Multiple Integrals. Introduction and Double Integrals Over Rectangular Regions. Philippe B. Laval KSU. Today

Size: px
Start display at page:

Download "Multiple Integrals. Introduction and Double Integrals Over Rectangular Regions. Philippe B. Laval KSU. Today"

Transcription

1 Multiple Integrals Introduction and Double Integrals Over Rectangular Regions Philippe B. Laval KSU Today Philippe B. Laval (KSU) Double Integrals Today 1 / 21

2 Introduction In this section we define multiple integrals and learn how to compute them. We will see that like for integrals of functions of one variable (definite integrals), one diffi culty is finding an antiderivative. There is also an additional diffi culty for multiple integrals: the region of integration. Philippe B. Laval (KSU) Double Integrals Today 2 / 21

3 Review: Definite Integral The definite integral was defined when we were trying to solve the area problem. Given a function y = f (x) defined for a x b, we wanted to find the area between the graph of y = f (x), the x-axis, and the vertical lines x = a and x = b. We begin by dividing the interval [a, b] into n subintervals [x i 1, x i ], i = 1..n, of equal length. Let x denote the length of each subinterval. Clearly, x = b a n. In each subinterval [x i 1, x i ], we pick a point we denote x i. We form the Riemann sum definite integral was defined to be b a f (x) dx = lim n n i=1 f (x i ) x n i=1 f (x i ) xthe In the case that f (x) 0 on [a, b], the integral corresponds to the area below the graph (next slide). Philippe B. Laval (KSU) Double Integrals Today 3 / 21

4 Review: Definite Integral Figure: Approximating the area below a curve Philippe B. Laval (KSU) Double Integrals Today 4 / 21

5 Double Integrals and Volumes: Definition For the definite integral of a function of one variable, that is a function of the form f : R R, we integrated over over portions of its domain, most of the time over closed and bounded portions of its domain, that is over intervals. The functions we are about to learn how to integrate are functions of two variables or more, that is functions of the form f : R 2 R. The domain of such functions is a subset of R 2 that is the plane. We will be integrating over closed and bounded regions of the plane. The problem is that there are many possibilities for such regions ranging from a square or a rectangle to more complicated shapes. The region of integration is an added diffi culty when dealing with multiple integrals, a diffi culty we do not have for functions of one variable since we are always integrating over an interval. We will first consider integrals over a rectangular region. These are very simple. Then, we will look at more complicated regions. In spite of this added diffi culty, double integrals are defined in a manner similar to that of definite integrals. Philippe B. Laval (KSU) Double Integrals Today 5 / 21

6 Double Integrals and Volumes: Definition Suppose that we are given a function f (x, y) defined over a closed rectangle R = { (x, y) R 2 a x b, c y d } = [a, b] [c, d] As in the case of functions of one variable, we will first assume that f (x, y) 0 on R. Let S be the solid which lies above R and below the graph of f. In other words, S = { (x, y, z) R 3 0 z f (x, y), (x, y) R } We wish to find V, the volume of S (next slide) Philippe B. Laval (KSU) Double Integrals Today 6 / 21

7 Double Integrals and Volumes: Definition Figure: Solid above R below f (x, y) Philippe B. Laval (KSU) Double Integrals Today 7 / 21

8 Double Integrals and Volumes: Definition We begin by dividing R into subrectangles. For this, we divide the interval [a, b] into m subintervals [x i 1, x i ], i = 1..m, of equal length x = b a m. We also divide the interval [c, d] into n subintervals [y j 1, y j ], j = 1..n, of equal length y = d c n. This way, we obtain the subrectangles R ij = { (x, y) R 2 } x i 1 x x i, y j 1 y y j = [x i 1, x i ] [y j 1, y j ] The area of each R ij is ( A = ) x y. Next, in each subrectangle R ij, we pick a point denoted xij, y ij. We form the box with base R ij and height ( ) ( ) f xij, y ij. Its volume is f xij, y ij A Philippe B. Laval (KSU) Double Integrals Today 8 / 21

9 Double Integrals and Volumes: Definition Figure: Dividing a rectangle in subrectangles Philippe B. Laval (KSU) Double Integrals Today 9 / 21

10 Double Integrals and Volumes: Definition Figure: Approximating the volume of a solid above a rectangle, below f (x, y) Philippe B. Laval (KSU) Double Integrals Today 10 / 21

11 Double Integrals and Volumes: Definition Figure: Approximating a volume with boxes Philippe B. Laval (KSU) Double Integrals Today 11 / 21

12 Double Integrals and Volumes: Definition We can approximate the volume of S by adding the volume of each box obtained. In other words, we have m n V f ( xij, yij ) A i=1 j=1 Remark: The above sum is called a double Riemann sum. As in the case of functions of one variable, our approximation should get better the larger m and n are. We define the double integral of f over R to be Definition The double integral of f (x, y) over the rectangle R is: R f (x, y) da = providing the limit exists. lim m,n m n i=1 j=1 f ( x ij, y ij ) A Philippe B. Laval (KSU) Double Integrals Today 12 / 21

13 Double Integrals and Volumes: Definition Remark: It can be proven that the limit exists if f is continuous on R. Remark: To understand the notation, it helps to draw a parallel between the definite integral and double integrals. In the case of the definite integral, the width of each subinterval was called x. As the number of subintervals went to, the width of each subinterval went to 0. We called it dx. Similarly, for functions of two variables, the area of each subrectangle is A = x y. As the number of subrectangles approaches, the area of each subrectangle approaches 0. We call it da. You can think of da as being da = dxdy, the area of each subrectangle as well as the length of their sides are approaching 0. Remark: The definition of the integral does not require f (x, y) to be positive on R. When f (x, y) 0 on R, the integral is exactly the volume of the solid S. Remark: We can approximate double integrals by using double Riemann sums. In the next slides, we show a way to find the exact value of double integrals. Philippe B. Laval (KSU) Double Integrals Today 13 / 21

14 Iterated Integrals Over Rectangular Regions Let f (x, y) be a function which is continuous on R = [a, b] [c, d]. When we write d c f (x, y) dy, we mean that x is held as a constant and we integrate with respect to y. Similarly, when we write b a f (x, y) dx, we mean that y is held as a constant and we integrate with respect to x. Example Find 2 1 x 2 ydy Example Find π 0 sin x sin ydy Example Find π 0 sin x sin ydx Philippe B. Laval (KSU) Double Integrals Today 14 / 21

15 Iterated Integrals Over Rectangular Regions Definition An integral of the form [ b ] d a c f (x, y) dy dx is called an iterated integral. Usually, we omit the brackets and write b d a c f (x, y) dydx. Remark: To compute it, we integrate in two steps. First, we evaluate the integral inside, the one with respect to y, holding x as a constant. This will give us a function of x. We then integrate that function with respect to x. Remark: There is another iterated integral, obtained by switching the order of x and y: [ d ] b c a f (x, y) dx dy = d b c a f (x, y) dxdy. In this case, we first evaluate the inside integral, the one with respect to x, holding y as a constant. It will give us a function of y which we then integrate with respect to y. Philippe B. Laval (KSU) Double Integrals Today 15 / 21

16 Iterated Integrals Over Rectangular Regions: Examples Example Evaluate π 2 0 Example Evaluate π 0 π 0 sin x sin ydydx π 2 0 sin x sin ydxdy Philippe B. Laval (KSU) Double Integrals Today 16 / 21

17 Relationship Between Iterated Integrals and Double Integrals Over Rectangular Regions: Fubini s Theorem Iterated integrals are important in evaluating double integrals, as the next theorem shows us. The theorem is stated without proof. Theorem Suppose that f (x, y) is continuous on the rectangle R = [a, b] [c, d]. Then b d d b f (x, y) da = f (x, y) dydx = f (x, y) dxdy R a c Remark: Note that the order of integration does not matter. We can first integrate with respect to y, then to x. We can also do the reverse. Make sure you use the correct limits of integration. For the dx integral, the limits must be for the x variable. For the dy integral, the limits must be for the y variable. Philippe B. Laval (KSU) Double Integrals Today 17 / 21 c a

18 Relationship Between Iterated Integrals and Double Integrals Over Rectangular Regions: Fubini s Theorem Example Compute R ( x 3y 2 ) da where R = { (x, y) R 2 0 x 2, 1 y 2 }. Example Compute R y sin (xy) da where R = [1, 2] [0, π]. Example Find the volume of the solid bounded by z = f (x, y) = x 2 2y , the planes x = 2, y = 2 and the three coordinate planes. Philippe B. Laval (KSU) Double Integrals Today 18 / 21

19 Relationship Between Iterated Integrals and Double Integrals Over Rectangular Regions: Fubini s Theorem In some cases, the integral can be a little bit easier to evaluate. This happens when f can be written as the product of two functions, one a function of x, the other one a function of y. Theorem If f (x, y) = g (x) h (y), in other words if f (x, y) can be written as the product of two functions, one a function of x, the other one a function of y, then b d f (x, y) da = g (x) dx h (y) dy Example Evaluate π 2 0 π 0 R sin x sin ydydx a c Philippe B. Laval (KSU) Double Integrals Today 19 / 21

20 Double Integrals Over Rectangular Regions: Summary There are two diffi culties with computing multiple integrals: finding antiderivative and the region of integration. We learned to compute iterated integrals, that is integrals of the form b d a c f (x, y) dydx or d b c a f (x, y) dxdy. We learned to compute double integrals over a rectangular region, that is integrals of the form f (x, y) da where R = [a, b] [c, d]. R A double integral is evaluated in terms of iterated integrals. More precisely, if R = [a, b] [c, d], then Fubini s theorem tells us that f (x, y) da = b d a c f (x, y) dydx = d b c a f (x, y) dxdy R If the graph of z = f (x, y) is above the xy-plane then f (x, y) da is the volume of the solid with cross section R, between the xy-plane and z = f (x, y). Philippe B. Laval (KSU) Double Integrals Today 20 / 21 R

21 Exercises See the problems at the end of my notes on double integrals over rectangular regions. Philippe B. Laval (KSU) Double Integrals Today 21 / 21

Multiple Integrals. Introduction and Double Integrals Over Rectangular Regions. Philippe B. Laval. Spring 2012 KSU

Multiple Integrals. Introduction and Double Integrals Over Rectangular Regions. Philippe B. Laval. Spring 2012 KSU Multiple Integrals Introduction and Double Integrals Over Rectangular Regions Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) Multiple Integrals Spring 2012 1 / 21 Introduction In this section

More information

Representation of Functions as Power Series

Representation of Functions as Power Series Representation of Functions as Power Series Philippe B. Laval KSU Today Philippe B. Laval (KSU) Functions as Power Series Today / Introduction In this section and the next, we develop several techniques

More information

Relationship Between Integration and Differentiation

Relationship Between Integration and Differentiation Relationship Between Integration and Differentiation Fundamental Theorem of Calculus Philippe B. Laval KSU Today Philippe B. Laval (KSU) FTC Today 1 / 16 Introduction In the previous sections we defined

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Extreme Values Philippe B. Laval KSU Today Philippe B. Laval (KSU) Extreme Values Today 1 / 18 Introduction In Calculus I (differential calculus for functions of one variable),

More information

Differentiation - Quick Review From Calculus

Differentiation - Quick Review From Calculus Differentiation - Quick Review From Calculus Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Differentiation - Quick Review From Calculus Current Semester 1 / 13 Introduction In this section,

More information

Double Integrals. P. Sam Johnson. February 4, P. Sam Johnson (NIT Karnataka) (NIT Karnataka) Double Integrals February 4, / 57

Double Integrals. P. Sam Johnson. February 4, P. Sam Johnson (NIT Karnataka) (NIT Karnataka) Double Integrals February 4, / 57 Double Integrals P. Sam Johnson February 4, 2018 P. Sam Johnson (NIT Karnataka) (NIT Karnataka) Double Integrals February 4, 2018 1 / 57 Overview We defined the definite integral of a continuous function

More information

Riemann Sum Comparison

Riemann Sum Comparison Double Integrals 12.1 14 Riemann Sum Comparison Riemann sum to approximate area Subdivide [a, b] into n intervals I. Double Integrals 12.1 14 Riemann Sum Comparison Riemann sum to approximate area Subdivide

More information

First Order Differential Equations

First Order Differential Equations First Order Differential Equations Linear Equations Philippe B. Laval KSU Philippe B. Laval (KSU) 1st Order Linear Equations 1 / 11 Introduction We are still looking at 1st order equations. In today s

More information

Functions of Several Variables: Limits and Continuity

Functions of Several Variables: Limits and Continuity Functions of Several Variables: Limits and Continuity Philippe B. Laval KSU Today Philippe B. Laval (KSU) Limits and Continuity Today 1 / 24 Introduction We extend the notion of its studied in Calculus

More information

MATH2111 Higher Several Variable Calculus Integration

MATH2111 Higher Several Variable Calculus Integration MATH2 Higher Several Variable Calculus Integration Dr. Jonathan Kress School of Mathematics and Statistics University of New South Wales Semester, 26 [updated: April 3, 26] JM Kress (UNSW Maths & Stats)

More information

Arc Length. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Arc Length Today 1 / 12

Arc Length. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Arc Length Today 1 / 12 Philippe B. Laval KSU Today Philippe B. Laval (KSU) Arc Length Today 1 / 12 Introduction In this section, we discuss the notion of curve in greater detail and introduce the very important notion of arc

More information

Introduction to Vector Functions

Introduction to Vector Functions Introduction to Vector Functions Limits and Continuity Philippe B. Laval KSU Today Philippe B. Laval (KSU) Vector Functions Today 1 / 14 Introduction Until now, the functions we studied took a real number

More information

In this section you will learn the following : 40.1Double integrals

In this section you will learn the following : 40.1Double integrals Module 14 : Double Integrals, Applilcations to Areas and Volumes Change of variables Lecture 40 : Double integrals over rectangular domains [Section 40.1] Objectives In this section you will learn the

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Extreme Values Philippe B Laval KSU April 9, 2012 Philippe B Laval (KSU) Functions of Several Variables April 9, 2012 1 / 13 Introduction In Calculus I (differential calculus

More information

Integration Using Tables and Summary of Techniques

Integration Using Tables and Summary of Techniques Integration Using Tables and Summary of Techniques Philippe B. Laval KSU Today Philippe B. Laval (KSU) Summary Today 1 / 13 Introduction We wrap up integration techniques by discussing the following topics:

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Partial Derivatives Philippe B Laval KSU March 21, 2012 Philippe B Laval (KSU) Functions of Several Variables March 21, 2012 1 / 19 Introduction In this section we extend

More information

Math 425 Notes 9. We state a rough version of the fundamental theorem of calculus. Almost all calculations involving integrals lead back to this.

Math 425 Notes 9. We state a rough version of the fundamental theorem of calculus. Almost all calculations involving integrals lead back to this. Multiple Integrals: efintion Math 425 Notes 9 We state a rough version of the fundamental theorem of calculus. Almost all calculations involving integrals lead back to this. efinition 1. Let f : R R and

More information

Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) RECTANGULAR APPROXIMATION METHODS

Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) RECTANGULAR APPROXIMATION METHODS AP Calculus 5. Areas and Distances Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) Exercise : Calculate the area between the x-axis and the graph of y = 3 2x.

More information

Double Integrals using Riemann Sums

Double Integrals using Riemann Sums Double Integrals using Riemann Sums Introduction and Goals: The goal of this lab is to become more familiar with Riemann sums both as a definition for the double integral and as an approximation method

More information

The Laplace Transform

The Laplace Transform The Laplace Transform Inverse of the Laplace Transform Philippe B. Laval KSU Today Philippe B. Laval (KSU) Inverse of the Laplace Transform Today 1 / 12 Outline Introduction Inverse of the Laplace Transform

More information

16.2 Iterated Integrals

16.2 Iterated Integrals 6.2 Iterated Integrals So far: We have defined what we mean by a double integral. We have estimated the value of a double integral from contour diagrams and from tables of values. We have interpreted the

More information

D. Correct! This is the correct answer. It is found by dy/dx = (dy/dt)/(dx/dt).

D. Correct! This is the correct answer. It is found by dy/dx = (dy/dt)/(dx/dt). Calculus II - Problem Solving Drill 4: Calculus for Parametric Equations Question No. of 0 Instructions: () Read the problem and answer choices carefully () Work the problems on paper as. Find dy/dx where

More information

Integration. Darboux Sums. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Darboux Sums Today 1 / 13

Integration. Darboux Sums. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Darboux Sums Today 1 / 13 Integration Darboux Sums Philippe B. Laval KSU Today Philippe B. Laval (KSU) Darboux Sums Today 1 / 13 Introduction The modern approach to integration is due to Cauchy. He was the first to construct a

More information

MATH 19520/51 Class 11

MATH 19520/51 Class 11 MATH 1952/51 Class 11 Minh-Tam Trinh University of Chicago 217-1-23 1 Discuss the midterm. 2 Review Riemann sums for functions of one variable. 3 Riemann sums for multivariable functions. 4 Double integrals

More information

Introduction to Vector Functions

Introduction to Vector Functions Introduction to Vector Functions Differentiation and Integration Philippe B. Laval KSU Today Philippe B. Laval (KSU) Vector Functions Today 1 / 14 Introduction In this section, we study the differentiation

More information

Day 2 Notes: Riemann Sums In calculus, the result of f ( x)

Day 2 Notes: Riemann Sums In calculus, the result of f ( x) AP Calculus Unit 6 Basic Integration & Applications Day 2 Notes: Riemann Sums In calculus, the result of f ( x) dx is a function that represents the anti-derivative of the function f(x). This is also sometimes

More information

Let s estimate the volume under this surface over the rectangle R = [0, 4] [0, 2] in the xy-plane.

Let s estimate the volume under this surface over the rectangle R = [0, 4] [0, 2] in the xy-plane. Math 54 - Vector Calculus Notes 3. - 3. Double Integrals Consider f(x, y) = 8 x y. Let s estimate the volume under this surface over the rectangle R = [, 4] [, ] in the xy-plane. Here is a particular estimate:

More information

Review of Functions. Functions. Philippe B. Laval. Current Semester KSU. Philippe B. Laval (KSU) Functions Current Semester 1 / 12

Review of Functions. Functions. Philippe B. Laval. Current Semester KSU. Philippe B. Laval (KSU) Functions Current Semester 1 / 12 Review of Functions Functions Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Functions Current Semester 1 / 12 Introduction Students are expected to know the following concepts about functions:

More information

is a surface above the xy-plane over R.

is a surface above the xy-plane over R. Chapter 13 Multiple Integration Section 13.1Double Integrals over ectangular egions ecall the Definite Integral from Chapter 5 b a n * lim i f x dx f x x n i 1 b If f x 0 then f xdx is the area under the

More information

Testing Series with Mixed Terms

Testing Series with Mixed Terms Testing Series with Mixed Terms Philippe B. Laval KSU Today Philippe B. Laval (KSU) Series with Mixed Terms Today 1 / 17 Outline 1 Introduction 2 Absolute v.s. Conditional Convergence 3 Alternating Series

More information

Consequences of the Completeness Property

Consequences of the Completeness Property Consequences of the Completeness Property Philippe B. Laval KSU Today Philippe B. Laval (KSU) Consequences of the Completeness Property Today 1 / 10 Introduction In this section, we use the fact that R

More information

The Cross Product. Philippe B. Laval. Spring 2012 KSU. Philippe B. Laval (KSU) The Cross Product Spring /

The Cross Product. Philippe B. Laval. Spring 2012 KSU. Philippe B. Laval (KSU) The Cross Product Spring / The Cross Product Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) The Cross Product Spring 2012 1 / 15 Introduction The cross product is the second multiplication operation between vectors we will

More information

Math 240: Double Integrals and Green s Theorem

Math 240: Double Integrals and Green s Theorem Math 240: Double Integrals and Green s Theorem yan Blair University of Pennsylvania Thursday March 17, 2011 yan Blair (U Penn) Math 240: Double Integrals and Green s Theorem Thursday March 17, 2011 1 /

More information

Differentiation and Integration of Fourier Series

Differentiation and Integration of Fourier Series Differentiation and Integration of Fourier Series Philippe B. Laval KSU Today Philippe B. Laval (KSU) Fourier Series Today 1 / 12 Introduction When doing manipulations with infinite sums, we must remember

More information

AP Calculus BC - Problem Solving Drill 19: Parametric Functions and Polar Functions

AP Calculus BC - Problem Solving Drill 19: Parametric Functions and Polar Functions AP Calculus BC - Problem Solving Drill 19: Parametric Functions and Polar Functions Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as

More information

MAT137 - Term 2, Week 2

MAT137 - Term 2, Week 2 MAT137 - Term 2, Week 2 This lecture will assume you have watched all of the videos on the definition of the integral (but will remind you about some things). Today we re talking about: More on the definition

More information

We saw in Section 5.1 that a limit of the form. arises when we compute an area.

We saw in Section 5.1 that a limit of the form. arises when we compute an area. INTEGRALS 5 INTEGRALS Equation 1 We saw in Section 5.1 that a limit of the form n lim f ( x *) x n i 1 i lim[ f ( x *) x f ( x *) x... f ( x *) x] n 1 2 arises when we compute an area. n We also saw that

More information

4.4 Change of Variable in Integrals: The Jacobian

4.4 Change of Variable in Integrals: The Jacobian 4.4. CHANGE OF VAIABLE IN INTEGALS: THE JACOBIAN 4 4.4 Change of Variable in Integrals: The Jacobian In this section, we generalize to multiple integrals the substitution technique used with definite integrals.

More information

Limit of a Function Philippe B. Laval

Limit of a Function Philippe B. Laval Limit of a Function Philippe B. Laval Limit of a Function 2 1 Limit of a Function 1.1 Definitions and Elementary Theorems Unlike for sequences, there are many possibilities for the limit of a function.

More information

Science One Integral Calculus. January 8, 2018

Science One Integral Calculus. January 8, 2018 Science One Integral Calculus January 8, 2018 Last time a definition of area Key ideas Divide region into n vertical strips Approximate each strip by a rectangle Sum area of rectangles Take limit for n

More information

Sequences: Limit Theorems

Sequences: Limit Theorems Sequences: Limit Theorems Limit Theorems Philippe B. Laval KSU Today Philippe B. Laval (KSU) Limit Theorems Today 1 / 20 Introduction These limit theorems fall in two categories. 1 The first category deals

More information

Multi Variable Calculus

Multi Variable Calculus Multi Variable Calculus Joshua Wilde, revised by Isabel Tecu, Takeshi Suzuki and María José Boccardi August 3, 03 Functions from R n to R m So far we have looked at functions that map one number to another

More information

Differentiation - Important Theorems

Differentiation - Important Theorems Differentiation - Important Theorems Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) Differentiation - Important Theorems Spring 2012 1 / 10 Introduction We study several important theorems related

More information

The Laplace Transform

The Laplace Transform The Laplace Transform Laplace Transform Philippe B. Laval KSU Today Philippe B. Laval (KSU) Definition of the Laplace Transform Today 1 / 16 Outline General idea behind the Laplace transform and other

More information

Workbook for Calculus I

Workbook for Calculus I Workbook for Calculus I By Hüseyin Yüce New York 2007 1 Functions 1.1 Four Ways to Represent a Function 1. Find the domain and range of the function f(x) = 1 + x + 1 and sketch its graph. y 3 2 1-3 -2-1

More information

1 Review of di erential calculus

1 Review of di erential calculus Review of di erential calculus This chapter presents the main elements of di erential calculus needed in probability theory. Often, students taking a course on probability theory have problems with concepts

More information

OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph.

OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph. 4.1 The Area under a Graph OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph. 4.1 The Area Under a Graph Riemann Sums (continued): In the following

More information

Math Double Integrals in Polar Coordinates

Math Double Integrals in Polar Coordinates Math 213 - Double Integrals in Polar Coordinates Peter A. Perry University of Kentucky October 22, 2018 Homework Re-read section 15.3 Begin work on 1-4, 5-31 (odd), 35, 37 from 15.3 Read section 15.4 for

More information

Math 32B Discussion Session Session 3 Notes August 14, 2018

Math 32B Discussion Session Session 3 Notes August 14, 2018 Math 3B Discussion Session Session 3 Notes August 4, 8 In today s discussion we ll think about two common applications of multiple integrals: locating centers of mass and moments of inertia. Centers of

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 4 TUTORIAL 1 - INTEGRATION

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 4 TUTORIAL 1 - INTEGRATION Learning outcomes EEXCEL NATIONAL CERTIFICATE UNIT MATHEMATICS FOR TECHNICIANS OUTCOME TUTORIAL 1 - INTEGRATION On completion of this unit a learner should: 1 Know how to use algebraic methods e able to

More information

Properties of surfaces II: Second moment of area

Properties of surfaces II: Second moment of area Properties of surfaces II: Second moment of area Just as we have discussing first moment of an area and its relation with problems in mechanics, we will now describe second moment and product of area of

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION 6 APPLICATIONS OF INTEGRATION APPLICATIONS OF INTEGRATION 6.5 Average Value of a Function In this section, we will learn about: Applying integration to find out the average value of a function. AVERAGE

More information

Math 122 Fall Unit Test 1 Review Problems Set A

Math 122 Fall Unit Test 1 Review Problems Set A Math Fall 8 Unit Test Review Problems Set A We have chosen these problems because we think that they are representative of many of the mathematical concepts that we have studied. There is no guarantee

More information

FINAL REVIEW Answers and hints Math 311 Fall 2017

FINAL REVIEW Answers and hints Math 311 Fall 2017 FINAL RVIW Answers and hints Math 3 Fall 7. Let R be a Jordan region and let f : R be integrable. Prove that the graph of f, as a subset of R 3, has zero volume. Let R be a rectangle with R. Since f is

More information

1. Determine the limit (if it exists). + lim A) B) C) D) E) Determine the limit (if it exists).

1. Determine the limit (if it exists). + lim A) B) C) D) E) Determine the limit (if it exists). Please do not write on. Calc AB Semester 1 Exam Review 1. Determine the limit (if it exists). 1 1 + lim x 3 6 x 3 x + 3 A).1 B).8 C).157778 D).7778 E).137778. Determine the limit (if it exists). 1 1cos

More information

Chapter 5 Integrals. 5.1 Areas and Distances

Chapter 5 Integrals. 5.1 Areas and Distances Chapter 5 Integrals 5.1 Areas and Distances We start with a problem how can we calculate the area under a given function ie, the area between the function and the x-axis? If the curve happens to be something

More information

Integration by Substitution

Integration by Substitution Integration by Substitution Dr. Philippe B. Laval Kennesaw State University Abstract This handout contains material on a very important integration method called integration by substitution. Substitution

More information

Introduction to Partial Differential Equations

Introduction to Partial Differential Equations Introduction to Partial Differential Equations Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Key Concepts Current Semester 1 / 25 Introduction The purpose of this section is to define

More information

7.1 Indefinite Integrals Calculus

7.1 Indefinite Integrals Calculus 7.1 Indefinite Integrals Calculus Learning Objectives A student will be able to: Find antiderivatives of functions. Represent antiderivatives. Interpret the constant of integration graphically. Solve differential

More information

Techniques of Integration: I

Techniques of Integration: I October 1, 217 We had the tenth breakfast yesterday morning: If you d like to propose a future event (breakfast, lunch, dinner), please let me know. Techniques of Integration To evaluate number), we might

More information

Final Exam 12/11/ (16 pts) Find derivatives for each of the following: (a) f(x) = 3 1+ x e + e π [Do not simplify your answer.

Final Exam 12/11/ (16 pts) Find derivatives for each of the following: (a) f(x) = 3 1+ x e + e π [Do not simplify your answer. Math 105 Final Exam 1/11/1 Name Read directions carefully and show all your work. Partial credit will be assigned based upon the correctness, completeness, and clarity of your answers. Correct answers

More information

EE2090 Basic Engineering Mathematics. Assoc. Prof. M. Adams Room : S2.2-B2-23 Extn :

EE2090 Basic Engineering Mathematics. Assoc. Prof. M. Adams Room : S2.2-B2-23 Extn : EE2090 Basic Engineering Mathematics Assoc. Prof. M. Adams Room : S2.2-B2-23 Extn : 4361 Email : eadams@ntu.edu.sg TOPICS 1. Multiple Integrals 2. Infinite Sequences & Series 3. Vectors 4. Introduction

More information

Multivariable Calculus Midterm 2 Solutions John Ross

Multivariable Calculus Midterm 2 Solutions John Ross Multivariable Calculus Midterm Solutions John Ross Problem.: False. The double integral is not the same as the iterated integral. In particular, we have shown in a HW problem (section 5., number 9) that

More information

Math 120: Examples. Green s theorem. x 2 + y 2 dx + x. x 2 + y 2 dy. y x 2 + y 2, Q = x. x 2 + y 2

Math 120: Examples. Green s theorem. x 2 + y 2 dx + x. x 2 + y 2 dy. y x 2 + y 2, Q = x. x 2 + y 2 Math 12: Examples Green s theorem Example 1. onsider the integral Evaluate it when (a) is the circle x 2 + y 2 = 1. (b) is the ellipse x 2 + y2 4 = 1. y x 2 + y 2 dx + Solution. (a) We did this in class.

More information

Science One Integral Calculus

Science One Integral Calculus Science One Integral Calculus January 018 Happy New Year! Differential Calculus central idea: The Derivative What is the derivative f (x) of a function f(x)? Differential Calculus central idea: The Derivative

More information

Differentiation-JAKE DEACON

Differentiation-JAKE DEACON Differentiation-JAKE DEACON Differentiation is the method of finding the gradient formulae (or the derivative). When we are given any equation we can differentiate said equation and find the gradient formulae

More information

TEACHER NOTES MATH NSPIRED

TEACHER NOTES MATH NSPIRED Math Objectives Students will learn that for a continuous non-negative function f, one interpretation of the definite integral f ( x ) dx is the area of a the region bounded above by the graph of y = f(x),

More information

Distance and Velocity

Distance and Velocity Distance and Velocity - Unit #8 : Goals: The Integral Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite integral and

More information

Lab 11: Numerical Integration Techniques. Figure 1. From the Fundamental Theorem of Calculus, we know that if we want to calculate f ( x)

Lab 11: Numerical Integration Techniques. Figure 1. From the Fundamental Theorem of Calculus, we know that if we want to calculate f ( x) Lab 11: Numerical Integration Techniques Introduction The purpose of this laboratory experience is to develop fundamental methods for approximating the area under a curve for the definite integral. With

More information

Triple Integrals in Cartesian Coordinates. Triple Integrals in Cylindrical Coordinates. Triple Integrals in Spherical Coordinates

Triple Integrals in Cartesian Coordinates. Triple Integrals in Cylindrical Coordinates. Triple Integrals in Spherical Coordinates Chapter 3 Multiple Integral 3. Double Integrals 3. Iterated Integrals 3.3 Double Integrals in Polar Coordinates 3.4 Triple Integrals Triple Integrals in Cartesian Coordinates Triple Integrals in Clindrical

More information

MATH 312 Section 2.4: Exact Differential Equations

MATH 312 Section 2.4: Exact Differential Equations MATH 312 Section 2.4: Exact Differential Equations Prof. Jonathan Duncan Walla Walla College Spring Quarter, 2007 Outline 1 Exact Differential Equations 2 Solving an Exact DE 3 Making a DE Exact 4 Conclusion

More information

MAT137 - Term 2, Week 4

MAT137 - Term 2, Week 4 MAT137 - Term 2, Week 4 Reminders: Your Problem Set 6 is due tomorrow at 3pm. Test 3 is next Friday, February 3, at 4pm. See the course website for details. Today we will: Talk more about substitution.

More information

The real voyage of discovery consists not in seeking new landscapes, but in having new eyes. Marcel Proust

The real voyage of discovery consists not in seeking new landscapes, but in having new eyes. Marcel Proust The real voyage of discovery consists not in seeking new landscapes, but in having new eyes. Marcel Proust School of the Art Institute of Chicago Calculus Frank Timmes ftimmes@artic.edu flash.uchicago.edu/~fxt/class_pages/class_calc.shtml

More information

2. Find the intervals where function is increasing and decreasing. Then find all relative extrema.

2. Find the intervals where function is increasing and decreasing. Then find all relative extrema. MATH 1071Q Exam #2 Review Fall 2011 1. Find the elasticity at the given points and determine whether demand is inelastic, elastic, or unit elastic. Explain the significance of your answer. (a) x = 10 2p

More information

MATH 408N PRACTICE FINAL

MATH 408N PRACTICE FINAL 05/05/2012 Bormashenko MATH 408N PRACTICE FINAL Name: TA session: Show your work for all the problems. Good luck! (1) Calculate the following limits, using whatever tools are appropriate. State which results

More information

4. Be able to set up and solve an integral using a change of variables. 5. Might be useful to remember the transformation formula for rotations.

4. Be able to set up and solve an integral using a change of variables. 5. Might be useful to remember the transformation formula for rotations. Change of variables What to know. Be able to find the image of a transformation 2. Be able to invert a transformation 3. Be able to find the Jacobian of a transformation 4. Be able to set up and solve

More information

Consequences of Orthogonality

Consequences of Orthogonality Consequences of Orthogonality Philippe B. Laval KSU Today Philippe B. Laval (KSU) Consequences of Orthogonality Today 1 / 23 Introduction The three kind of examples we did above involved Dirichlet, Neumann

More information

d` = 1+( dy , which is part of the cone.

d` = 1+( dy , which is part of the cone. 7.5 Surface area When we did areas, the basic slices were rectangles, with A = h x or h y. When we did volumes of revolution, the basic slices came from revolving rectangles around an axis. Depending on

More information

Chapter 4 Integration

Chapter 4 Integration Chapter 4 Integration SECTION 4.1 Antiderivatives and Indefinite Integration Calculus: Chapter 4 Section 4.1 Antiderivative A function F is an antiderivative of f on an interval I if F '( x) f ( x) for

More information

Chapter 7: Applications of Integration

Chapter 7: Applications of Integration Chapter 7: Applications of Integration Fall 214 Department of Mathematics Hong Kong Baptist University 1 / 21 7.1 Volumes by Slicing Solids of Revolution In this section, we show how volumes of certain

More information

Review of Multi-Calculus (Study Guide for Spivak s CHAPTER ONE TO THREE)

Review of Multi-Calculus (Study Guide for Spivak s CHAPTER ONE TO THREE) Review of Multi-Calculus (Study Guide for Spivak s CHPTER ONE TO THREE) This material is for June 9 to 16 (Monday to Monday) Chapter I: Functions on R n Dot product and norm for vectors in R n : Let X

More information

It is difficult to overestimate the power of the equation

It is difficult to overestimate the power of the equation 5.4 Fundamental Theorem of Calculus Objective SWBAT know the FTC part 1 and part 2, graphing integrals, area connection, and analyzing antiderivatives graphically. Fundamental Theorem Part 1 This theorem

More information

Arc Length and Surface Area in Parametric Equations

Arc Length and Surface Area in Parametric Equations Arc Length and Surface Area in Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2011 Background We have developed definite integral formulas for arc length

More information

HOMEWORK 7 SOLUTIONS

HOMEWORK 7 SOLUTIONS HOMEWORK 7 SOLUTIONS MA11: ADVANCED CALCULUS, HILARY 17 (1) Using the method of Lagrange multipliers, find the largest and smallest values of the function f(x, y) xy on the ellipse x + y 1. Solution: The

More information

Ex. Find the derivative. Do not leave negative exponents or complex fractions in your answers.

Ex. Find the derivative. Do not leave negative exponents or complex fractions in your answers. CALCULUS AB THE SECOND FUNDAMENTAL THEOREM OF CALCULUS AND REVIEW E. Find the derivative. Do not leave negative eponents or comple fractions in your answers. 4 (a) y 4 e 5 f sin (b) sec (c) g 5 (d) y 4

More information

SYDE 112, LECTURE 7: Integration by Parts

SYDE 112, LECTURE 7: Integration by Parts SYDE 112, LECTURE 7: Integration by Parts 1 Integration By Parts Consider trying to take the integral of xe x dx. We could try to find a substitution but would quickly grow frustrated there is no substitution

More information

Math Refresher Course

Math Refresher Course Math Refresher Course Columbia University Department of Political Science Fall 2007 Day 2 Prepared by Jessamyn Blau 6 Calculus CONT D 6.9 Antiderivatives and Integration Integration is the reverse of differentiation.

More information

PART 3: Integration. Calculus in Higher Dimensions. Compiled by M Frick. Assisted by CA Bohlman G Davie J Singleton K J Swanepoel

PART 3: Integration. Calculus in Higher Dimensions. Compiled by M Frick. Assisted by CA Bohlman G Davie J Singleton K J Swanepoel Department of Mathematical Sciences PAT 3: Integration Study guide 3 for MAT615 alculus in Higher Dimensions ompiled by M Frick Assisted by A Bohlman G Davie J Singleton K J Swanepoel evised by J Singleton

More information

Introduction to Vector Functions

Introduction to Vector Functions Introduction to Vector Functions Limits and Continuity Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) Introduction to Vector Functions Spring 2012 1 / 14 Introduction In this section, we study

More information

The Integral of a Function. The Indefinite Integral

The Integral of a Function. The Indefinite Integral The Integral of a Function. The Indefinite Integral Undoing a derivative: Antiderivative=Indefinite Integral Definition: A function is called an antiderivative of a function on same interval,, if differentiation

More information

Study Guide/Practice Exam 3

Study Guide/Practice Exam 3 Study Guide/Practice Exam 3 This study guide/practice exam covers only the material since exam. The final exam, however, is cumulative so you should be sure to thoroughly study earlier material. The distribution

More information

SOLUTIONS OF SELECTED PROBLEMS

SOLUTIONS OF SELECTED PROBLEMS SOLUTIONS OF SELECTED PROBLEMS Problem 36, p. 63 If µ(e n < and χ En f in L, then f is a.e. equal to a characteristic function of a measurable set. Solution: By Corollary.3, there esists a subsequence

More information

Chapter 6: The Definite Integral

Chapter 6: The Definite Integral Name: Date: Period: AP Calc AB Mr. Mellina Chapter 6: The Definite Integral v v Sections: v 6.1 Estimating with Finite Sums v 6.5 Trapezoidal Rule v 6.2 Definite Integrals 6.3 Definite Integrals and Antiderivatives

More information

MATH 18.01, FALL PROBLEM SET #5 SOLUTIONS (PART II)

MATH 18.01, FALL PROBLEM SET #5 SOLUTIONS (PART II) MATH 8, FALL 7 - PROBLEM SET #5 SOLUTIONS (PART II (Oct ; Antiderivatives; + + 3 7 points Recall that in pset 3A, you showed that (d/dx tanh x x Here, tanh (x denotes the inverse to the hyperbolic tangent

More information

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y:

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y: 3 Algebraic Methods b The first appearance of the equation E Mc 2 in Einstein s handwritten notes. So far, the only general class of differential equations that we know how to solve are directly integrable

More information

AP Calculus AB. Integration. Table of Contents

AP Calculus AB. Integration.  Table of Contents AP Calculus AB Integration 2015 11 24 www.njctl.org Table of Contents click on the topic to go to that section Riemann Sums Trapezoid Approximation Area Under a Curve (The Definite Integral) Antiderivatives

More information

Power Series. Part 2 Differentiation & Integration; Multiplication of Power Series. J. Gonzalez-Zugasti, University of Massachusetts - Lowell

Power Series. Part 2 Differentiation & Integration; Multiplication of Power Series. J. Gonzalez-Zugasti, University of Massachusetts - Lowell Power Series Part 2 Differentiation & Integration; Multiplication of Power Series 1 Theorem 1 If a n x n converges absolutely for x < R, then a n f x n converges absolutely for any continuous function

More information

Math Final Exam

Math Final Exam Math 221 - Final Exam University of Utah Summer 27 Name: s 1. (1 points) For the vectors: Calculate: (a) (2 points) a + b a = 3i + 2j 2k and b = i + 2j 4k. a + b = ( 3 + ( 1))i + (2 + 2)j + ( 2 + ( 4))k

More information

Find all points where the function is discontinuous. 1) Find all vertical asymptotes of the given function. x(x - 1) 2) f(x) =

Find all points where the function is discontinuous. 1) Find all vertical asymptotes of the given function. x(x - 1) 2) f(x) = Math 90 Final Review Find all points where the function is discontinuous. ) Find all vertical asymptotes of the given function. x(x - ) 2) f(x) = x3 + 4x Provide an appropriate response. 3) If x 3 f(x)

More information

MATH 307: Problem Set #3 Solutions

MATH 307: Problem Set #3 Solutions : Problem Set #3 Solutions Due on: May 3, 2015 Problem 1 Autonomous Equations Recall that an equilibrium solution of an autonomous equation is called stable if solutions lying on both sides of it tend

More information