Relationship Between Integration and Differentiation

Size: px
Start display at page:

Download "Relationship Between Integration and Differentiation"

Transcription

1 Relationship Between Integration and Differentiation Fundamental Theorem of Calculus Philippe B. Laval KSU Today Philippe B. Laval (KSU) FTC Today 1 / 16

2 Introduction In the previous sections we defined the Riemann integral of a function by taking two slightly different approaches. We found that the two approaches resulted in the same integral. We then looked at properties of the Riemann integral. However, though in theory we can compute Riemann integrals, in practice we do not have an easy way of doing it. This section will resolve this problem by establishing a relationship between integration and differentiation. Philippe B. Laval (KSU) FTC Today 2 / 16

3 Antiderivatives Definition Let f be a function defined on any interval I. A function F is called an antiderivative of f or a primitive of f if F (x) = f (x) for every x I. Antiderivatives are not unique. In fact, we prove that if two functions are antiderivatives of the same function, they must differ by a constant. Theorem Let f : [a, b] R. Let F and G be antiderivatives of the same function f. Then, F G = C on [a, b] where C is a constant. Philippe B. Laval (KSU) FTC Today 3 / 16

4 The Fundamental Theorem of Calculus: part 1 We are now ready to state the Fundamental Theorem of Calculus. There are two parts which we will state as different theorems. Theorem If f is integrable on [a, b] and F is any antiderivative of f then b a f = F (b) F (a). Note that the quantity F (b) F (a) is usually denoted F (x) b a. Philippe B. Laval (KSU) FTC Today 4 / 16

5 The Fundamental Theorem of Calculus: Proof Sketch of the proof: 1 Verify that F satisfies the conditions of the Mean Value Theorem. Philippe B. Laval (KSU) FTC Today 5 / 16

6 The Fundamental Theorem of Calculus: Proof Sketch of the proof: 1 Verify that F satisfies the conditions of the Mean Value Theorem. 2 Verify that for any partition P = {x i } n i=0 of [a, b] n F (b) F (a) = [F (x i ) F (x i 1 )]. i=1 Philippe B. Laval (KSU) FTC Today 5 / 16

7 The Fundamental Theorem of Calculus: Proof Sketch of the proof: 1 Verify that F satisfies the conditions of the Mean Value Theorem. 2 Verify that for any partition P = {x i } n i=0 of [a, b] n F (b) F (a) = [F (x i ) F (x i 1 )]. i=1 3 Applying the Mean Value Theorem, show F (b) F (a) = for some t i [x i 1, x i ]. n f (t i ) d i i=1 Philippe B. Laval (KSU) FTC Today 5 / 16

8 The Fundamental Theorem of Calculus: Proof Sketch of the proof: 1 Verify that F satisfies the conditions of the Mean Value Theorem. 2 Verify that for any partition P = {x i } n i=0 of [a, b] n F (b) F (a) = [F (x i ) F (x i 1 )]. i=1 3 Applying the Mean Value Theorem, show F (b) F (a) = for some t i [x i 1, x i ]. 4 Conclude by taking the limit on each side as P 0 n f (t i ) d i i=1 Philippe B. Laval (KSU) FTC Today 5 / 16

9 The Fundamental Theorem of Calculus Corollary If f is integrable on [a, b] then b a f = f (b) f (a). Let us make several remarks 1 The Fundamental Theorem of Calculus makes the process of integration much easier. Any antiderivative will work. 2 However, the Fundamental Theorem of Calculus applies only when an antiderivative is available. One may not exist or may be very be hard to find. 3 The next theorem will give conditions which guarantee the existence of an antiderivative. However, knowing an antiderivative exists does not mean we can find it. Also, as we will see in the problems, the fact that a function has a primitive on an interval [a, b] does not mean it is Riemann integrable on that interval. 4 It is also possible for a function to be Riemann integrable but have no antiderivative as illustrated in the exercises. Philippe B. Laval (KSU) FTC Today 6 / 16

10 The Fundamental Theorem of Calculus: Part 2 We are now ready to give a condition a function has to satisfy in order to have an antiderivative. This theorem is often known as the second part of the Fundamental Theorem of Calculus. Theorem Let f be integrable on [a, b]. For x [a, b], define F (x) = Then F is a continuous function on [a, b]. Furthermore, if c (a, b) and f is continuous at c then F is differentiable at c and F (c) = f (c). We will denote f or f (x) dx an antiderivative of f. This integral without limits of integration is often called an indefinite integral. x a f Philippe B. Laval (KSU) FTC Today 7 / 16

11 The Fundamental Theorem of Calculus: Proof Continuity of f on [a, b]: 1 We actually show that F is uniformly continuous. Philippe B. Laval (KSU) FTC Today 8 / 16

12 The Fundamental Theorem of Calculus: Proof Continuity of f on [a, b]: 1 We actually show that F is uniformly continuous. 2 Explain why M > 0 be such that f (x) < M on [a, b]. Philippe B. Laval (KSU) FTC Today 8 / 16

13 The Fundamental Theorem of Calculus: Proof Continuity of f on [a, b]: 1 We actually show that F is uniformly continuous. 2 Explain why M > 0 be such that f (x) < M on [a, b]. 3 Let ɛ > 0 be given, show F (y) F (x) M y x for any x, y [a, b]. Philippe B. Laval (KSU) FTC Today 8 / 16

14 The Fundamental Theorem of Calculus: Proof Continuity of f on [a, b]: 1 We actually show that F is uniformly continuous. 2 Explain why M > 0 be such that f (x) < M on [a, b]. 3 Let ɛ > 0 be given, show F (y) F (x) M y x for any x, y [a, b]. 4 Conclude that f is uniformly continuous. Philippe B. Laval (KSU) FTC Today 8 / 16

15 The Fundamental Theorem of Calculus: Proof Differentiability of F at c (a, b) and F (c) = f (c): F (x) F (c) 1 Explain why it is enough to show lim = f (c). x c x c Philippe B. Laval (KSU) FTC Today 9 / 16

16 The Fundamental Theorem of Calculus: Proof Differentiability of F at c (a, b) and F (c) = f (c): F (x) F (c) 1 Explain why it is enough to show lim = f (c). x c x c 2 Let ɛ > 0 be given. Explain why δ > 0 : x [a, b] with 0 < x c < δ we have f (x) f (c) < ɛ. Philippe B. Laval (KSU) FTC Today 9 / 16

17 The Fundamental Theorem of Calculus: Proof Differentiability of F at c (a, b) and F (c) = f (c): F (x) F (c) 1 Explain why it is enough to show lim = f (c). x c x c 2 Let ɛ > 0 be given. Explain why δ > 0 : x [a, b] with 0 < x c < δ we have f (x) f (c) < ɛ. 3 Prove that for such x s, F (x) F (c) f (c) x c < ɛ. Philippe B. Laval (KSU) FTC Today 9 / 16

18 The Fundamental Theorem of Calculus: Proof Differentiability of F at c (a, b) and F (c) = f (c): F (x) F (c) 1 Explain why it is enough to show lim = f (c). x c x c 2 Let ɛ > 0 be given. Explain why δ > 0 : x [a, b] with 0 < x c < δ we have f (x) f (c) < ɛ. 3 Prove that for such x s, F (x) F (c) f (c) x c < ɛ. 4 Conclude. Philippe B. Laval (KSU) FTC Today 9 / 16

19 The Fundamental Theorem of Calculus: Remarks Both parts of the Fundamental Theorem of Calculus assume we have an integrable function f on [a, b]. Define F (x) = x a f (t) dt. 1 F (x) is always continuous. 2 If in addition f is continuous, we know it is integrable and the Fundamental Theorem of Calculus applies. In this case, F (x) is continuous and differentiable and F (x) = f (x) that is F is an antiderivative of f. It is why we often say that integration and differentiation are reverse processes in the sense that the derivative of an antiderivative of a function is the function itself and the integral of the derivative of a function is the function itself. 3 However, when f is not continuous, things do not work as well. There are cases when F is not differentiable. It can be even worse, there are cases when F (x) f (x) in other words F is not an antiderivative of f. Philippe B. Laval (KSU) FTC Today 10 / 16

20 The Fundamental Theorem of Calculus: Examples Example [ Consider f (x) = cos x on π 2, π ]. Show that F (x) as defined in the 2 theorem is continuous, differentiable and F (c) = f (c). Example { 1 if 1 x 0 Consider f (x) =. In the exercises, you are asked 1 if 0 < x 1 to prove that f is integrable but has no antiderivative on [ 1, 1]. Here, we prove that F (x) as defined in the theorem is continuous but not differentiable. Philippe B. Laval (KSU) FTC Today 11 / 16

21 The Mean Value Theorem Theorem Let f be continuous on [a, b]. Then, there exists c [a, b] such that f (c) = 1 b f b a a Definition 1 b b a a f is called the average (mean) value of f over [a, b]. Philippe B. Laval (KSU) FTC Today 12 / 16

22 The Mean Value Theorem: Proof 1 Explain why m = inf {f (x) : x [a, b]} and M = sup {f (x) : x [a, b]} exist. Philippe B. Laval (KSU) FTC Today 13 / 16

23 The Mean Value Theorem: Proof 1 Explain why m = inf {f (x) : x [a, b]} and M = sup {f (x) : x [a, b]} exist. 2 Explain why there exists α and β between a and b such that m = f (α) and M = f (β). Philippe B. Laval (KSU) FTC Today 13 / 16

24 The Mean Value Theorem: Proof 1 Explain why m = inf {f (x) : x [a, b]} and M = sup {f (x) : x [a, b]} exist. 2 Explain why there exists α and β between a and b such that m = f (α) and M = f (β). 3 Explain why m f (x) M and m 1 b b a a f M. Philippe B. Laval (KSU) FTC Today 13 / 16

25 The Mean Value Theorem: Proof 1 Explain why m = inf {f (x) : x [a, b]} and M = sup {f (x) : x [a, b]} exist. 2 Explain why there exists α and β between a and b such that m = f (α) and M = f (β). 3 Explain why m f (x) M and m 1 b b a a f M. 4 Apply the Intermediate Value Theorem to [α, β] to conclude. Philippe B. Laval (KSU) FTC Today 13 / 16

26 Integration by Parts Theorem If f and g are differentiable functions on [a, b] such that the derivatives f and g are both integrable on [a, b] then b a b fg = f (b) g (b) f (a) g (a) f g a Philippe B. Laval (KSU) FTC Today 14 / 16

27 Substitution Theorem Let g be a differentiable function on [a, b] such that g is integrable on [a, b]. If f is continuous on the range of f then b a f (g (t)) g (t) dt = g (b) g (a) f (x) dx This is the substitution formula Calculus students know and use often. If we let x = g (t) then dx = g (t) dt. Also, note that the limits of integration must also be updated when doing substitution. Example Find π 2 0 x sin ( x 2) dx Philippe B. Laval (KSU) FTC Today 15 / 16

28 Exercises See the problems at the end of my notes on the Relationship Between Integration and Differentiation. Philippe B. Laval (KSU) FTC Today 16 / 16

Representation of Functions as Power Series

Representation of Functions as Power Series Representation of Functions as Power Series Philippe B. Laval KSU Today Philippe B. Laval (KSU) Functions as Power Series Today / Introduction In this section and the next, we develop several techniques

More information

Differentiation - Quick Review From Calculus

Differentiation - Quick Review From Calculus Differentiation - Quick Review From Calculus Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Differentiation - Quick Review From Calculus Current Semester 1 / 13 Introduction In this section,

More information

Introduction to Vector Functions

Introduction to Vector Functions Introduction to Vector Functions Differentiation and Integration Philippe B. Laval KSU Today Philippe B. Laval (KSU) Vector Functions Today 1 / 14 Introduction In this section, we study the differentiation

More information

Sequences: Limit Theorems

Sequences: Limit Theorems Sequences: Limit Theorems Limit Theorems Philippe B. Laval KSU Today Philippe B. Laval (KSU) Limit Theorems Today 1 / 20 Introduction These limit theorems fall in two categories. 1 The first category deals

More information

Differentiation - Important Theorems

Differentiation - Important Theorems Differentiation - Important Theorems Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) Differentiation - Important Theorems Spring 2012 1 / 10 Introduction We study several important theorems related

More information

The Laplace Transform

The Laplace Transform The Laplace Transform Laplace Transform Philippe B. Laval KSU Today Philippe B. Laval (KSU) Definition of the Laplace Transform Today 1 / 16 Outline General idea behind the Laplace transform and other

More information

Consequences of the Completeness Property

Consequences of the Completeness Property Consequences of the Completeness Property Philippe B. Laval KSU Today Philippe B. Laval (KSU) Consequences of the Completeness Property Today 1 / 10 Introduction In this section, we use the fact that R

More information

Arc Length. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Arc Length Today 1 / 12

Arc Length. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Arc Length Today 1 / 12 Philippe B. Laval KSU Today Philippe B. Laval (KSU) Arc Length Today 1 / 12 Introduction In this section, we discuss the notion of curve in greater detail and introduce the very important notion of arc

More information

Introduction to Vector Functions

Introduction to Vector Functions Introduction to Vector Functions Limits and Continuity Philippe B. Laval KSU Today Philippe B. Laval (KSU) Vector Functions Today 1 / 14 Introduction Until now, the functions we studied took a real number

More information

Integration Using Tables and Summary of Techniques

Integration Using Tables and Summary of Techniques Integration Using Tables and Summary of Techniques Philippe B. Laval KSU Today Philippe B. Laval (KSU) Summary Today 1 / 13 Introduction We wrap up integration techniques by discussing the following topics:

More information

Multiple Integrals. Introduction and Double Integrals Over Rectangular Regions. Philippe B. Laval KSU. Today

Multiple Integrals. Introduction and Double Integrals Over Rectangular Regions. Philippe B. Laval KSU. Today Multiple Integrals Introduction and Double Integrals Over Rectangular Regions Philippe B. Laval KSU Today Philippe B. Laval (KSU) Double Integrals Today 1 / 21 Introduction In this section we define multiple

More information

MAT137 - Term 2, Week 2

MAT137 - Term 2, Week 2 MAT137 - Term 2, Week 2 This lecture will assume you have watched all of the videos on the definition of the integral (but will remind you about some things). Today we re talking about: More on the definition

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Partial Derivatives Philippe B Laval KSU March 21, 2012 Philippe B Laval (KSU) Functions of Several Variables March 21, 2012 1 / 19 Introduction In this section we extend

More information

The Laplace Transform

The Laplace Transform The Laplace Transform Inverse of the Laplace Transform Philippe B. Laval KSU Today Philippe B. Laval (KSU) Inverse of the Laplace Transform Today 1 / 12 Outline Introduction Inverse of the Laplace Transform

More information

The Cross Product. Philippe B. Laval. Spring 2012 KSU. Philippe B. Laval (KSU) The Cross Product Spring /

The Cross Product. Philippe B. Laval. Spring 2012 KSU. Philippe B. Laval (KSU) The Cross Product Spring / The Cross Product Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) The Cross Product Spring 2012 1 / 15 Introduction The cross product is the second multiplication operation between vectors we will

More information

The Integral of a Function. The Indefinite Integral

The Integral of a Function. The Indefinite Integral The Integral of a Function. The Indefinite Integral Undoing a derivative: Antiderivative=Indefinite Integral Definition: A function is called an antiderivative of a function on same interval,, if differentiation

More information

Multiple Integrals. Introduction and Double Integrals Over Rectangular Regions. Philippe B. Laval. Spring 2012 KSU

Multiple Integrals. Introduction and Double Integrals Over Rectangular Regions. Philippe B. Laval. Spring 2012 KSU Multiple Integrals Introduction and Double Integrals Over Rectangular Regions Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) Multiple Integrals Spring 2012 1 / 21 Introduction In this section

More information

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x . Define f n, g n : [, ] R by f n (x) = Advanced Calculus Math 27B, Winter 25 Solutions: Final nx2 + n 2 x, g n(x) = n2 x 2 + n 2 x. 2 Show that the sequences (f n ), (g n ) converge pointwise on [, ],

More information

Introduction to Vector Functions

Introduction to Vector Functions Introduction to Vector Functions Limits and Continuity Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) Introduction to Vector Functions Spring 2012 1 / 14 Introduction In this section, we study

More information

Integration. Darboux Sums. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Darboux Sums Today 1 / 13

Integration. Darboux Sums. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Darboux Sums Today 1 / 13 Integration Darboux Sums Philippe B. Laval KSU Today Philippe B. Laval (KSU) Darboux Sums Today 1 / 13 Introduction The modern approach to integration is due to Cauchy. He was the first to construct a

More information

INTEGRATION: THE FUNDAMENTAL THEOREM OF CALCULUS MR. VELAZQUEZ AP CALCULUS

INTEGRATION: THE FUNDAMENTAL THEOREM OF CALCULUS MR. VELAZQUEZ AP CALCULUS INTEGRATION: THE FUNDAMENTAL THEOREM OF CALCULUS MR. VELAZQUEZ AP CALCULUS RECALL: ANTIDERIVATIVES When we last spoke of integration, we examined a physics problem where we saw that the area under the

More information

Testing Series with Mixed Terms

Testing Series with Mixed Terms Testing Series with Mixed Terms Philippe B. Laval KSU Today Philippe B. Laval (KSU) Series with Mixed Terms Today 1 / 17 Outline 1 Introduction 2 Absolute v.s. Conditional Convergence 3 Alternating Series

More information

Topic Subtopics Essential Knowledge (EK)

Topic Subtopics Essential Knowledge (EK) Unit/ Unit 1 Limits [BEAN] 1.1 Limits Graphically Define a limit (y value a function approaches) One sided limits. Easy if it s continuous. Tricky if there s a discontinuity. EK 1.1A1: Given a function,

More information

Review of Functions. Functions. Philippe B. Laval. Current Semester KSU. Philippe B. Laval (KSU) Functions Current Semester 1 / 12

Review of Functions. Functions. Philippe B. Laval. Current Semester KSU. Philippe B. Laval (KSU) Functions Current Semester 1 / 12 Review of Functions Functions Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Functions Current Semester 1 / 12 Introduction Students are expected to know the following concepts about functions:

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus Fundamental Theorem of Calculus MATH 6 Calculus I J. Robert Buchanan Department of Mathematics Summer 208 Remarks The Fundamental Theorem of Calculus (FTC) will make the evaluation of definite integrals

More information

MATH 1271 Wednesday, 5 December 2018

MATH 1271 Wednesday, 5 December 2018 MATH 27 Wednesday, 5 December 208 Today: Review for Exam 3 Exam 3: Thursday, December 6; Sections 4.8-6. /6 Information on Exam 3 Six numbered problems First problem is multiple choice (five parts) See

More information

Differentiation and Integration of Fourier Series

Differentiation and Integration of Fourier Series Differentiation and Integration of Fourier Series Philippe B. Laval KSU Today Philippe B. Laval (KSU) Fourier Series Today 1 / 12 Introduction When doing manipulations with infinite sums, we must remember

More information

Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) RECTANGULAR APPROXIMATION METHODS

Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) RECTANGULAR APPROXIMATION METHODS AP Calculus 5. Areas and Distances Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) Exercise : Calculate the area between the x-axis and the graph of y = 3 2x.

More information

Exploring Substitution

Exploring Substitution I. Introduction Exploring Substitution Math Fall 08 Lab We use the Fundamental Theorem of Calculus, Part to evaluate a definite integral. If f is continuous on [a, b] b and F is any antiderivative of f

More information

The total differential

The total differential The total differential The total differential of the function of two variables The total differential gives the full information about rates of change of the function in the -direction and in the -direction.

More information

Science One Integral Calculus. January 9, 2019

Science One Integral Calculus. January 9, 2019 Science One Integral Calculus January 9, 2019 Recap: What have we learned so far? The definite integral is defined as a limit of Riemann sums Riemann sums can be constructed using any point in a subinterval

More information

Integration by Substitution

Integration by Substitution Integration by Substitution Dr. Philippe B. Laval Kennesaw State University Abstract This handout contains material on a very important integration method called integration by substitution. Substitution

More information

Student Study Session Topic: Interpreting Graphs

Student Study Session Topic: Interpreting Graphs Student Study Session Topic: Interpreting Graphs Starting with the graph of a function or its derivative, you may be asked all kinds of questions without having (or needing) and equation to work with.

More information

Math 180, Final Exam, Fall 2007 Problem 1 Solution

Math 180, Final Exam, Fall 2007 Problem 1 Solution Problem Solution. Differentiate with respect to x. Write your answers showing the use of the appropriate techniques. Do not simplify. (a) x 27 x 2/3 (b) (x 2 2x + 2)e x (c) ln(x 2 + 4) (a) Use the Power

More information

FINAL REVIEW FOR MATH The limit. a n. This definition is useful is when evaluating the limits; for instance, to show

FINAL REVIEW FOR MATH The limit. a n. This definition is useful is when evaluating the limits; for instance, to show FINAL REVIEW FOR MATH 500 SHUANGLIN SHAO. The it Define a n = A: For any ε > 0, there exists N N such that for any n N, a n A < ε. This definition is useful is when evaluating the its; for instance, to

More information

Chapter 5: Integrals

Chapter 5: Integrals Chapter 5: Integrals Section 5.3 The Fundamental Theorem of Calculus Sec. 5.3: The Fundamental Theorem of Calculus Fundamental Theorem of Calculus: Sec. 5.3: The Fundamental Theorem of Calculus Fundamental

More information

Calculus Dan Barbasch. Oct. 2, Dan Barbasch () Calculus 1120 Oct. 2, / 7

Calculus Dan Barbasch. Oct. 2, Dan Barbasch () Calculus 1120 Oct. 2, / 7 Calculus 1120 Dan Barbasch Oct. 2, 2012 Dan Barbasch () Calculus 1120 Oct. 2, 2012 1 / 7 Numerical Integration Many integrals cannot be computed using FTC because while the definite integral exists because

More information

The Definite Integral. Day 5 The Fundamental Theorem of Calculus (Evaluative Part)

The Definite Integral. Day 5 The Fundamental Theorem of Calculus (Evaluative Part) The Definite Integral Day 5 The Fundamental Theorem of Calculus (Evaluative Part) Practice with Properties of Integrals 5 Given f d 5 f d 3. 0 5 5. 0 5 5 3. 0 0. 5 f d 0 f d f d f d - 0 8 5 F 3 t dt

More information

FIRST YEAR CALCULUS W W L CHEN

FIRST YEAR CALCULUS W W L CHEN FIRST YER CLCULUS W W L CHEN c W W L Chen, 994, 28. This chapter is available free to all individuals, on the understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

Lecture : The Definite Integral & Fundamental Theorem of Calculus MTH 124. We begin with a theorem which is of fundamental importance.

Lecture : The Definite Integral & Fundamental Theorem of Calculus MTH 124. We begin with a theorem which is of fundamental importance. We begin with a theorem which is of fundamental importance. The Fundamental Theorem of Calculus (FTC) If F (t) is continuous for a t b, then b a F (t) dt = F (b) F (a). Moreover the antiderivative F is

More information

Chapter 5: Integrals

Chapter 5: Integrals Chapter 5: Integrals Section 5.5 The Substitution Rule (u-substitution) Sec. 5.5: The Substitution Rule We know how to find the derivative of any combination of functions Sum rule Difference rule Constant

More information

Science One Integral Calculus

Science One Integral Calculus Science One Integral Calculus January 018 Happy New Year! Differential Calculus central idea: The Derivative What is the derivative f (x) of a function f(x)? Differential Calculus central idea: The Derivative

More information

These slides will be available at

These slides will be available at David Bressoud Macalester College St. Paul, MN Moravian College February 20, 2009 These slides will be available at www.macalester.edu/~bressoud/talks The task of the educator is to make the child s spirit

More information

Later in this chapter, we are going to use vector functions to describe the motion of planets and other objects through space.

Later in this chapter, we are going to use vector functions to describe the motion of planets and other objects through space. 10 VECTOR FUNCTIONS VECTOR FUNCTIONS Later in this chapter, we are going to use vector functions to describe the motion of planets and other objects through space. Here, we prepare the way by developing

More information

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts Week #7: Substitutions and by Parts, Area Between Curves Goals: The Method of Substitution Areas Integration by Parts 1 Week 7 The Indefinite Integral The Fundamental Theorem of Calculus, b a f(x) dx =

More information

6.2 Deeper Properties of Continuous Functions

6.2 Deeper Properties of Continuous Functions 6.2. DEEPER PROPERTIES OF CONTINUOUS FUNCTIONS 69 6.2 Deeper Properties of Continuous Functions 6.2. Intermediate Value Theorem and Consequences When one studies a function, one is usually interested in

More information

Calculus AB Topics Limits Continuity, Asymptotes

Calculus AB Topics Limits Continuity, Asymptotes Calculus AB Topics Limits Continuity, Asymptotes Consider f x 2x 1 x 3 1 x 3 x 3 Is there a vertical asymptote at x = 3? Do not give a Precalculus answer on a Calculus exam. Consider f x 2x 1 x 3 1 x 3

More information

Exercises given in lecture on the day in parantheses.

Exercises given in lecture on the day in parantheses. A.Miller M22 Fall 23 Exercises given in lecture on the day in parantheses. The ɛ δ game. lim x a f(x) = L iff Hero has a winning strategy in the following game: Devil plays: ɛ > Hero plays: δ > Devil plays:

More information

5.3 Definite Integrals and Antiderivatives

5.3 Definite Integrals and Antiderivatives 5.3 Definite Integrals and Antiderivatives Objective SWBAT use properties of definite integrals, average value of a function, mean value theorem for definite integrals, and connect differential and integral

More information

1. The accumulated net change function or area-so-far function

1. The accumulated net change function or area-so-far function Name: Section: Names of collaborators: Main Points: 1. The accumulated net change function ( area-so-far function) 2. Connection to antiderivative functions: the Fundamental Theorem of Calculus 3. Evaluating

More information

Science One Math. January

Science One Math. January Science One Math January 10 2018 (last time) The Fundamental Theorem of Calculus (FTC) Let f be continuous on an interval I containing a. 1. Define F(x) = f t dt with F (x) = f(x). on I. Then F is differentiable

More information

First Order Differential Equations

First Order Differential Equations First Order Differential Equations Linear Equations Philippe B. Laval KSU Philippe B. Laval (KSU) 1st Order Linear Equations 1 / 11 Introduction We are still looking at 1st order equations. In today s

More information

Chapter 4 Integration

Chapter 4 Integration Chapter 4 Integration SECTION 4.1 Antiderivatives and Indefinite Integration Calculus: Chapter 4 Section 4.1 Antiderivative A function F is an antiderivative of f on an interval I if F '( x) f ( x) for

More information

Lagrange s Theorem. Philippe B. Laval. Current Semester KSU. Philippe B. Laval (KSU) Lagrange s Theorem Current Semester 1 / 10

Lagrange s Theorem. Philippe B. Laval. Current Semester KSU. Philippe B. Laval (KSU) Lagrange s Theorem Current Semester 1 / 10 Lagrange s Theorem Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Lagrange s Theorem Current Semester 1 / 10 Introduction In this chapter, we develop new tools which will allow us to extend

More information

5.5 Deeper Properties of Continuous Functions

5.5 Deeper Properties of Continuous Functions 5.5. DEEPER PROPERTIES OF CONTINUOUS FUNCTIONS 195 5.5 Deeper Properties of Continuous Functions 5.5.1 Intermediate Value Theorem and Consequences When one studies a function, one is usually interested

More information

Science One Integral Calculus. January 8, 2018

Science One Integral Calculus. January 8, 2018 Science One Integral Calculus January 8, 2018 Last time a definition of area Key ideas Divide region into n vertical strips Approximate each strip by a rectangle Sum area of rectangles Take limit for n

More information

AP Calculus AB Winter Break Packet Happy Holidays!

AP Calculus AB Winter Break Packet Happy Holidays! AP Calculus AB Winter Break Packet 04 Happy Holidays! Section I NO CALCULATORS MAY BE USED IN THIS PART OF THE EXAMINATION. Directions: Solve each of the following problems. After examining the form of

More information

Consequences of Orthogonality

Consequences of Orthogonality Consequences of Orthogonality Philippe B. Laval KSU Today Philippe B. Laval (KSU) Consequences of Orthogonality Today 1 / 23 Introduction The three kind of examples we did above involved Dirichlet, Neumann

More information

AP Calculus Curriculum Guide Dunmore School District Dunmore, PA

AP Calculus Curriculum Guide Dunmore School District Dunmore, PA AP Calculus Dunmore School District Dunmore, PA AP Calculus Prerequisite: Successful completion of Trigonometry/Pre-Calculus Honors Advanced Placement Calculus is the highest level mathematics course offered

More information

Solutions Final Exam May. 14, 2014

Solutions Final Exam May. 14, 2014 Solutions Final Exam May. 14, 2014 1. (a) (10 points) State the formal definition of a Cauchy sequence of real numbers. A sequence, {a n } n N, of real numbers, is Cauchy if and only if for every ɛ > 0,

More information

1 Definition of the Riemann integral

1 Definition of the Riemann integral MAT337H1, Introduction to Real Analysis: notes on Riemann integration 1 Definition of the Riemann integral Definition 1.1. Let [a, b] R be a closed interval. A partition P of [a, b] is a finite set of

More information

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N Problem 1. Let f : A R R have the property that for every x A, there exists ɛ > 0 such that f(t) > ɛ if t (x ɛ, x + ɛ) A. If the set A is compact, prove there exists c > 0 such that f(x) > c for all x

More information

Integration and Differentiation Limit Interchange Theorems

Integration and Differentiation Limit Interchange Theorems Integration and Differentiation Limit Interchange Theorems James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 11, 2018 Outline 1 A More

More information

The Definite Integral. Day 6 Motion Problems Strategies for Finding Total Area

The Definite Integral. Day 6 Motion Problems Strategies for Finding Total Area The Definite Integral Day 6 Motion Problems Strategies for Finding Total Area ARRIVAL---HW Questions Working in PODS Additional Practice Packet p. 13 and 14 Make good use of your time! Practice makes perfect!

More information

Study 4.4 #1 23, 27 35, 39 49, 51, 55, 75 87,91*

Study 4.4 #1 23, 27 35, 39 49, 51, 55, 75 87,91* Study 4.4 #1 23, 27 35, 39 49, 51, 55, 75 87,91* Goals: 1. Recognize and understand the Fundamental Theorem of Calculus. 2. Use the Fundamental Theorum of Calculus to evaluate Definite Integrals. 3. Recognize

More information

Polynomial Approximations and Power Series

Polynomial Approximations and Power Series Polynomial Approximations and Power Series June 24, 206 Tangent Lines One of the first uses of the derivatives is the determination of the tangent as a linear approximation of a differentiable function

More information

Evaluating Integrals (Section 5.3) and the Fundamental Theorem of Calculus (Section 1 / 15 (5.4

Evaluating Integrals (Section 5.3) and the Fundamental Theorem of Calculus (Section 1 / 15 (5.4 Evaluating Integrals (Section 5.3) and the Fundamental Theorem of Calculus (Section (5.4) Evaluating Integrals (Section 5.3) and the Fundamental Theorem of Calculus (Section 1 / 15 (5.4 Intro to 5.3 Today

More information

1 Antiderivatives graphically and numerically

1 Antiderivatives graphically and numerically Math B - Calculus by Hughes-Hallett, et al. Chapter 6 - Constructing antiderivatives Prepared by Jason Gaddis Antiderivatives graphically and numerically Definition.. The antiderivative of a function f

More information

Here s the Graph of the Derivative. Tell me About the Function.

Here s the Graph of the Derivative. Tell me About the Function. Here s the Graph of the Derivative. Tell me About the Function. Presented by Lin McMullin Using its derivatives to determine information about the graph of a function is a standard calculus topic and has

More information

Study 5.3 #171,

Study 5.3 #171, Goals: 1. Recognize and understand the Fundamental Theorem of Calculus. 2. Use the Fundamental Theorum of Calculus to evaluate Definite Integrals. 3. Recognize and understand the Mean Value Theorem for

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Extreme Values Philippe B. Laval KSU Today Philippe B. Laval (KSU) Extreme Values Today 1 / 18 Introduction In Calculus I (differential calculus for functions of one variable),

More information

Math 180 Written Homework Assignment #10 Due Tuesday, December 2nd at the beginning of your discussion class.

Math 180 Written Homework Assignment #10 Due Tuesday, December 2nd at the beginning of your discussion class. Math 18 Written Homework Assignment #1 Due Tuesday, December 2nd at the beginning of your discussion class. Directions. You are welcome to work on the following problems with other MATH 18 students, but

More information

MATH1013 Calculus I. Introduction to Functions 1

MATH1013 Calculus I. Introduction to Functions 1 MATH1013 Calculus I Introduction to Functions 1 Edmund Y. M. Chiang Department of Mathematics Hong Kong University of Science & Technology May 9, 2013 Integration I (Chapter 4) 2013 1 Based on Briggs,

More information

The Relation between the Integral and the Derivative Graphs. Unit #10 : Graphs of Antiderivatives, Substitution Integrals

The Relation between the Integral and the Derivative Graphs. Unit #10 : Graphs of Antiderivatives, Substitution Integrals Graphs of Antiderivatives - Unit #0 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F (x) The guess-and-check method for anti-differentiation.

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES In section 11.9, we were able to find power series representations for a certain restricted class of functions. INFINITE SEQUENCES AND SERIES

More information

Workbook for Calculus I

Workbook for Calculus I Workbook for Calculus I By Hüseyin Yüce New York 2007 1 Functions 1.1 Four Ways to Represent a Function 1. Find the domain and range of the function f(x) = 1 + x + 1 and sketch its graph. y 3 2 1-3 -2-1

More information

Graphs of Antiderivatives, Substitution Integrals

Graphs of Antiderivatives, Substitution Integrals Unit #10 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F (x) The guess-and-check method for anti-differentiation. The substitution

More information

Student Study Session. Theorems

Student Study Session. Theorems Students should be able to apply and have a geometric understanding of the following: Intermediate Value Theorem Mean Value Theorem for derivatives Extreme Value Theorem Name Formal Statement Restatement

More information

Antiderivatives! Outline. James K. Peterson. January 28, Antiderivatives. Simple Fractional Power Antiderivatives

Antiderivatives! Outline. James K. Peterson. January 28, Antiderivatives. Simple Fractional Power Antiderivatives Antiderivatives! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 28, 2014 Outline Antiderivatives Simple Fractional Power Antiderivatives

More information

(e) 2 (f) 2. (c) + (d). Limits at Infinity. 2.5) 9-14,25-34,41-43,46-47,56-57, (c) (d) 2

(e) 2 (f) 2. (c) + (d). Limits at Infinity. 2.5) 9-14,25-34,41-43,46-47,56-57, (c) (d) 2 Math 150A. Final Review Answers, Spring 2018. Limits. 2.2) 7-10, 21-24, 28-1, 6-8, 4-44. 1. Find the values, or state they do not exist. (a) (b) 1 (c) DNE (d) 1 (e) 2 (f) 2 (g) 2 (h) 4 2. lim f(x) = 2,

More information

Antiderivatives! James K. Peterson. January 28, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Antiderivatives! James K. Peterson. January 28, Department of Biological Sciences and Department of Mathematical Sciences Clemson University ! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 28, 2014 Outline 1 2 Simple Fractional Power Abstract This lecture is going to talk

More information

Josh Engwer (TTU) Area Between Curves 22 January / 66

Josh Engwer (TTU) Area Between Curves 22 January / 66 Area Between Curves Calculus II Josh Engwer TTU 22 January 2014 Josh Engwer (TTU) Area Between Curves 22 January 2014 1 / 66 Continuity & Differentiability of a Function (Notation) Definition Given function

More information

Notes on uniform convergence

Notes on uniform convergence Notes on uniform convergence Erik Wahlén erik.wahlen@math.lu.se January 17, 2012 1 Numerical sequences We begin by recalling some properties of numerical sequences. By a numerical sequence we simply mean

More information

Analysis Part 1. 1 Chapter Q1(q) 1.2 Q1(r) Book: Measure and Integral by Wheeden and Zygmund

Analysis Part 1. 1 Chapter Q1(q) 1.2 Q1(r) Book: Measure and Integral by Wheeden and Zygmund Analysis Part 1 www.mathtuition88.com Book: Measure and Integral by Wheeden and Zygmund 1 Chapter 1 1.1 Q1(q) Let {T x k } be a sequence of points of T E. Since E is compact, {x k } has a subsequence {x

More information

It is difficult to overestimate the power of the equation

It is difficult to overestimate the power of the equation 5.4 Fundamental Theorem of Calculus Objective SWBAT know the FTC part 1 and part 2, graphing integrals, area connection, and analyzing antiderivatives graphically. Fundamental Theorem Part 1 This theorem

More information

= π + sin π = π + 0 = π, so the object is moving at a speed of π feet per second after π seconds. (c) How far does it go in π seconds?

= π + sin π = π + 0 = π, so the object is moving at a speed of π feet per second after π seconds. (c) How far does it go in π seconds? Mathematics 115 Professor Alan H. Stein April 18, 005 SOLUTIONS 1. Define what is meant by an antiderivative or indefinite integral of a function f(x). Solution: An antiderivative or indefinite integral

More information

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by L p Functions Given a measure space (, µ) and a real number p [, ), recall that the L p -norm of a measurable function f : R is defined by f p = ( ) /p f p dµ Note that the L p -norm of a function f may

More information

MATH 104 : Final Exam

MATH 104 : Final Exam MATH 104 : Final Exam 10 May, 2017 Name: You have 3 hours to answer the questions. You are allowed one page (front and back) worth of notes. The page should not be larger than a standard US letter size.

More information

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n Solve the following 6 problems. 1. Prove that if series n=1 a nx n converges for all x such that x < 1, then the series n=1 a n xn 1 x converges as well if x < 1. n For x < 1, x n 0 as n, so there exists

More information

M2P1 Analysis II (2005) Dr M Ruzhansky List of definitions, statements and examples. Chapter 1: Limits and continuity.

M2P1 Analysis II (2005) Dr M Ruzhansky List of definitions, statements and examples. Chapter 1: Limits and continuity. M2P1 Analysis II (2005) Dr M Ruzhansky List of definitions, statements and examples. Chapter 1: Limits and continuity. This chapter is mostly the revision of Chapter 6 of M1P1. First we consider functions

More information

Integration. 5.1 Antiderivatives and Indefinite Integration. Suppose that f(x) = 5x 4. Can we find a function F (x) whose derivative is f(x)?

Integration. 5.1 Antiderivatives and Indefinite Integration. Suppose that f(x) = 5x 4. Can we find a function F (x) whose derivative is f(x)? 5 Integration 5. Antiderivatives and Indefinite Integration Suppose that f() = 5 4. Can we find a function F () whose derivative is f()? Definition. A function F is an antiderivative of f on an interval

More information

Functions of Several Variables: Limits and Continuity

Functions of Several Variables: Limits and Continuity Functions of Several Variables: Limits and Continuity Philippe B. Laval KSU Today Philippe B. Laval (KSU) Limits and Continuity Today 1 / 24 Introduction We extend the notion of its studied in Calculus

More information

1 Lesson 13: Methods of Integration

1 Lesson 13: Methods of Integration Lesson 3: Methods of Integration Chapter 6 Material: pages 273-294 in the textbook: Lesson 3 reviews integration by parts and presents integration via partial fraction decomposition as the third of the

More information

BE SURE THAT YOU HAVE LOOKED AT, THOUGHT ABOUT AND TRIED THE SUGGESTED PROBLEMS ON THIS REVIEW GUIDE PRIOR TO LOOKING AT THESE COMMENTS!!!

BE SURE THAT YOU HAVE LOOKED AT, THOUGHT ABOUT AND TRIED THE SUGGESTED PROBLEMS ON THIS REVIEW GUIDE PRIOR TO LOOKING AT THESE COMMENTS!!! Review Guide for MAT0 Final Eam Part I. Thursday December 7 th during regular class time Part is worth 50% of your Final Eam grade. Syllabus approved calculators can be used on this part of the eam but

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Announcements Topics: - sections 7.1 (differential equations), 7.2 (antiderivatives), and 7.3 (the definite integral +area) * Read these sections and study solved examples in your textbook! Homework: -

More information

Substitution and change of variables Integration by parts

Substitution and change of variables Integration by parts Substitution and change of variables Integration by parts Math 1A October 11, 216 Announcements I have been back since Friday night but will be leaving for another short trip on Thursday. James will preside

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Announcements Topics: - sections 7.4 (FTC), 7.5 (additional techniques of integration), 7.6 (applications of integration) * Read these sections and study solved examples in your textbook! Homework: - review

More information

Math 122 Fall Unit Test 1 Review Problems Set A

Math 122 Fall Unit Test 1 Review Problems Set A Math Fall 8 Unit Test Review Problems Set A We have chosen these problems because we think that they are representative of many of the mathematical concepts that we have studied. There is no guarantee

More information

Today s Agenda. Upcoming Homework Section 5.1: Areas and Distances Section 5.2: The Definite Integral

Today s Agenda. Upcoming Homework Section 5.1: Areas and Distances Section 5.2: The Definite Integral Today s Agenda Upcoming Homework Section 5.1: Areas and Distances Section 5.2: The Definite Integral Lindsey K. Gamard, ASU SoMSS MAT 265: Calculus for Engineers I Wed., 18 November 2015 1 / 13 Upcoming

More information

Lecture : The Indefinite Integral MTH 124

Lecture : The Indefinite Integral MTH 124 Up to this point we have investigated the definite integral of a function over an interval. In particular we have done the following. Approximated integrals using left and right Riemann sums. Defined the

More information