PROPERTIES OF MATTER All three states of matter have certain properties that help distinguish

More information

Chapter 10, Thermal Physics

Chapter 10, Thermal Physics CHAPTER 10 1. If it is given that 546 K equals 273 C, then it follows that 400 K equals: a. 127 C b. 150 C c. 473 C d. 1 200 C 2. A steel wire, 150 m long at 10 C, has a coefficient of linear expansion

More information

Chapter 17. Temperature. Dr. Armen Kocharian

Chapter 17. Temperature. Dr. Armen Kocharian Chapter 17 Temperature Dr. Armen Kocharian Temperature We associate the concept of temperature with how hot or cold an objects feels Our senses provide us with a qualitative indication of temperature Our

More information

Thermodynamics. Atoms are in constant motion, which increases with temperature.

Thermodynamics. Atoms are in constant motion, which increases with temperature. Thermodynamics SOME DEFINITIONS: THERMO related to heat DYNAMICS the study of motion SYSTEM an object or set of objects ENVIRONMENT the rest of the universe MICROSCOPIC at an atomic or molecular level

More information

Chapter 10. Thermal Physics

Chapter 10. Thermal Physics Chapter 10 Thermal Physics Thermal Physics Thermal physics is the study of Temperature Heat How these affect matter Thermal Physics, cont Descriptions require definitions of temperature, heat and internal

More information

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law Units of Chapter 17 & 19 Temperature and the Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion Heat and Mechanical Work

More information

Properties of Gases. The perfect gas. States of gases Gas laws Kinetic model of gases (Ch th ed, th ed.) Real gases

Properties of Gases. The perfect gas. States of gases Gas laws Kinetic model of gases (Ch th ed, th ed.) Real gases Properties of Gases Chapter 1 of Physical Chemistry - 6th Edition P.W. Atkins. Chapter 1 and a little bit of Chapter 24 of 7th Edition. Chapter 1 and a little bit of Chapter 21 of 8th edition. The perfect

More information

General Physics I. Lecture 23: Basic Concepts of Thermodynamics

General Physics I. Lecture 23: Basic Concepts of Thermodynamics General Physics I Lecture 23: Basic Concepts of Thermodynamics Prof. WAN, Xin xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Temperature [Operational definition] Temperature is what you measure with

More information

M o d u l e B a s i c A e r o d y n a m i c s

M o d u l e B a s i c A e r o d y n a m i c s Category A B1 B2 B3 Level 1 2 3 M o d u l e 0 8-0 1 B a s i c A e r o d y n a m i c s P h y s i c s o f t h e A t m o s p h e r e 08-01- 1 Category A B1 B2 B3 Level 1 2 3 T a b l e o f c o n t e n t s

More information

What is Temperature?

What is Temperature? What is Temperature? Observation: When objects are placed near each other, they may change, even if no work is done. (Example: when you put water from the hot tap next to water from the cold tap, they

More information

Fluids Bernoulli s equation conclusion

Fluids Bernoulli s equation conclusion Chapter 11 Fluids Bernoulli s equation conclusion 11.9 Bernoulli s Equation W NC = ( P 2! P 1 )V W NC = E 1! E 2 = 1 mv 2 + mgy 2 1 1 ( )! ( 1 "v 2 + "gy 2 2 2 ) ( P 2! P 1 ) = 1 "v 2 + "gy 2 1 1 NC Work

More information

Fluids Bernoulli s equation conclusion

Fluids Bernoulli s equation conclusion Chapter 11 Fluids Bernoulli s equation conclusion 11.9 Bernoulli s Equation W NC = ( P 2! P 1 )V W NC = E 1! E 2 = 1 mv 2 + mgy 2 1 1 ( )! ( 1 "v 2 + "gy 2 2 2 ) ( P 2! P 1 ) = 1 "v 2 + "gy 2 1 1 NC Work

More information

Chapter 13 - States of Matter. Section 13.1 The nature of Gases

Chapter 13 - States of Matter. Section 13.1 The nature of Gases Chapter 13 - States of Matter Section 13.1 The nature of Gases Kinetic energy and gases Kinetic energy: the energy an object has because of its motion Kinetic theory: all matter is made if particles in

More information

Chapter 10. Thermal Physics. Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics

Chapter 10. Thermal Physics. Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics Chapter 10 Thermal Physics Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion of Solids and Liquids Ideal

More information

Chapter 6 The States of Matter. Examples of Physical Properties of Three States of Matter

Chapter 6 The States of Matter. Examples of Physical Properties of Three States of Matter Chapter 6 The States of Matter Examples of Physical Properties of Three States of Matter 1 Three States of Matter Solids: Fixed shape, fixed volume, particles are held rigidly in place. Liquids: Variable

More information

Ch Kinetic Theory. 1.All matter is made of atoms and molecules that act like tiny particles.

Ch Kinetic Theory. 1.All matter is made of atoms and molecules that act like tiny particles. Ch. 15.1 Kinetic Theory 1.All matter is made of atoms and molecules that act like tiny particles. Kinetic Theory 2.These tiny particles are always in motion. The higher the temperature, the faster the

More information

Lecture PowerPoints. Chapter 13 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 13 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 13 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Kinetic Theory continued

Kinetic Theory continued Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

More information

Lesson 12. Luis Anchordoqui. Physics 168. Tuesday, November 28, 17

Lesson 12. Luis Anchordoqui. Physics 168. Tuesday, November 28, 17 Lesson 12 Physics 168 1 Temperature and Kinetic Theory of Gases 2 Atomic Theory of Matter On microscopic scale, arrangements of molecules in solids, liquids, and gases are quite different 3 Temperature

More information

Kinetic Theory continued

Kinetic Theory continued Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:-

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:- UNIVERSITY COLLEGE LONDON University of London EXAMINATION FOR INTERNAL STUDENTS For The Following Qualifications:- B.Sc. M.Sci. Physics 1B28: Thermal Physics COURSE CODE : PHYSIB28 UNIT VALUE : 0.50 DATE

More information

First Law of Thermodynamics Second Law of Thermodynamics Mechanical Equivalent of Heat Zeroth Law of Thermodynamics Thermal Expansion of Solids

First Law of Thermodynamics Second Law of Thermodynamics Mechanical Equivalent of Heat Zeroth Law of Thermodynamics Thermal Expansion of Solids Slide 1 / 66 1 What is the name of the following statement: "When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium with each other"? A B C D E First Law

More information

Chemistry Joke. Once you ve seen 6.02 x You ve seen a mole!

Chemistry Joke. Once you ve seen 6.02 x You ve seen a mole! States of Matter Chemistry Joke Once you ve seen 6.02 x 10 23 atoms You ve seen a mole! Kinetic Theory Kinetic Theory explains the states of matter based on the concept that the particles in all forms

More information

Chapter 5: Gases. Definitions: Phases of Matter 10/27/2011

Chapter 5: Gases. Definitions: Phases of Matter 10/27/2011 Chapter 5: Gases 5.1 Definitions 5.2 The First Laws 5.3 The Ideal Gas Law 5.4 Stoichiometry and Gases 5.5 Mixtures of Gases (Partial Pressures) 5.6 Kinetic Molecular Theory 5.7 Effusion and Diffusion 5.8-9

More information

Name Date Class THE NATURE OF GASES

Name Date Class THE NATURE OF GASES 13.1 THE NATURE OF GASES Section Review Objectives Describe the assumptions of the kinetic theory as it applies to gases Interpret gas pressure in terms of kinetic theory Define the relationship between

More information

Part One: The Gas Laws. gases (low density, easy to compress)

Part One: The Gas Laws. gases (low density, easy to compress) CHAPTER FIVE: THE GASEOUS STATE Part One: The Gas Laws A. Introduction. 1. Comparison of three states of matter: fluids (flow freely) solids condensed states liquids (high density, hard to compress) gases

More information

This book is under copyright to A-level Physics Tutor. However, it may be distributed freely provided it is not sold for profit.

This book is under copyright to A-level Physics Tutor. However, it may be distributed freely provided it is not sold for profit. 2 This book is under copyright to A-level Physics Tutor. However, it may be distributed freely provided it is not sold for profit. CONTENTS thermometry what is temperature?, fixed points, Kelvin (Absolute),

More information

Gases. A gas. Difference between gas and vapor: Why Study Gases?

Gases. A gas. Difference between gas and vapor: Why Study Gases? Gases Chapter 5 Gases A gas Uniformly fills any container. Is easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Difference between gas and vapor: A gas is a substance

More information

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 3: The Three States of Matter

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 3: The Three States of Matter General Chemistry I Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University Module 3: The Three States of Matter Gas state (Equation of state: ideal gas and real gas). Liquid state

More information

! =!"#$% exerted by a fluid (liquid or gas) !"#$ =!"# FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME

! =!#$% exerted by a fluid (liquid or gas) !#$ =!# FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME PRESSURE, P! =!"#$%!"#! exerted by a fluid (liquid or gas) Thermodynamic importance of pressure One of two independent

More information

Chapter 12 Solutions. Q Reason: We ll use Equation Q = McΔT and solve for M. We are given. In each case we want to solve for.

Chapter 12 Solutions. Q Reason: We ll use Equation Q = McΔT and solve for M. We are given. In each case we want to solve for. Chapter 12 Solutions Q12.12. Reason: Assume the gas is an ideal gas, and use the ideal gas law pv = nrt. Since the number of moles doesn t change and R is a constant, then Equation 12.14 gives In each

More information

13.1 The Nature of Gases (refer to pg )

13.1 The Nature of Gases (refer to pg ) 13.1 The Nature of Gases (refer to pg. 420-424) Essential Understanding any other state of matter. Temperature and pressure affect gases much more than they affect Lesson Summary Kinetic Theory and a Model

More information

Chapter 13: Temperature, Kinetic Theory and Gas Laws

Chapter 13: Temperature, Kinetic Theory and Gas Laws Chapter 1: Temperature, Kinetic Theory and Gas Laws Zeroth Law of Thermodynamics (law of equilibrium): If objects A and B are separately in thermal equilibrium with a third object C, then A and B are in

More information

Lecture 2: Zero law of thermodynamics

Lecture 2: Zero law of thermodynamics Lecture 2: Zero law of thermodynamics 1. Thermometers and temperature scales 2. Thermal contact and thermal equilibrium 3. Zeroth law of thermodynamics 1. Thermometers and Temperature scales We often associate

More information

Chapter Notes: Temperature, Energy and Thermal Properties of Materials Mr. Kiledjian

Chapter Notes: Temperature, Energy and Thermal Properties of Materials Mr. Kiledjian Chapter 10-11 Notes: Temperature, Energy and Thermal Properties of Materials Mr. Kiledjian 1) Temperature 2) Expansion of Matter 3) Ideal Gas Law 4) Kinetic Theory of Gases 5) Energy, Heat transfer and

More information

THERMAL EXPANSION PRACTICE PROBLEMS

THERMAL EXPANSION PRACTICE PROBLEMS THERMAL EXPANSION PRACTICE PROBLEMS Thermal Expansion: A copper sphere has a diameter of 2.000 cm and is at room temperature (20 C). An aluminum plate has a circular cut-out with a diameter of 1.995 cm

More information

Test Exchange Thermodynamics (C) Test Answer Key

Test Exchange Thermodynamics (C) Test Answer Key 1 Test Exchange Thermodynamics (C) Test Answer Key Made by Montgomery High School montyscioly@gmail.com 2 Questions are worth between 1 to 3 points. Show calculations for all open-ended math questions

More information

7. (2) Of these elements, which has the greatest number of atoms in a mole? a. hydrogen (H) b. oxygen (O) c. iron (Fe) d. gold (Au) e. all tie.

7. (2) Of these elements, which has the greatest number of atoms in a mole? a. hydrogen (H) b. oxygen (O) c. iron (Fe) d. gold (Au) e. all tie. General Physics I Exam 5 - Chs. 13,14,15 - Heat, Kinetic Theory, Thermodynamics Dec. 14, 2010 Name Rec. Instr. Rec. Time For full credit, make your work clear to the grader. Show formulas used, essential

More information

Fig Note the three different types of systems based on the type of boundary between system and surroundings.

Fig Note the three different types of systems based on the type of boundary between system and surroundings. CHAPTER 1 LECTURE NOTES System, Surroundings, and States Fig. 1.4 Note the three different types of systems based on the type of boundary between system and surroundings. Intensive and Extensive Properties

More information

Chapter 10: Thermal Physics

Chapter 10: Thermal Physics Chapter 10: hermal Physics hermal physics is the study of emperature, Heat, and how these affect matter. hermal equilibrium eists when two objects in thermal contact with each other cease to echange energy.

More information

Unit 6. Unit Vocabulary: Distinguish between the three phases of matter by identifying their different

Unit 6. Unit Vocabulary: Distinguish between the three phases of matter by identifying their different *STUDENT* Unit Objectives: Absolute Zero Avogadro s Law Normal Boiling Point Compound Cooling Curve Deposition Energy Element Evaporation Heat Heat of Fusion Heat of Vaporization Unit 6 Unit Vocabulary:

More information

CHEMISTRY NOTES Chapter 12. The Behavior of Gases

CHEMISTRY NOTES Chapter 12. The Behavior of Gases Goals : To gain an understanding of : 1. The kinetic theory of matter. 2. Avogadro's hypothesis. 3. The behavior of gases and the gas laws. NOTES: CHEMISTRY NOTES Chapter 12 The Behavior of Gases The kinetic

More information

Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated.

Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated. Heat Energy Temperature and Thermometers Temperature is a measure of how hot or cold something is. Most materials expand when heated. Thermometers are instruments designed to measure temperature. In order

More information

Physics 111. Lecture 35 (Walker: ) Thermal Physics I: Temperature Thermal Expansion. April 29, Temperature (T)

Physics 111. Lecture 35 (Walker: ) Thermal Physics I: Temperature Thermal Expansion. April 29, Temperature (T) Physics 111 Lecture 35 (Walker: 16.1-3) Thermal Physics I: Temperature Thermal Expansion April 29, 2009 Lecture 35 1/26 Temperature (T) Temperature (T) is a measure of how hot or cold something is Temperature

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

Unit 8 Kinetic Theory of Gases. Chapter 13-14

Unit 8 Kinetic Theory of Gases. Chapter 13-14 Unit 8 Kinetic Theory of Gases Chapter 13-14 This tutorial is designed to help students understand scientific measurements. Objectives for this unit appear on the next slide. Each objective is linked to

More information

Chapter 11 part 2. Properties of Liquids Viscosity Surface Tension Capillary Action. Phase Changes (energy of phase changes)

Chapter 11 part 2. Properties of Liquids Viscosity Surface Tension Capillary Action. Phase Changes (energy of phase changes) Chapter 11 part 2 Properties of Liquids Viscosity Surface Tension Capillary Action Phase Changes (energy of phase changes) Dynamic Equilibrium Vapor pressure Phase diagram 1 Structure Affects Function

More information

Chapter Elements That Exist as Gases at 25 C, 1 atm. 5.2 Pressure basic physics. Gas Properties

Chapter Elements That Exist as Gases at 25 C, 1 atm. 5.2 Pressure basic physics. Gas Properties 5.1 Elements That Exist as Gases at 25 C, 1 atm Chapter 5 The Gaseous State YOU READ AND BE RESPONSIBLE FOR THIS SECTION! Gaseous compounds include CH 4, NO, NO 2, H 2 S, NH 3, HCl, etc. Gas Properties

More information

E21-3 (a) We ll assume that the new temperature scale is related to the Celsius scale by a linear. T S = mt C + b, (0) = m( C) + b.

E21-3 (a) We ll assume that the new temperature scale is related to the Celsius scale by a linear. T S = mt C + b, (0) = m( C) + b. E1-1 (a) We ll assume that the new temperature scale is related to the Celsius scale by a linear transformation; then T S = mt C + b, where m and b are constants to be determined, T S is the temperature

More information

Chapter Practice Test Grosser

Chapter Practice Test Grosser Class: Date: Chapter 10-11 Practice Test Grosser Multiple Choice Identify the choice that best completes the statement or answers the question. 1. According to the kinetic-molecular theory, particles of

More information

Chapter 17 Thermal Expansion and the Gas Laws

Chapter 17 Thermal Expansion and the Gas Laws So many of the properties of matter, especially when in the gaseous form, can be deduced from the hypothesis that their minute parts are in rapid motion, the velocity increasing with the temperature, that

More information

Phase Change Diagram. Rank Solids, liquids and gases from weakest attractive forces to strongest:

Phase Change Diagram. Rank Solids, liquids and gases from weakest attractive forces to strongest: Unit 11 Kinetic molecular theory packet Page 1 of 13 Chemistry Unit 11 Kinetic Theory Unit Quiz: Test Objectives Be able to define pressure and memorize the basic pressure units. Be able to convert to/from:

More information

Centimeters of mercury

Centimeters of mercury CHAPTER 11 PROPERTIES OF GASES Gases have an indefinite shape: a gas takes the shape of its container and fills it uniformly. If the shape of the container changes, so does the shape of the gas. Gases

More information

PROGRAM OF PHYSICS. Lecturer: Dr. DO Xuan Hoi Room A

PROGRAM OF PHYSICS. Lecturer: Dr. DO Xuan Hoi Room A PROGRAM OF PHYSICS Lecturer: Dr. DO Xuan Hoi Room A1. 503 E-mail : dxhoi@hcmiu.edu.vn PHYSICS 2 (FLUID MECHANICS AND THERMAL PHYSICS) 02 credits (30 periods) Chapter 1 Fluid Mechanics Chapter 2 Heat, Temperature

More information

Lecture 25 Thermodynamics, Heat and Temp (cont.)

Lecture 25 Thermodynamics, Heat and Temp (cont.) Lecture 25 Thermodynamics, Heat and Temp (cont.) Heat and temperature Gases & Kinetic theory http://candidchatter.files.wordpress.com/2009/02/hell.jpg Specific Heat Specific Heat: heat capacity per unit

More information

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics PHYS102 Previous Exam Problems CHAPTER 18 Temperature, Heat & The First Law of Thermodynamics Equilibrium & temperature scales Thermal expansion Exchange of heat First law of thermodynamics Heat conduction

More information

CHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER

CHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER CHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER This brief chapter provides an introduction to thermodynamics. The goal is to use phenomenological descriptions of the microscopic details of matter in order

More information

Gases and Kinetic Theory

Gases and Kinetic Theory Gases and Kinetic Theory Chemistry 35 Fall 2000 Gases One of the four states of matter Simplest to understand both physically and chemically Gas Properties Low density Fluid Can be defined by their: 1.

More information

Name Date Class STATES OF MATTER. Match the correct state of matter with each description of water by writing a letter on each line.

Name Date Class STATES OF MATTER. Match the correct state of matter with each description of water by writing a letter on each line. 10 STATES OF MATTER SECTION 10.1 THE NATURE OF GASES (pages 267 272) This section describes how the kinetic theory applies to gases. It defines gas pressure and explains how temperature is related to the

More information

(b) The measurement of pressure

(b) The measurement of pressure (b) The measurement of pressure The pressure of the atmosphere is measured with a barometer. The original version of a barometer was invented by Torricelli, a student of Galileo. The barometer was an inverted

More information

Dr.Salwa Alsaleh fac.ksu.edu.sa/salwams

Dr.Salwa Alsaleh fac.ksu.edu.sa/salwams Dr.Salwa Alsaleh Salwams@ksu.edu.sa fac.ksu.edu.sa/salwams What is Temperature? It is the measurement of the AVERAGE kinetic energy of the particles of matter. Temperature We associate the concept of temperature

More information

Section Using Gas Laws to Solve Problems

Section Using Gas Laws to Solve Problems Gases and Gas Laws Section 13.2 Using Gas Laws to Solve Problems Kinetic Molecular Theory Particles of matter are ALWAYS in motion Volume of individual particles is zero. Consists of large number of particles

More information

STATES OF MATTER STATES OF MATTER. The Four States of Matter 3/5/2015. Solid. Liquid Commonly found on Gas Earth Plasma

STATES OF MATTER STATES OF MATTER. The Four States of Matter 3/5/2015. Solid. Liquid Commonly found on Gas Earth Plasma Unit 10: States of Matter Lesson 10.1: States and Their Changes (Review) STATES OF MATTER The Four States of Matter Solid } Liquid Commonly found on Gas Earth Plasma STATES OF MATTER Based upon particle

More information

STATES OF MATTER STATES OF MATTER. The Four States of Matter 3/5/2015

STATES OF MATTER STATES OF MATTER. The Four States of Matter 3/5/2015 The Four States of Matter Unit 10: States of Matter Lesson 10.1: States and Their Changes (Review) Solid } Liquid Commonly found on Gas Earth Plasma Based upon particle arrangement Based upon energy of

More information

Electricity and Energy 1 Content Statements

Electricity and Energy 1 Content Statements Keep this in good condition, it will help you pass your final exams. The school will only issue one paper copy per pupil. An e-copy will be placed on the school s web-site. Electricity and Energy 1 Content

More information

A) 2.0 atm B) 2.2 atm C) 2.4 atm D) 2.9 atm E) 3.3 atm

A) 2.0 atm B) 2.2 atm C) 2.4 atm D) 2.9 atm E) 3.3 atm Name: Date: 1. On a cold day ( 3 C), the gauge pressure on a tire reads 2.0 atm. If the tire is heated to 27 C, what will be the absolute pressure of the air inside the tire? A) 2.0 atm B) 2.2 atm C) 2.4

More information

Importance of Gases Airbags fill with N gas in an accident. Gas is generated by the decomposition of sodium azide, NaN.

Importance of Gases Airbags fill with N gas in an accident. Gas is generated by the decomposition of sodium azide, NaN. Gas Laws Importance of Gases Airbags fill with N 2 gas in an accident. Gas is generated by the decomposition of sodium azide, NaN 3. 2 NaN 3 (s) 2 Na (s) + 3 N 2 (g) 2 Importance of Gases C 6 H 12 O 6

More information

10/12/10. Chapter 16. A Macroscopic Description of Matter. Chapter 16. A Macroscopic Description of Matter. State Variables.

10/12/10. Chapter 16. A Macroscopic Description of Matter. Chapter 16. A Macroscopic Description of Matter. State Variables. Chapter 16. A Macroscopic Description of Matter Macroscopic systems are characterized as being either solid, liquid, or gas. These are called the phases of matter, and in this chapter we ll be interested

More information

Course: TDEC202 (Energy II) dflwww.ece.drexel.edu/tdec

Course: TDEC202 (Energy II) dflwww.ece.drexel.edu/tdec Course: TDEC202 (Energy II) Thermodynamics: An Engineering Approach Course Director/Lecturer: Dr. Michael Carchidi Course Website URL dflwww.ece.drexel.edu/tdec 1 Course Textbook Cengel, Yunus A. and Michael

More information

General Physics I (aka PHYS 2013)

General Physics I (aka PHYS 2013) General Physics I (aka PHYS 2013) PROF. VANCHURIN (AKA VITALY) University of Minnesota, Duluth (aka UMD) OUTLINE CHAPTER 12 CHAPTER 19 REVIEW CHAPTER 12: FLUID MECHANICS Section 12.1: Density Section 12.2:

More information

Revision Guide for Chapter 13

Revision Guide for Chapter 13 Matter: very simple Revision Guide for Chapter Contents Student s Checklist Revision Notes Ideal gas... Ideal gas laws... Assumptions of kinetic theory of gases... 5 Internal energy... 6 Specific thermal

More information

17-6 The Gas Laws and Absolute Temperature

17-6 The Gas Laws and Absolute Temperature 17-6 The Gas Laws and Absolute Temperature The relationship between the volume, pressure, temperature, and mass of a gas is called an equation of state. We will deal here with gases that are not too dense.

More information

Kinetic Molecular Theory and Gas Law Honors Packet. Name: Period: Date: Requirements for honors credit: Read all notes in packet

Kinetic Molecular Theory and Gas Law Honors Packet. Name: Period: Date: Requirements for honors credit: Read all notes in packet Kinetic Molecular Theory and Gas Law Honors Packet Name: Period: Date: Requirements for honors credit: Read all notes in packet Watch the 10 Brighstorm videos shown on the right and take Cornell notes

More information

compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due

compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due Liquids and solids They are similar compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due to the molecules being close together in solids

More information

10 TEMPERATURE, THERMAL EXPANSION, IDEAL GAS LAW, AND KINETIC THEORY OF GASES.

10 TEMPERATURE, THERMAL EXPANSION, IDEAL GAS LAW, AND KINETIC THEORY OF GASES. 10 TEMPERATURE, THERMAL EXPANSION, IDEAL GAS LAW, AND KINETIC THEORY OF GASES. Key words: Atoms, Molecules, Atomic Theory of Matter, Molecular Mass, Solids, Liquids, and Gases, Thermodynamics, State Variables,

More information

Lecture Outline Chapter 17. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 17. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 17 Physics, 4 th Edition James S. Walker Chapter 17 Phases and Phase Changes Ideal Gases Kinetic Theory Units of Chapter 17 Solids and Elastic Deformation Phase Equilibrium and

More information

5.60 Thermodynamics & Kinetics Spring 2008

5.60 Thermodynamics & Kinetics Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 5.60 Thermodynamics & Kinetics Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.60 Spring 2008 Lecture

More information

Although different gasses may differ widely in their chemical properties, they share many physical properties

Although different gasses may differ widely in their chemical properties, they share many physical properties IV. Gases (text Chapter 9) A. Overview of Chapter 9 B. Properties of gases 1. Ideal gas law 2. Dalton s law of partial pressures, etc. C. Kinetic Theory 1. Particulate model of gases. 2. Temperature and

More information

GASES (Chapter 5) Temperature and Pressure, that is, 273 K and 1.00 atm or 760 Torr ) will occupy

GASES (Chapter 5) Temperature and Pressure, that is, 273 K and 1.00 atm or 760 Torr ) will occupy I. Ideal gases. A. Ideal gas law review. GASES (Chapter 5) 1. PV = nrt Ideal gases obey this equation under all conditions. It is a combination ofa. Boyle's Law: P 1/V at constant n and T b. Charles's

More information

Test Exchange Thermodynamics (C) Test Team Name: Team Number: Score: / 43. Made by Montgomery High School -

Test Exchange Thermodynamics (C) Test Team Name: Team Number: Score: / 43. Made by Montgomery High School - 1 Test Exchange Thermodynamics (C) Test Team Name: Team Number: Score: / 43 Made by Montgomery High School - montyscioly@gmail.com 2 Questions are worth between 1 and 3 points. Show calculations for all

More information

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Laws Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Properties 1) Gases have mass - the density of the gas is very low in comparison to solids and liquids, which make it

More information

Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat Chapter 10 Temperature and Heat Thermodynamics deals with 1. Temperature. 2. The transfer and transformation of energy. 3. The relationship between macroscopic properties and microscopic dynamics. Temperature

More information

Physics 5D PRACTICE FINAL EXAM Fall 2013

Physics 5D PRACTICE FINAL EXAM Fall 2013 Print your name: Physics 5D PRACTICE FINAL EXAM Fall 2013 Real Exam is Wednesday December 11 Thimann Lecture 3 4:00-7:00 pm Closed book exam two 8.5x11 sheets of notes ok Note: Avogadro s number N A =

More information

Lecture 20. Phase Transitions. Phase diagrams. Latent heats. Phase-transition fun. Reading for this Lecture: Elements Ch 13.

Lecture 20. Phase Transitions. Phase diagrams. Latent heats. Phase-transition fun. Reading for this Lecture: Elements Ch 13. Lecture 20 Phase ransitions Phase diagrams Latent heats Phase-transition fun Reading for this Lecture: Elements Ch 13 Lecture 20, p 1 Solid-gas equilibrium: vapor pressure Consider solid-gas equilibrium

More information

Flow of fluids 1. Prof. Ferenc Bari. Department of Medical Physics and Informatics

Flow of fluids 1. Prof. Ferenc Bari. Department of Medical Physics and Informatics Flow of fluids 1 Prof Ferenc Bari Department of Medical Physics and Informatics 20 th October 2016 Prof Ferenc Bari (SZTE DMI) Flow of fluids 1 20 th October 2016 1 / 71 Contents 1 Overview 2 Gases Overview

More information

They are similar to each other. Intermolecular forces

They are similar to each other. Intermolecular forces s and solids They are similar to each other Different than gases. They are incompressible. Their density doesn t change much with temperature. These similarities are due to the molecules staying close

More information

10. How many significant figures in the measurement g? a. 2 b. 3 c. 4 d. 5 e. 6

10. How many significant figures in the measurement g? a. 2 b. 3 c. 4 d. 5 e. 6 Summer Practice Test Ch 1 (va pg 1 of 5) Matter and Measurement Name Per You should NOT use a calculator except for #0. This practice test should be in your 3 ring notebook on the first day of school.

More information

Chapter 11. Liquids and Intermolecular Forces

Chapter 11. Liquids and Intermolecular Forces Chapter 11 Liquids and Intermolecular Forces States of Matter The three states of matter are 1) Solid Definite shape Definite volume 2) Liquid Indefinite shape Definite volume 3) Gas Indefinite shape Indefinite

More information

CHAPTER 5 GASES AND THE KINETIC- MOLECULAR THEORY

CHAPTER 5 GASES AND THE KINETIC- MOLECULAR THEORY CHAPTER 5 GASES AND THE KINETIC- MOLECULAR THEORY FOLLOW UP PROBLEMS 5.1A Plan: Use the equation for gas pressure in an open-end manometer to calculate the pressure of the gas. Use conversion factors to

More information

I. The Nature of Energy A. Energy

I. The Nature of Energy A. Energy I. The Nature of Energy A. Energy is the ability to do work or produce heat. It exists in 2 forms: 1. Potential energy is energy due to the composition or position of an object. 2. Kinetic energy is energy

More information

Unit 4: Gas Laws. Matter and Phase Changes

Unit 4: Gas Laws. Matter and Phase Changes Unit 4: Gas Laws Matter and Phase Changes ENERGY and matter What is 에너지 A fundamental property of the universe that cannot be easily defined. Energy No one knows what energy is, only what it does or has

More information

Ch10.4 Attractive Forces

Ch10.4 Attractive Forces Ch10.4 Attractive Forces Intermolecular Forces are the forces holding molecules to each other. Solids have strong forces Gases (vapor) have weak forces Intermolecular forces determine the phase of matter.

More information

Temperature and Heat. Two systems of temperature. Temperature conversions. PHY heat - J. Hedberg

Temperature and Heat. Two systems of temperature. Temperature conversions. PHY heat - J. Hedberg Temperature and Heat 1. Two systems of temperature 1. Temperature conversions 2. Real science (one scale to rule them all) 3. Temperature scales 2. Effects of temperature on materials 1. Linear Thermal

More information

CHAPTER 13. States of Matter. Kinetic = motion. Polar vs. Nonpolar. Gases. Hon Chem 13.notebook

CHAPTER 13. States of Matter. Kinetic = motion. Polar vs. Nonpolar. Gases. Hon Chem 13.notebook CHAPTER 13 States of Matter States that the tiny particles in all forms of matter are in constant motion. Kinetic = motion A gas is composed of particles, usually molecules or atoms, with negligible volume

More information

Rate of Heating and Cooling

Rate of Heating and Cooling Rate of Heating and Cooling 35 T [ o C] Example: Heating and cooling of Water E 30 Cooling S 25 Heating exponential decay 20 0 100 200 300 400 t [sec] Newton s Law of Cooling T S > T E : System S cools

More information