Riemann Sums. Outline. James K. Peterson. September 15, Riemann Sums. Riemann Sums In MatLab

Size: px
Start display at page:

Download "Riemann Sums. Outline. James K. Peterson. September 15, Riemann Sums. Riemann Sums In MatLab"

Transcription

1 Riemann Sums James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 15, 2013 Outline Riemann Sums Riemann Sums In MatLab

2 Abstract This lecture introduces Riemann sums and Riemann integrals. We talked earlier about the special limiting process that leads to a Riemann integral and we have gone over derivatives and antiderivatives of a wide class of functions. But we need desperately a connection between these ideas. We are going to find the easy way to calculate a Riemann integral. No limits at all! Here is the rule b f (t) dt = F (b) F (a) a where F is any antiderivative of f! All we have to do is guess one and we have had a lot of practice doing just that in the last chapter. Of course, this is not magic and it follows from careful reasoning. So get ready for a nice long read. Remember the punch line: this new tool helps us and understanding how a tool is made helps us master it. We must learn learn to make them do our bidding. So here we go with another step on your road to becoming craftsman.

3 Let s go back and be formal for a bit. To study the integration of a function f, there are two intellectually separate ideas: the primitive or antiderivative and the Riemann integral. They seem quite different, don t they? We have 1. the idea of a Primitive or Antiderivative: f. This is any function F which is differentiable and satisfies F (t) = f (t) at all points in the domain of f. Normally, the domain of f is a finite interval of the form [a, b], although it could also be an infinite interval like all of R or [1, ) and so on. Note that an antiderivative does not require any understanding of the process of Riemann integration at all only what differentiation is! 2. The idea of the Riemann integral of a function. Riemann integration is far more complicated to setup than the process of guessing a primitive or antiderivative. To define a Riemann integral properly, first, we start with a bounded function f on a finite interval [a, b]. This kind of function f need not be continuous! Then select a finite number of points from the interval [a, b], {t 0, t 1,,..., t n 1, t n}. We don t know how many points there are, so a different selection from the interval would possibly gives us more or less points. But for convenience, we will just call the last point t n and the first point t 0. These points are not arbitrary t 0 is always a, t n is always b and they are ordered like this: t 0 = a < t 1 < t 2 <... < t n 1 < t n = b The collection of points from the interval [a, b] is called a Partition of [a, b] and is denoted by some letter here we will use the letter P.

4 So if we say P is a partition of [a, b], we know it will have n + 1 points in it, they will be labeled from t 0 to t n and they will be ordered left to right with strict inequalities. But, we will not know what value the positive integer n actually is. The simplest Partition P is the two point partition {a, b}. Note these things also: 1. Each partition of n + 1 points determines n subintervals of [a, b] 2. The lengths of these subintervals always adds up to the length of [a, b] itself, b a. 3. These subintervals can be represented as {[t0, t1], [t1, t2],..., [tn 1, tn]} or more abstractly as [ti, ti+1] where the index i ranges from 0 to n The length of each subinterval is ti+1 ti for the indices i in the range 0 to n The largest subinterval length is called the norm of the partition and we denote it by the symbol P. Now from each subinterval [t i, t i+1] determined by the Partition P, select any point you want and call it s i. This will give us the points s 0 from [t 0, t 1], s 1 from [t 1, t 2] and so on up to the last point, s n 1 from [t n 1, t n]. At each of these points, we can evaluate the function f to get the value f (s j). Call these points an Evaluation Set for the partition P. Let s denote such an evaluation set by the letter E. If the function f was nice enough to be positive always and continuous, then the product f (s i) (t i+1 t i) can be interpreted as the area of a rectangle.

5 Then, if we add up all these rectangle areas we get a sum which is useful enough to be given a special name: the Riemann Sum for the function f associated with the Partition P and our choice of evaluation set E = {s 0,..., s n 1}. This sum is represented by the symbol S(f, P, E) where the things inside the parenthesis are there to remind us that this sum depends on our choice of the function f, the partition P and the evaluation set E. We have S(f, P, E) = n 1 f (s i) (t i+1 t i) i=0 Definition The Riemann sum for the bounded function f, the partition P and the evaluation set E = {s 0,..., s n 1} from P{t 0, t 1,,..., t n 1, t n} is defined by S(f, P, E) = n 1 f (s i) (t i+1 t i) i=0 It is pretty misleading to write the Riemann sum this way as it can make us think that the n is always the same when in fact it can change value each time we select a different P. So many of us write the definition this way instead S(f, P, E) = i P f (si) (ti+1 ti) and we just remember that the choice of P will determine the size of n.

6 Example Let s look at an example of all this. Here we see the graph of a typical function which is always positive on some finite interval [a, b]. (a, f (a)) (b, f (b)) A generic curve f on the interval [a, b] which is always positive. Note the area under this curve is the shaded region. a b Figure: The Area Under The Curve f Example Continued Next, let s set the interval to be [1, 6] and compute the Riemann Sum for a particular choice of Partition P and evaluation set E. The partition (gray) is P = {1.0, 1.5, 2.6, 3.8, 4.3, 5.6, 6.0}. Hence, we have subinterval lengths of t 1 t 0 = 0.5, t 2 t 1 = 1.1, t 3 t 2 = 1.2, t 4 t 3 = 0.5, t 5 t 4 = 1.3 and t 6 t 5 = 0.4, giving P = 1.3. For the evaluation set (red) E = {1.1, 1.8, 3.0, 4.1, 5.3, 5.8} the Riemann sum is S(f, P, E) = 5 f (s i) (t i+1 t i) i=0 = f (1.1) f (1.8) f (3.0) f (4.1) f (5.3) f (5.8) 0.4

7 Example Continued (1, f (1)) (6, f (6)) The partition points are in gray and the evaluation points are in red. 1 6 Figure: A Simple Riemann Sum Example Continued We can also interpret the Riemann sum as an approximation to the area under the curve. The partition (gray) is P = {1.0, 1.5, 2.6, 3.8, 4.3, 5.6, 6.0}. For the evaluation set (red) E = {1.1, 1.8, 3.0, 4.1, 5.3, 5.8} (1, f (1)) (6, f (6)) 1 6 Figure: The Riemann Sum As An Approximate Area

8 Example Example We let f (t) = t 2 + 6t 8 on the interval [2, 4] with P = {2, 2.5, 3.0, 3.7, 4.0} and E = {2.2, 2.8, 3.3, 3.8}. Solution The partition determines subinterval lengths of t 1 t 0 = 0.5, t 2 t 1 = 0.5, t 3 t 2 = 0.7, and t 4 t 3 = 0.3, giving P = 0.7. For E and P, we have the Riemann sum S(f, P, E) = 3 i=0 f (si) (ti+1 ti. Thus S(f, P, E) = f (2.2) f (2.8) f (3.3) f (3.8) 0.3 = Example Example Let f (t) = 3t 2 on the interval [ 1, 2] with P = { 1, 0.3, 0.6, 1.2, 2.0} and E = { 0.7, 0.2, 0.9, 1.6}. Find the Riemann sum. Solution The partition determines subinterval lengths of t 1 t 0 = 0.7, t 2 t 1 = 0.9, t 3 t 2 = 0.6, and t 4 t 3 = 0.8, giving P = 0.9. For the evaluation set E the Riemann sum is S(f, P, E) = f ( 0.7) f (0.2) f (0.9) f (1.6) 0.8 = 8.739

9 Homework 24 For the given function f, partition P and evaluation set E, do the following. 1. Find S(f, P, E) for the partition P and evaluation set E. 2. Find P. 3. Sketch a graph of this Riemann sum as an approximation to the area under the curve f. Do a nice graph with appropriate use of color. Homework 24 Continued 24.1 Let f (t) = t on the interval [1, 3] with P = {1, 1.5, 2.0, 2.5, 3.0} and E = {1.2, 1.8, 2.3, 2.8} Let f (t) = t on the interval [1, 3] with P = {1, 1.6, 2.3, 2.8, 3.0} and E = {1.2, 1.9, 2.5, 2.85} Let f (t) = 3t 2 + 2t on the interval [1, 2] with P = {1, 1.2, 1.5, 1.8, 2.0} and E = {1.1, 1.3, 1.7, 1.9} 24.4 Let f (t) = 3t 2 + t on the interval [1, 4] with P = {1, 1.2, 1.5, 2.8, 4.0} and E = {1.1, 1.3, 2.3, 3.2}

10 Let s start with Riemann sums in Matlab. As you have seen, doing these by hand is tedious. Let s look at how we might do them using MatLab. Here is a typical MatLab session to do this. Let s calculate the Riemann sum for the function f (x) = x 2 on the interval [1, 3] using the partition P = {1, 1.5, 2.1, 2.8, 3.0} and evaluation set E = {1.2, 1.7, 2.5, 2.9}. First, set up our function. MatLab allows us to define a function inside the MatLab environment as follows >> f x ) ( x. ˆ 2 ) ; This defines the function f (x) = x 2. If we had wanted to define g(x) = 2x 2 + 3, we would have used >> g x ) ( 2 x. ˆ 2 + 3) ; To square X, we would write X.^2 to square each component creating a new vector with each entry squared. >> X. ˆ 2 ans = The way we set up the function f (x.^2); makes use of this. The variable X may or may not be a vector. So we write x.^2 so that if x is a vector, multiplication is done component wise and if not, it is just the squaring of a number. So for our function, to find f for all the values in X, we just type >> f (X) ans = 1 4 9

11 Now let s setup the partition with the command >> P = [ 1 ; 1. 5 ; 2. 1 ; 2. 8 ; 3. 0 ] P = The command diff in MatLab is applied to a vector to create the differences we have called the x i s. >> dx = d i f f (P) dx = Next, we set up the evaluation set E. >> E = [ 1. 2 ; 1. 7 ; 2. 5 ; 2. 9 ] E = Find f (E); a new vector with the values f (s i) s. Use f (E). dx to create the new vector with components f (s i) x i. >> g = f ( E ). dx g =

12 Finally, we add all these components together to get the Riemann sum. In MatLab, we add up the entries of a vector g with the command sum(g). >> RS = sum ( g ) RS = Without the comments, the MatLab session is not too long. >> f x ) ( x. ˆ 2 ) ; >> P = [ 1 ; 1. 5 ; 2. 1 ; 2. 8 ; 3. 0 ] ; >> dx = d i f f (P) ; >> E = [ 1. 2 ; 1. 7 ; 2. 5 ; 2. 9 ] ; >> g = f ( E ). dx ; >> RS = sum ( g ) ; Homework 25 For the given function f, partition P and evaluation set E, do the following: use Matlab to find S(f, P, E) for the partition P and evaluation set E. Create a new word document for this homework. Do the document in single space. Do matlab fragments in bold font. The document starts with your name, MTHSC 106-Bio, Section Number, Date and Homework number.

13 Homework 25 Continued Then answer the problems like this: 1. State Problem 1. insert into your doc the matlab commands you use to solve the problem. Do this in bold. before each line of matlab add explanatory comments so we can check to see you know what you re doing. 2. State Problem 2. same stuff Homework 25 Example Jim Peterson MTHSC 106-B, Section Number today s date and HW Number, Problem 1: Let f (t) = sin(5t) on the interval [1, 3] with P = {1, 1.5, 2.0, 2.5, 3.0} and E = {1.2, 1.8, 2.3, 2.8}. Find S(f, P, E), % add e x p l a n a t i o n h e r e >> f x ) s i n ( 5 x ) ; % add e x p l a n a t i o n h e r e >> P = [ 1 ; 1. 5 ; 2. 0 ; 2. 5 ; 3. 0 ] ; % add e x p l a n a t i o n h e r e >> E = [ 1. 2 ; 1. 8 ; 2. 3 ; 2. 8 ] ; % add e x p l a n a t i o n h e r e >> dx = d i f f (P) ; % add e x p l a n a t i o n h e r e >> g = f ( E ). dx ; % add e x p l a n a t i o n h e r e >> RS = sum ( g ) RS =

14 Homework 25 Continued 25.1 Let f (t) = t on the interval [1, 3] with P = {1, 1.5, 2.0, 2.5, 3.0} and E = {1.2, 1.8, 2.3, 2.8} Let f (t) = t on the interval [1, 3] with P = {1, 1.6, 2.3, 2.8, 3.0} and E = {1.2, 1.9, 2.5, 2.85} Let f (t) = 3t 2 + 2t on the interval [1, 2] with P = {1, 1.2, 1.5, 1.8, 2.0} and E = {1.1, 1.3, 1.7, 1.9} 25.4 Let f (t) = 3t 2 + t on the interval [1, 4] with P = {1, 1.2, 1.5, 2.8, 4.0} and E = {1.1, 1.3, 2.3, 3.2}

Riemann Integration. Outline. James K. Peterson. February 2, Riemann Sums. Riemann Sums In MatLab. Graphing Riemann Sums

Riemann Integration. Outline. James K. Peterson. February 2, Riemann Sums. Riemann Sums In MatLab. Graphing Riemann Sums Riemann Integration James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 2, 2017 Outline Riemann Sums Riemann Sums In MatLab Graphing

More information

Riemann Integration. James K. Peterson. February 2, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Riemann Integration. James K. Peterson. February 2, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Riemann Integration James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 2, 2017 Outline 1 Riemann Sums 2 Riemann Sums In MatLab 3 Graphing

More information

Lecture 5b: Starting Matlab

Lecture 5b: Starting Matlab Lecture 5b: Starting Matlab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University August 7, 2013 Outline 1 Resources 2 Starting Matlab 3 Homework

More information

Integration by Parts Logarithms and More Riemann Sums!

Integration by Parts Logarithms and More Riemann Sums! Integration by Parts Logarithms and More Riemann Sums! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 16, 2013 Outline 1 IbyP with

More information

An Introduction to Matlab

An Introduction to Matlab An Introduction to Matlab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University August 25, 2013 Outline Starting Matlab Matlab Vectors and Functions

More information

Antiderivatives! Outline. James K. Peterson. January 28, Antiderivatives. Simple Fractional Power Antiderivatives

Antiderivatives! Outline. James K. Peterson. January 28, Antiderivatives. Simple Fractional Power Antiderivatives Antiderivatives! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 28, 2014 Outline Antiderivatives Simple Fractional Power Antiderivatives

More information

Antiderivatives! James K. Peterson. January 28, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Antiderivatives! James K. Peterson. January 28, Department of Biological Sciences and Department of Mathematical Sciences Clemson University ! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 28, 2014 Outline 1 2 Simple Fractional Power Abstract This lecture is going to talk

More information

Riemann Integration Theory

Riemann Integration Theory Riemann Integration Theory James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 3, 2017 Outline 1 Uniform Partition Riemann Sums 2 Refinements

More information

Newton s Cooling Model in Matlab and the Cooling Project!

Newton s Cooling Model in Matlab and the Cooling Project! Newton s Cooling Model in Matlab and the Cooling Project! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 10, 2014 Outline Your Newton

More information

Mathematical Induction

Mathematical Induction Mathematical Induction James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 12, 2017 Outline Introduction to the Class Mathematical Induction

More information

MAT137 - Term 2, Week 2

MAT137 - Term 2, Week 2 MAT137 - Term 2, Week 2 This lecture will assume you have watched all of the videos on the definition of the integral (but will remind you about some things). Today we re talking about: More on the definition

More information

Derivatives and the Product Rule

Derivatives and the Product Rule Derivatives and the Product Rule James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 28, 2014 Outline 1 Differentiability 2 Simple Derivatives

More information

Project Two. James K. Peterson. March 26, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Project Two. James K. Peterson. March 26, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Project Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 26, 2019 Outline 1 Cooling Models 2 Estimating the Cooling Rate k 3 Typical

More information

Project Two. Outline. James K. Peterson. March 27, Cooling Models. Estimating the Cooling Rate k. Typical Cooling Project Matlab Session

Project Two. Outline. James K. Peterson. March 27, Cooling Models. Estimating the Cooling Rate k. Typical Cooling Project Matlab Session Project Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 27, 2018 Outline Cooling Models Estimating the Cooling Rate k Typical Cooling

More information

The Existence of the Riemann Integral

The Existence of the Riemann Integral The Existence of the Riemann Integral James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 18, 2018 Outline The Darboux Integral Upper

More information

Solving systems of ODEs with Matlab

Solving systems of ODEs with Matlab Solving systems of ODEs with Matlab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 20, 2013 Outline 1 Systems of ODEs 2 Setting Up

More information

MA 137 Calculus 1 with Life Science Applications. (Section 6.1)

MA 137 Calculus 1 with Life Science Applications. (Section 6.1) MA 137 Calculus 1 with Life Science Applications (Section 6.1) Alberto Corso alberto.corso@uky.edu Department of Mathematics University of Kentucky December 2, 2015 1/17 Sigma (Σ) Notation In approximating

More information

4.3. Riemann Sums. Riemann Sums. Riemann Sums and Definite Integrals. Objectives

4.3. Riemann Sums. Riemann Sums. Riemann Sums and Definite Integrals. Objectives 4.3 Riemann Sums and Definite Integrals Objectives Understand the definition of a Riemann sum. Evaluate a definite integral using limits & Riemann Sums. Evaluate a definite integral using geometric formulas

More information

Predator - Prey Model Trajectories are periodic

Predator - Prey Model Trajectories are periodic Predator - Prey Model Trajectories are periodic James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 4, 2013 Outline 1 Showing The PP

More information

Hölder s and Minkowski s Inequality

Hölder s and Minkowski s Inequality Hölder s and Minkowski s Inequality James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 1, 218 Outline Conjugate Exponents Hölder s

More information

Project One: C Bump functions

Project One: C Bump functions Project One: C Bump functions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 2, 2018 Outline 1 2 The Project Let s recall what the

More information

7.1 Indefinite Integrals Calculus

7.1 Indefinite Integrals Calculus 7.1 Indefinite Integrals Calculus Learning Objectives A student will be able to: Find antiderivatives of functions. Represent antiderivatives. Interpret the constant of integration graphically. Solve differential

More information

Regression and Covariance

Regression and Covariance Regression and Covariance James K. Peterson Department of Biological ciences and Department of Mathematical ciences Clemson University April 16, 2014 Outline A Review of Regression Regression and Covariance

More information

Matrices and Vectors

Matrices and Vectors Matrices and Vectors James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 11, 2013 Outline 1 Matrices and Vectors 2 Vector Details 3 Matrix

More information

The First Derivative and Second Derivative Test

The First Derivative and Second Derivative Test The First Derivative and Second Derivative Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April 9, 2018 Outline 1 Extremal Values 2

More information

The First Derivative and Second Derivative Test

The First Derivative and Second Derivative Test The First Derivative and Second Derivative Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 8, 2017 Outline Extremal Values The

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct

More information

Predator - Prey Model Trajectories are periodic

Predator - Prey Model Trajectories are periodic Predator - Prey Model Trajectories are periodic James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 4, 2013 Outline Showing The PP Trajectories

More information

Uniform Convergence Examples

Uniform Convergence Examples Uniform Convergence Examples James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 13, 2017 Outline More Uniform Convergence Examples Example

More information

Complex Numbers. James K. Peterson. September 19, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Complex Numbers. James K. Peterson. September 19, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Complex Numbers James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 19, 2013 Outline 1 Complex Numbers 2 Complex Number Calculations

More information

Complex Numbers. Outline. James K. Peterson. September 19, Complex Numbers. Complex Number Calculations. Complex Functions

Complex Numbers. Outline. James K. Peterson. September 19, Complex Numbers. Complex Number Calculations. Complex Functions Complex Numbers James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 19, 2013 Outline Complex Numbers Complex Number Calculations Complex

More information

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 6, 203 Outline

More information

A Simple Protein Synthesis Model

A Simple Protein Synthesis Model A Simple Protein Synthesis Model James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 3, 213 Outline A Simple Protein Synthesis Model

More information

Hölder s and Minkowski s Inequality

Hölder s and Minkowski s Inequality Hölder s and Minkowski s Inequality James K. Peterson Deartment of Biological Sciences and Deartment of Mathematical Sciences Clemson University Setember 10, 2018 Outline 1 Conjugate Exonents 2 Hölder

More information

Mathematical Induction Again

Mathematical Induction Again Mathematical Induction Again James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 12, 2017 Outline Mathematical Induction Simple POMI Examples

More information

Differentiating Series of Functions

Differentiating Series of Functions Differentiating Series of Functions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 30, 017 Outline 1 Differentiating Series Differentiating

More information

Mathematical Induction Again

Mathematical Induction Again Mathematical Induction Again James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 2, 207 Outline Mathematical Induction 2 Simple POMI Examples

More information

Uniform Convergence Examples

Uniform Convergence Examples Uniform Convergence Examples James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 13, 2017 Outline 1 Example Let (x n ) be the sequence

More information

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 6, 2013 Outline

More information

The Derivative of a Function

The Derivative of a Function The Derivative of a Function James K Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 1, 2017 Outline A Basic Evolutionary Model The Next Generation

More information

Cable Convergence. James K. Peterson. May 7, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Cable Convergence. James K. Peterson. May 7, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Cable Convergence James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University May 7, 2018 Outline 1 Fourier Series Convergence Redux 2 Fourier Series

More information

HW#2: Quads 7 #1 6. How do you find the answer to a Quadratic Inequality? 02Quad7 SolvingQuadraticInequalities Notes.notebook.

HW#2: Quads 7 #1 6. How do you find the answer to a Quadratic Inequality? 02Quad7 SolvingQuadraticInequalities Notes.notebook. Quadratics 7 Solving Quadratic Inequalities Standards: A REI.7, A REI.11, F IF.7a GLO: #3 Complex Thinker Math Practice: Reason abstractly & Quantitatively Learning Targets: How do you write inequality

More information

Bolzano Weierstrass Theorems I

Bolzano Weierstrass Theorems I Bolzano Weierstrass Theorems I James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 8, 2017 Outline The Bolzano Weierstrass Theorem Extensions

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties

More information

Advanced Protein Models

Advanced Protein Models Advanced Protein Models James. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 27, 2014 Outline Advanced Protein Models The Bound Fraction Transcription

More information

MAT137 - Term 2, Week 4

MAT137 - Term 2, Week 4 MAT137 - Term 2, Week 4 Reminders: Your Problem Set 6 is due tomorrow at 3pm. Test 3 is next Friday, February 3, at 4pm. See the course website for details. Today we will: Talk more about substitution.

More information

Day 2 Notes: Riemann Sums In calculus, the result of f ( x)

Day 2 Notes: Riemann Sums In calculus, the result of f ( x) AP Calculus Unit 6 Basic Integration & Applications Day 2 Notes: Riemann Sums In calculus, the result of f ( x) dx is a function that represents the anti-derivative of the function f(x). This is also sometimes

More information

Defining Exponential Functions and Exponential Derivatives and Integrals

Defining Exponential Functions and Exponential Derivatives and Integrals Defining Exponential Functions and Exponential Derivatives and Integrals James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 19, 2014

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predator - Prey Model Trajectories and the nonlinear conservation law James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 28, 2013 Outline

More information

Advanced Protein Models

Advanced Protein Models Advanced Protein Models James. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 27, 2014 Outline 1 Advanced Protein Models 2 The Bound Fraction

More information

4 Integration. Copyright Cengage Learning. All rights reserved.

4 Integration. Copyright Cengage Learning. All rights reserved. 4 Integration Copyright Cengage Learning. All rights reserved. 4.1 Antiderivatives and Indefinite Integration Copyright Cengage Learning. All rights reserved. Objectives! Write the general solution of

More information

Relationship Between Integration and Differentiation

Relationship Between Integration and Differentiation Relationship Between Integration and Differentiation Fundamental Theorem of Calculus Philippe B. Laval KSU Today Philippe B. Laval (KSU) FTC Today 1 / 16 Introduction In the previous sections we defined

More information

Solving Linear Systems of ODEs with Matlab

Solving Linear Systems of ODEs with Matlab Solving Linear Systems of ODEs with Matlab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 27, 2013 Outline Linear Systems Numerically

More information

MA 1125 Lecture 15 - The Standard Normal Distribution. Friday, October 6, Objectives: Introduce the standard normal distribution and table.

MA 1125 Lecture 15 - The Standard Normal Distribution. Friday, October 6, Objectives: Introduce the standard normal distribution and table. MA 1125 Lecture 15 - The Standard Normal Distribution Friday, October 6, 2017. Objectives: Introduce the standard normal distribution and table. 1. The Standard Normal Distribution We ve been looking at

More information

General Power Series

General Power Series General Power Series James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 29, 2018 Outline Power Series Consequences With all these preliminaries

More information

Consequences of Continuity

Consequences of Continuity Consequences of Continuity James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 4, 2017 Outline 1 Domains of Continuous Functions 2 The

More information

MATH 2413 TEST ON CHAPTER 4 ANSWER ALL QUESTIONS. TIME 1.5 HRS.

MATH 2413 TEST ON CHAPTER 4 ANSWER ALL QUESTIONS. TIME 1.5 HRS. MATH 1 TEST ON CHAPTER ANSWER ALL QUESTIONS. TIME 1. HRS. M1c Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Use the summation formulas to rewrite the

More information

Chapter 6: The Definite Integral

Chapter 6: The Definite Integral Name: Date: Period: AP Calc AB Mr. Mellina Chapter 6: The Definite Integral v v Sections: v 6.1 Estimating with Finite Sums v 6.5 Trapezoidal Rule v 6.2 Definite Integrals 6.3 Definite Integrals and Antiderivatives

More information

5.3 Definite Integrals and Antiderivatives

5.3 Definite Integrals and Antiderivatives 5.3 Definite Integrals and Antiderivatives Objective SWBAT use properties of definite integrals, average value of a function, mean value theorem for definite integrals, and connect differential and integral

More information

Convergence of Sequences

Convergence of Sequences James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 5, 2018 Outline 1 2 Homework Definition Let (a n ) n k be a sequence of real numbers.

More information

18A.1: #2,4,5 (Area under curve) 18A.2: #1 3 (Definite integral)

18A.1: #2,4,5 (Area under curve) 18A.2: #1 3 (Definite integral) 18A.1: #2,4,5 (Area under curve) 18A.2: #1 3 (Definite integral) 1. Understand integration as the area under a curve. QB #36,44d 2. Understand and calculate left and right Riemann sums 3. Determine upper

More information

INTEGRATION: AREAS AND RIEMANN SUMS MR. VELAZQUEZ AP CALCULUS

INTEGRATION: AREAS AND RIEMANN SUMS MR. VELAZQUEZ AP CALCULUS INTEGRATION: AREAS AND RIEMANN SUMS MR. VELAZQUEZ AP CALCULUS APPROXIMATING AREA For today s lesson, we will be using different approaches to the area problem. The area problem is to definite integrals

More information

Chapter 6 Section Antiderivatives and Indefinite Integrals

Chapter 6 Section Antiderivatives and Indefinite Integrals Chapter 6 Section 6.1 - Antiderivatives and Indefinite Integrals Objectives: The student will be able to formulate problems involving antiderivatives. The student will be able to use the formulas and properties

More information

The SIR Disease Model Trajectories and MatLab

The SIR Disease Model Trajectories and MatLab The SIR Disease Model Trajectories and MatLab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 17, 2013 Outline Reviewing the SIR

More information

Variation of Parameters

Variation of Parameters Variation of Parameters James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April 13, 218 Outline Variation of Parameters Example One We eventually

More information

RAMs.notebook December 04, 2017

RAMs.notebook December 04, 2017 RAMsnotebook December 04, 2017 Riemann Sums and Definite Integrals Estimate the shaded area Area between a curve and the x-axis How can you improve your estimate? Suppose f(x) 0 x [a, b], then the area

More information

Logarithm and Exponential Derivatives and Integrals

Logarithm and Exponential Derivatives and Integrals Logarithm and Exponential Derivatives and Integrals James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 3, 2013 Outline 1 Exponential

More information

() Chapter 8 November 9, / 1

() Chapter 8 November 9, / 1 Example 1: An easy area problem Find the area of the region in the xy-plane bounded above by the graph of f(x) = 2, below by the x-axis, on the left by the line x = 1 and on the right by the line x = 5.

More information

v(t) v(t) Assignment & Notes 5.2: Intro to Integrals Due Date: Friday, 1/10

v(t) v(t) Assignment & Notes 5.2: Intro to Integrals Due Date: Friday, 1/10 Assignment & Notes 5.2: Intro to Integrals 1. The velocity function (in miles and hours) for Ms. Hardtke s Christmas drive to see her family is shown at the right. Find the total distance Ms. H travelled

More information

More on infinite series Antiderivatives and area

More on infinite series Antiderivatives and area More on infinite series Antiderivatives and area September 28, 2017 The eighth breakfast was on Monday: There are still slots available for the October 4 breakfast (Wednesday, 8AM), and there s a pop-in

More information

Math Calculus I

Math Calculus I Math 165 - Calculus I Christian Roettger 382 Carver Hall Mathematics Department Iowa State University www.iastate.edu/~roettger November 13, 2011 4.1 Introduction to Area Sigma Notation 4.2 The Definite

More information

Integration and Differentiation Limit Interchange Theorems

Integration and Differentiation Limit Interchange Theorems Integration and Differentiation Limit Interchange Theorems James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 11, 2018 Outline 1 A More

More information

Lab 11: Numerical Integration Techniques. Figure 1. From the Fundamental Theorem of Calculus, we know that if we want to calculate f ( x)

Lab 11: Numerical Integration Techniques. Figure 1. From the Fundamental Theorem of Calculus, we know that if we want to calculate f ( x) Lab 11: Numerical Integration Techniques Introduction The purpose of this laboratory experience is to develop fundamental methods for approximating the area under a curve for the definite integral. With

More information

9/4/2017. Motion: Acceleration

9/4/2017. Motion: Acceleration Velocity Velocity (m/s) Position Velocity Position 9/4/217 Motion: Acceleration Summary Last : Find your clicker! Scalars: Distance, Speed Vectors: Position velocity Speed = Distance covered/time taken

More information

Why This Class? James K. Peterson. August 22, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Why This Class? James K. Peterson. August 22, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Why This Class? James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University August 22, 2013 Outline 1 Our Point of View Mathematics, Science and Computer

More information

Consequences of Continuity

Consequences of Continuity Consequences of Continuity James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 4, 2017 Outline Domains of Continuous Functions The Intermediate

More information

Integration. Antiderivatives and Indefinite Integration 3/9/2015. Copyright Cengage Learning. All rights reserved.

Integration. Antiderivatives and Indefinite Integration 3/9/2015. Copyright Cengage Learning. All rights reserved. Integration Copyright Cengage Learning. All rights reserved. Antiderivatives and Indefinite Integration Copyright Cengage Learning. All rights reserved. 1 Objectives Write the general solution of a differential

More information

Integration. 2. The Area Problem

Integration. 2. The Area Problem Integration Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University http://math.niu.edu/ richard/math2. Two Fundamental Problems of Calculus First

More information

The Basics of Physics with Calculus Part II. AP Physics C

The Basics of Physics with Calculus Part II. AP Physics C The Basics of Physics with Calculus Part II AP Physics C The AREA We have learned that the rate of change of displacement is defined as the VELOCITY of an object. Consider the graph below v v t lim 0 dx

More information

Integration. Copyright Cengage Learning. All rights reserved.

Integration. Copyright Cengage Learning. All rights reserved. 4 Integration Copyright Cengage Learning. All rights reserved. 1 4.3 Riemann Sums and Definite Integrals Copyright Cengage Learning. All rights reserved. 2 Objectives Understand the definition of a Riemann

More information

Taylor Polynomials. James K. Peterson. Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Taylor Polynomials. James K. Peterson. Department of Biological Sciences and Department of Mathematical Sciences Clemson University James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 24, 2013 Outline 1 First Order Approximation s Second Order Approximations 2 Approximation

More information

1 Introduction; Integration by Parts

1 Introduction; Integration by Parts 1 Introduction; Integration by Parts September 11-1 Traditionally Calculus I covers Differential Calculus and Calculus II covers Integral Calculus. You have already seen the Riemann integral and certain

More information

INTEGRATION: THE FUNDAMENTAL THEOREM OF CALCULUS MR. VELAZQUEZ AP CALCULUS

INTEGRATION: THE FUNDAMENTAL THEOREM OF CALCULUS MR. VELAZQUEZ AP CALCULUS INTEGRATION: THE FUNDAMENTAL THEOREM OF CALCULUS MR. VELAZQUEZ AP CALCULUS RECALL: ANTIDERIVATIVES When we last spoke of integration, we examined a physics problem where we saw that the area under the

More information

Math 122 Fall Unit Test 1 Review Problems Set A

Math 122 Fall Unit Test 1 Review Problems Set A Math Fall 8 Unit Test Review Problems Set A We have chosen these problems because we think that they are representative of many of the mathematical concepts that we have studied. There is no guarantee

More information

More Protein Synthesis and a Model for Protein Transcription Error Rates

More Protein Synthesis and a Model for Protein Transcription Error Rates More Protein Synthesis and a Model for Protein James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 3, 2013 Outline 1 Signal Patterns Example

More information

Proofs Not Based On POMI

Proofs Not Based On POMI s Not Based On POMI James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 12, 2018 Outline 1 Non POMI Based s 2 Some Contradiction s 3

More information

PLEASE LET ME KNOW IF YOU FIND TYPOS (send to

PLEASE LET ME KNOW IF YOU FIND TYPOS (send  to Teoretisk Fysik KTH Advanced QM (SI2380), Lecture 2 (Summary of concepts) 1 PLEASE LET ME KNOW IF YOU FIND TYPOS (send email to langmann@kth.se) The laws of QM 1. I now discuss the laws of QM and their

More information

Generating Function Notes , Fall 2005, Prof. Peter Shor

Generating Function Notes , Fall 2005, Prof. Peter Shor Counting Change Generating Function Notes 80, Fall 00, Prof Peter Shor In this lecture, I m going to talk about generating functions We ve already seen an example of generating functions Recall when we

More information

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts Week #7: Substitutions and by Parts, Area Between Curves Goals: The Method of Substitution Areas Integration by Parts 1 Week 7 The Indefinite Integral The Fundamental Theorem of Calculus, b a f(x) dx =

More information

Fourier Series Code. James K. Peterson. April 9, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Fourier Series Code. James K. Peterson. April 9, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Fourier Series Code James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April 9, 2018 Outline 1 We will need to approximate Fourier series expansions

More information

CIS 2033 Lecture 5, Fall

CIS 2033 Lecture 5, Fall CIS 2033 Lecture 5, Fall 2016 1 Instructor: David Dobor September 13, 2016 1 Supplemental reading from Dekking s textbook: Chapter2, 3. We mentioned at the beginning of this class that calculus was a prerequisite

More information

The Definite Integral. Day 6 Motion Problems Strategies for Finding Total Area

The Definite Integral. Day 6 Motion Problems Strategies for Finding Total Area The Definite Integral Day 6 Motion Problems Strategies for Finding Total Area ARRIVAL---HW Questions Working in PODS Additional Practice Packet p. 13 and 14 Make good use of your time! Practice makes perfect!

More information

t dt Estimate the value of the integral with the trapezoidal rule. Use n = 4.

t dt Estimate the value of the integral with the trapezoidal rule. Use n = 4. Trapezoidal Rule We have already found the value of an integral using rectangles in the first lesson of this module. In this section we will again be estimating the value of an integral using geometric

More information

Integration. Tuesday, December 3, 13

Integration. Tuesday, December 3, 13 4 Integration 4.3 Riemann Sums and Definite Integrals Objectives n Understand the definition of a Riemann sum. n Evaluate a definite integral using properties of definite integrals. 3 Riemann Sums 4 Riemann

More information

Sin, Cos and All That

Sin, Cos and All That Sin, Cos and All That James K Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 9, 2014 Outline Sin, Cos and all that! A New Power Rule Derivatives

More information

Dirchlet s Function and Limit and Continuity Arguments

Dirchlet s Function and Limit and Continuity Arguments Dirchlet s Function and Limit and Continuity Arguments James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 23, 2018 Outline 1 Dirichlet

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus NCTM Annual Meeting and Eposition Denver, CO April 8, Presented by Mike Koehler Blue Valley North High School Overland Park, KS I. Approimations with Rectangles (Finding the Area Under Curves by Approimating

More information

Area. A(2) = sin(0) π 2 + sin(π/2)π 2 = π For 3 subintervals we will find

Area. A(2) = sin(0) π 2 + sin(π/2)π 2 = π For 3 subintervals we will find Area In order to quantify the size of a -dimensional object, we use area. Since we measure area in square units, we can think of the area of an object as the number of such squares it fills up. Using this

More information

Evaluating Integrals (Section 5.3) and the Fundamental Theorem of Calculus (Section 1 / 15 (5.4

Evaluating Integrals (Section 5.3) and the Fundamental Theorem of Calculus (Section 1 / 15 (5.4 Evaluating Integrals (Section 5.3) and the Fundamental Theorem of Calculus (Section (5.4) Evaluating Integrals (Section 5.3) and the Fundamental Theorem of Calculus (Section 1 / 15 (5.4 Intro to 5.3 Today

More information

5.5. The Substitution Rule

5.5. The Substitution Rule INTEGRALS 5 INTEGRALS 5.5 The Substitution Rule In this section, we will learn: To substitute a new variable in place of an existing expression in a function, making integration easier. INTRODUCTION Due

More information