4.4 Change of Variable in Integrals: The Jacobian

Size: px
Start display at page:

Download "4.4 Change of Variable in Integrals: The Jacobian"

Transcription

1 4.4. CHANGE OF VAIABLE IN INTEGALS: THE JACOBIAN Change of Variable in Integrals: The Jacobian In this section, we generalize to multiple integrals the substitution technique used with definite integrals. For functions of two or more variables, there is a similar process we can use. It is a little bit more involved though. In addition, in higher dimensions, a change of variable can also be used to simplify the region of integration. We begin with an important definition The Jacobian The Jacobian, named after the German mathematician Carl Gustav Jacobi 84-85), plays an important role in higher dimensional mathematics. In this section, we see how it is used when changing variables to simplify a region of integration or an integrand. We begin with its definition. Definition 6 -D case) Suppose that x and y are two independent variables which can be expressed in term of two other independent variables u and v by the formula x g u, v) and y h u, v). The Jacobian of x and y with respect to u and v, denoted or J u, v), is u, v) J u, v) u, v) x u y u x v y v x y u v y u Definition 64 -D case) Suppose that x, y and z are three independent variables which can be expressed in term of three other independent variables u, v and w by the formula x g u, v, w), y h u, v, w) and z l u, v, w). x, y, z) The Jacobian of x, y and z with respect to u, v and w, denoted u, v, w) or J u, v), is x x x x, y, z) J u, v, w) u, v, w) u v w y y y u v w z z z u v w x x x x x Definition 65 The matrices u v u v w y y and y y y u v w u v z z z which u v w appear in the above definitions are called Jacobian matrices. Hence, the Jacobian is the determinant of the Jacobian matrix. x v

2 4 CHAPTE 4. MULTIPLE INTEGALS Example 66 ecall, when switching from Cartesian to polar coordinates, we have x r cos θ and y r sin θ. The Jacobian of x and y with respect to r and θ is r, θ) r, θ) x x r θ y y r θ cos θ r sin θ sin θ r cos θ r cos θ + r sin θ r Example 67 ecall, when switching from Cartesian to Spherical coordinates, we have x ρ sin φ cos θ, y ρ sin φ sin θ, and z ρ cos φ. The Jacobian of x, y, and z with respect to ρ, θ and φ is x x x x, y, z) ρ, θ, φ) ρ y ρ z ρ θ y θ z θ φ y φ z φ sin φ cos θ ρ sin φ sin θ ρ cos φ cos θ sin φ sin θ ρ sin φ cos θ ρ cos φ sin θ cos φ ρ sin φ The easiest way to compute this determinant is to expand it using the third row since one of its entries is. We obtain x, y, z) cos φ ρ sin φ sin θ ρ cos φ cos θ ρ, θ, φ) ρ sin φ cos θ ρ cos φ sin θ ρ sin φ sin φ cos θ ρ sin φ sin θ sin φ sin θ ρ sin φ cos θ cos φ ρ sin φ cos φ sin θ ρ sin φ cos φ cos θ ) ρ sin φ ρ sin φ cos θ + ρ sin φ sin θ ) ρ sin φ cos φ ρ sin φ ρ sin φ 4.4. Change of Variable You will recall in one-dimensional calculus, when given an integral of the form g u) f g u)) du, we performed the change of variable x g u) which gave us dx g u) du and thus g u) f g u)) du f x) dx

3 4.4. CHANGE OF VAIABLE IN INTEGALS: THE JACOBIAN 4 We can write this slightly differently as follows. Since x g u), dx du g u) hence, we have f x) dx f g u)) dx du du The Jacobian is what generalizes dx in the above formula. We begin with du the change of variable theorem for double integrals. We then look at several examples to see how one can benefit from a change of variable. These benefits include using a change of variable to simplify an integrand, using a change of variable to simplify a region of integration. As an application, we will look at double integrals in polar coordinates. Note that most of the explanations given below will be for regions in the xy-plane or for functions of two variables. General Case Let us first introduce some notation. Let denote a region in the xy-plane and S a region in the uv-plane. A change of variable is usually described as a transformation T from the uv-plane to the xy-plane given by T u, v) x, y) where x and y are given by x g u, v) y h u, v) We usually assume that the first order partials of g and h are continuous. When it is the case we say that T is a C transformation. Such a transformation will map a region S in the uv-plane into another region into the xy-plane see figure 4.4.). In most cases, we are given and are looking for a region S and a transformation T from S to in which S is simpler than. We will only consider simple cases here. When we talk about the Jacobian of the transformation T, we mean the Jacobian of the change of variable x g u, v) y h u, v) We begin with the change of variable theorem for integrals, given without proof. Theorem 68 Change of Variable in Double Integrals) Let and S be regions of the xy-planes and uv-planes respectively. Let T : S be a C transformation such that T u, v) x, y) where x g u, v) y h u, v)

4 44 CHAPTE 4. MULTIPLE INTEGALS such that each point in is the image of a unique point in S. If f is continuous on and on then u, v) f x, y) dxdy f g u, v), h u, v)) u, v) dudv S emark 69 It is important to understand that is the given region and the integral in terms of x and y is the given integral. We must find an appropriate change of variable in which the integral on the right in terms of u and v) is simpler. As stated, the theorem is deceiving. It makes it look like the integral on the left is easier than the integral on the right which appears to contain much more. But this is not the case in practice. emark 7 As in the one dimensional case, it is important to understand that when one performs a change of variable, not only the integrand changes, but also the region of integration. As mentioned already, there two possible reasons for performing a change of variable:. To obtain a simpler integrand.. To obtain an easier region over which to integrate. The ideal region is a rectangle with sides parallel to the coordinate axes. In this case, we can use Fubini s theorem. emark 7 Deciding what region works best for an integral takes practice. Finding the transformation T which maps one region into another is also very involved and could be the purpose of an entire course. Here, we will only consider simple examples for which the change of variable will be suggested.

5 4.4. CHANGE OF VAIABLE IN INTEGALS: THE JACOBIAN 45 Figure 4.: egion bounded by y, y 4, y x and y x Example 7 Evaluate 4 u x y and v y. y + y x y dxdy by applying the transformation The region corresponding to this integral is { x, y) : y 4, y x y + }. This is a type II region. It is shown in figure 4.. In the equations defining u and v, we need to solve for x and y since we need to compute the Jacobian of the transformation giving us xand y in terms of u and v. Simple algebra gives x u + v and y v. Therefore u, v) We also need to find what the new region, we call S will be. It is enough to find its boundaries. We illustrate how to do this in the table below: xy equations for the boundary of uv equations for the boundary of S Simplified uv equations x y u + v v v u x y + u + v v + v + u y v v y 4 v 4 v

6 46 CHAPTE 4. MULTIPLE INTEGALS Figure 4.: egion bounded by u, u, v and v. Hence S {u, v) : u, v }. This region is shown in figure 4.. We are now ready to apply the change of variable formula. 4 y + y x y dxdy u u, v) dudv ududv [ u ] dv dv x Example 7 Evaluate x + y y x) dydx using the transformation u x + y and v y x. First, let us find the region over which we are integrating. It is {x, y) : x, y x}. It is shown in figure 4.. First, we need to solve for x and y. Simple algebra

7 4.4. CHANGE OF VAIABLE IN INTEGALS: THE JACOBIAN 47 Figure 4.: egion bounded by x, y, x + y. suggests that x u v and y u + v. Next, we compute u, v) u, v). Finally, we need to find the corresponding uv region, we call it S. As in the previous example, we use a table. Not that this time the region is a triangle, hence its boundary consists of three lines. xy equations for the boundary of uv equations for the boundary of S Simplified uv equations u v x v u u + v y v u u v x + y + u + v u So, we see that S is the region bounded by u, v u and v u. It is shown

8 48 CHAPTE 4. MULTIPLE INTEGALS Figure 4.4: egion bounded by u, u v and v u. in figure 4.4.We can write it as a type I region. S {x, y) : u, u v u}. We are now ready to do the change of variable. x u x + y y x) dydx uv u u, v) dvdu [ ] v u u du u ) u u 7 du 9 9 u 9 9 u 7 du Application of Change of Variable to Polar Coordinates You will recall that the change of variable from Cartesian to polar coordinates is x r cos θ and y r sin θ. Also, from example 66, the Jacobian of this

9 4.4. CHANGE OF VAIABLE IN INTEGALS: THE JACOBIAN 49 transformation is we have r, θ) f x, y) dxdy r. Therefore, from the change of variable theorem, f r cos θ, r sin θ) r, θ) drdθ S f r cos θ, r sin θ) rdrdθ S where S is the region in the rθ-plane corresponding to in the xy-plane. Example 74 Evaluate e x +y dxdy where is the upper half portion of the unit circle. The region can be written as { x, y) : x and y x }. The corresponding region S is S {r, θ) : r and θ π}. Therefore e x +y dxdy re r drdθ S π re r drdθ We can evaluate the inner integral using the substitution u r hence du rdr thus re r dr e u du e ) You will note that in the process, we updated the limits of integration. It does not sow because they end up being the same. But make sure not to forget to do it. The original limits were and, they were limits for r. When we substitute and use u instead, we must find the limits on u. Since u r when r, u and when r, u. We can now finish the integral. π e x +y dxdy e ) dθ π e ) Example 75 Evaluate x + y ) da where is the annular region between the two circles x + y and x + y 5. The corresponding region S is { S r, θ) r } 5 and θ π

10 5 CHAPTE 4. MULTIPLE INTEGALS Therefore x + y ) da π 5 π 5 π π r 4 r cos θ + r sin θ ) rdrdθ r cos θ + r sin θ ) drdθ ) 4 cos θ + r 5 sin θ 6 cos θ sin θ dθ ) dθ Using the fact that cos + cos x θ, we have x + y ) ) π da + cos θ sin θ dθ 6π 4.4. Problems { u x y. Solve the system v x + y { u x + y. Solve the system v x y for x and y then find for x and y then find u, v). u, v).. Evaluate x xy y ) dxdy where is the region in the first quadrant bounded by the lines y x+4, y x+7, y x and y x+ by using the transformation u x y and v x + y. 4. Evaluate y and v x y. y x + ) e y x dxdy using the transformation u x + y 5. ewrite the given integrals from Cartesian to polar coordinates, then evaluate the integral. a) x dydx b) x a x x + y ) dydx c) a a dydx a x d) 6 y xdxdy

11 4.4. CHANGE OF VAIABLE IN INTEGALS: THE JACOBIAN Answers [. Solution is x u + v, y u + ] v. Therefore u, v). Solution is: [x u + v, y u v ]. Therefore u, v). Evaluate x xy y ) dxdy where is the region in the first quadrant bounded by the lines y x+4, y x+7, y x and y x+ by using the transformation u x y and v x + y. x xy y ) dxdy 4 4. Evaluate y and v x y. y x + ) e y x dxdy using the transformation u x + y y y x + ) e y x dxdy e + 5. ewrite the given integrals from Cartesian to polar coordinates, then evaluate the integral. a) x dydx π rdrdθ π b) c) a a d) 6 x a x x + y ) dydx π dydx π a x y xdxdy π π 4 a r drdθ π 8 rdrdθ πa 6 sin θ r cos θdrdθ 6

Calculus III - Problem Solving Drill 18: Double Integrals in Polar Coordinates and Applications of Double Integrals

Calculus III - Problem Solving Drill 18: Double Integrals in Polar Coordinates and Applications of Double Integrals Calculus III - Problem Solving Drill 8: Double Integrals in Polar Coordinates and Applications of Double Integrals Question No. of 0 Instructions: () ead the problem and answer choices carefully (2) Work

More information

Substitutions in Multiple Integrals

Substitutions in Multiple Integrals Substitutions in Multiple Integrals P. Sam Johnson April 10, 2017 P. Sam Johnson (NIT Karnataka) Substitutions in Multiple Integrals April 10, 2017 1 / 23 Overview In the lecture, we discuss how to evaluate

More information

Double Integrals. Advanced Calculus. Lecture 2 Dr. Lahcen Laayouni. Department of Mathematics and Statistics McGill University.

Double Integrals. Advanced Calculus. Lecture 2 Dr. Lahcen Laayouni. Department of Mathematics and Statistics McGill University. Lecture Department of Mathematics and Statistics McGill University January 9, 7 Polar coordinates Change of variables formula Polar coordinates In polar coordinates, we have x = r cosθ, r = x + y y = r

More information

QMUL, School of Physics and Astronomy Date: 18/01/2019

QMUL, School of Physics and Astronomy Date: 18/01/2019 QMUL, School of Physics and stronomy Date: 8//9 PHY Mathematical Techniques Solutions for Exercise Class Script : Coordinate Systems and Double Integrals. Calculate the integral: where the region is defined

More information

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work. Exam 3 Math 850-007 Fall 04 Odenthal Name: Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.. Evaluate the iterated integral

More information

1 4 (1 cos(4θ))dθ = θ 4 sin(4θ)

1 4 (1 cos(4θ))dθ = θ 4 sin(4θ) M48M Final Exam Solutions, December 9, 5 ) A polar curve Let C be the portion of the cloverleaf curve r = sin(θ) that lies in the first quadrant a) Draw a rough sketch of C This looks like one quarter

More information

Use partial integration with respect to y to compute the inner integral (treating x as a constant.)

Use partial integration with respect to y to compute the inner integral (treating x as a constant.) Math 54 ~ Multiple Integration 4. Iterated Integrals and Area in the Plane Iterated Integrals f ( x, y) dydx = f ( x, y) dy dx b g ( x) b g ( x) a g ( x) a g ( x) Use partial integration with respect to

More information

MATH 12 CLASS 23 NOTES, NOV Contents 1. Change of variables: the Jacobian 1

MATH 12 CLASS 23 NOTES, NOV Contents 1. Change of variables: the Jacobian 1 MATH 12 CLASS 23 NOTES, NOV 11 211 Contents 1. Change of variables: the Jacobian 1 1. Change of variables: the Jacobian So far, we have seen three examples of situations where we change variables to help

More information

COMPLETE Chapter 15 Multiple Integrals. Section 15.1 Double Integrals Over Rectangles. Section 15.2 Iterated Integrals

COMPLETE Chapter 15 Multiple Integrals. Section 15.1 Double Integrals Over Rectangles. Section 15.2 Iterated Integrals Mat 7 Calculus III Updated on /3/7 Dr. Firoz COMPLT Chapter 5 Multiple Integrals Section 5. Double Integrals Over ectangles amples:. valuate the iterated integral a) (5 ) da, {(, ), } and b) (4 ) da, [,]

More information

42. Change of Variables: The Jacobian

42. Change of Variables: The Jacobian . Change of Variables: The Jacobian It is common to change the variable(s) of integration, the main goal being to rewrite a complicated integrand into a simpler equivalent form. However, in doing so, the

More information

Vector Calculus. Dr. D. Sukumar

Vector Calculus. Dr. D. Sukumar Vector Calculus Dr. D. Sukumar Space co-ordinates Change of variable Cartesian co-ordinates < x < Cartesian co-ordinates < x < < y < Cartesian co-ordinates < x < < y < < z < Cylindrical Cylindrical Cylindrical

More information

The Change-of-Variables Formula for Double Integrals

The Change-of-Variables Formula for Double Integrals The Change-of-Variables Formula for Double Integrals Minh-Tam Trinh In this document, I suggest ideas about how to solve some of the exercises in ection 15.9 of tewart, Multivariable Calculus, 8th Ed.

More information

is a surface above the xy-plane over R.

is a surface above the xy-plane over R. Chapter 13 Multiple Integration Section 13.1Double Integrals over ectangular egions ecall the Definite Integral from Chapter 5 b a n * lim i f x dx f x x n i 1 b If f x 0 then f xdx is the area under the

More information

e x2 dxdy, e x2 da, e x2 x 3 dx = e

e x2 dxdy, e x2 da, e x2 x 3 dx = e STS26-4 Calculus II: The fourth exam Dec 15, 214 Please show all your work! Answers without supporting work will be not given credit. Write answers in spaces provided. You have 1 hour and 2minutes to complete

More information

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2 Math Prelim II Solutions Spring Note: Each problem is worth points except numbers 5 and 6 which are 5 points. x. Compute x da where is the region in the second quadrant between the + y circles x + y and

More information

Multivariable Calculus : Change of Variables in Multiple Integrals

Multivariable Calculus : Change of Variables in Multiple Integrals Multivariable Calculus 515 16.9: Change of Variables in Multiple Integrals Monday, November 24 and Tuesday, November 25, 2008 Introduction Consider integrating some function, such as f( x, y) = 4x+ 8 y,

More information

Math 6A Practice Problems II

Math 6A Practice Problems II Math 6A Practice Problems II Written by Victoria Kala vtkala@math.ucsb.edu SH 64u Office Hours: R : :pm Last updated 5//6 Answers This page contains answers only. Detailed solutions are on the following

More information

Student name: Student ID: Math 265 (Butler) Midterm III, 10 November 2011

Student name: Student ID: Math 265 (Butler) Midterm III, 10 November 2011 Student name: Student ID: Math 265 (Butler) Midterm III, November 2 This test is closed book and closed notes. No calculator is allowed for this test. For full credit show all of your work (legibly!).

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus, Fall 2007 Please use the following citation format: Denis Auroux. 18.02 Multivariable Calculus, Fall 2007. (Massachusetts Institute of

More information

ENGI Multiple Integration Page 8-01

ENGI Multiple Integration Page 8-01 ENGI 345 8. Multiple Integration Page 8-01 8. Multiple Integration This chapter provides only a very brief introduction to the major topic of multiple integration. Uses of multiple integration include

More information

Laplace equation in polar coordinates

Laplace equation in polar coordinates Laplace equation in polar coordinates The Laplace equation is given by 2 F 2 + 2 F 2 = 0 We have x = r cos θ, y = r sin θ, and also r 2 = x 2 + y 2, tan θ = y/x We have for the partials with respect to

More information

MATH2111 Higher Several Variable Calculus Integration

MATH2111 Higher Several Variable Calculus Integration MATH2 Higher Several Variable Calculus Integration Dr. Jonathan Kress School of Mathematics and Statistics University of New South Wales Semester, 26 [updated: April 3, 26] JM Kress (UNSW Maths & Stats)

More information

MATH 52 FINAL EXAM SOLUTIONS

MATH 52 FINAL EXAM SOLUTIONS MAH 5 FINAL EXAM OLUION. (a) ketch the region R of integration in the following double integral. x xe y5 dy dx R = {(x, y) x, x y }. (b) Express the region R as an x-simple region. R = {(x, y) y, x y }

More information

Math 151. Rumbos Spring Solutions to Review Problems for Exam 2

Math 151. Rumbos Spring Solutions to Review Problems for Exam 2 Math 5. Rumbos Spring 22 Solutions to Review Problems for Exam 2. Let X and Y be independent Normal(, ) random variables. Put Z = Y X. Compute the distribution functions (z) and (z). Solution: Since X,

More information

MATH 200 WEEK 10 - WEDNESDAY THE JACOBIAN & CHANGE OF VARIABLES

MATH 200 WEEK 10 - WEDNESDAY THE JACOBIAN & CHANGE OF VARIABLES WEEK - WEDNESDAY THE JACOBIAN & CHANGE OF VARIABLES GOALS Be able to convert integrals in rectangular coordinates to integrals in alternate coordinate systems DEFINITION Transformation: A transformation,

More information

f dr. (6.1) f(x i, y i, z i ) r i. (6.2) N i=1

f dr. (6.1) f(x i, y i, z i ) r i. (6.2) N i=1 hapter 6 Integrals In this chapter we will look at integrals in more detail. We will look at integrals along a curve, and multi-dimensional integrals in 2 or more dimensions. In physics we use these integrals

More information

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Iterated Integrals. Iterated Integrals. MAC2313 Calculus III - Chapter 14

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Iterated Integrals. Iterated Integrals. MAC2313 Calculus III - Chapter 14 14 Multiple Integration 14.1 Iterated Integrals and Area in the Plane Objectives Evaluate an iterated integral. Use an iterated integral to find the area of a plane region. Copyright Cengage Learning.

More information

Solution. This is a routine application of the chain rule.

Solution. This is a routine application of the chain rule. EXAM 2 SOLUTIONS 1. If z = e r cos θ, r = st, θ = s 2 + t 2, find the partial derivatives dz ds chain rule. Write your answers entirely in terms of s and t. dz and dt using the Solution. This is a routine

More information

Math 265 (Butler) Practice Midterm III B (Solutions)

Math 265 (Butler) Practice Midterm III B (Solutions) Math 265 (Butler) Practice Midterm III B (Solutions). Set up (but do not evaluate) an integral for the surface area of the surface f(x, y) x 2 y y over the region x, y 4. We have that the surface are is

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 3. Double Integrals 3A. Double

More information

4. Be able to set up and solve an integral using a change of variables. 5. Might be useful to remember the transformation formula for rotations.

4. Be able to set up and solve an integral using a change of variables. 5. Might be useful to remember the transformation formula for rotations. Change of variables What to know. Be able to find the image of a transformation 2. Be able to invert a transformation 3. Be able to find the Jacobian of a transformation 4. Be able to set up and solve

More information

Name: SOLUTIONS Date: 11/9/2017. M20550 Calculus III Tutorial Worksheet 8

Name: SOLUTIONS Date: 11/9/2017. M20550 Calculus III Tutorial Worksheet 8 Name: SOLUTIONS Date: /9/7 M55 alculus III Tutorial Worksheet 8. ompute R da where R is the region bounded by x + xy + y 8 using the change of variables given by x u + v and y v. Solution: We know R is

More information

Dr. Allen Back. Nov. 5, 2014

Dr. Allen Back. Nov. 5, 2014 Dr. Allen Back Nov. 5, 2014 12 lectures, 4 recitations left including today. a Most of what remains is vector integration and the integral theorems. b We ll start 7.1, 7.2,4.2 on Friday. c If you are not

More information

Math 127C, Spring 2006 Final Exam Solutions. x 2 ), g(y 1, y 2 ) = ( y 1 y 2, y1 2 + y2) 2. (g f) (0) = g (f(0))f (0).

Math 127C, Spring 2006 Final Exam Solutions. x 2 ), g(y 1, y 2 ) = ( y 1 y 2, y1 2 + y2) 2. (g f) (0) = g (f(0))f (0). Math 27C, Spring 26 Final Exam Solutions. Define f : R 2 R 2 and g : R 2 R 2 by f(x, x 2 (sin x 2 x, e x x 2, g(y, y 2 ( y y 2, y 2 + y2 2. Use the chain rule to compute the matrix of (g f (,. By the chain

More information

51. General Surface Integrals

51. General Surface Integrals 51. General urface Integrals The area of a surface in defined parametrically by r(u, v) = x(u, v), y(u, v), z(u, v) over a region of integration in the input-variable plane is given by d = r u r v da.

More information

Solutions to the Final Exam, Math 53, Summer 2012

Solutions to the Final Exam, Math 53, Summer 2012 olutions to the Final Exam, Math 5, ummer. (a) ( points) Let be the boundary of the region enclosedby the parabola y = x and the line y = with counterclockwise orientation. alculate (y + e x )dx + xdy.

More information

Solutions for the Practice Final - Math 23B, 2016

Solutions for the Practice Final - Math 23B, 2016 olutions for the Practice Final - Math B, 6 a. True. The area of a surface is given by the expression d, and since we have a parametrization φ x, y x, y, f x, y with φ, this expands as d T x T y da xy

More information

Math 23b Practice Final Summer 2011

Math 23b Practice Final Summer 2011 Math 2b Practice Final Summer 211 1. (1 points) Sketch or describe the region of integration for 1 x y and interchange the order to dy dx dz. f(x, y, z) dz dy dx Solution. 1 1 x z z f(x, y, z) dy dx dz

More information

McGill University April Calculus 3. Tuesday April 29, 2014 Solutions

McGill University April Calculus 3. Tuesday April 29, 2014 Solutions McGill University April 4 Faculty of Science Final Examination Calculus 3 Math Tuesday April 9, 4 Solutions Problem (6 points) Let r(t) = (t, cos t, sin t). i. Find the velocity r (t) and the acceleration

More information

Mathematics 205 Solutions for HWK 23. e x2 +y 2 dxdy

Mathematics 205 Solutions for HWK 23. e x2 +y 2 dxdy Mathematics 5 Solutions for HWK Problem 1. 6. p7. Let D be the unit disk: x + y 1. Evaluate the integral e x +y dxdy by making a change of variables to polar coordinates. D Solution. Step 1. The integrand,

More information

Math 212-Lecture Integration in cylindrical and spherical coordinates

Math 212-Lecture Integration in cylindrical and spherical coordinates Math 22-Lecture 6 4.7 Integration in cylindrical and spherical coordinates Cylindrical he Jacobian is J = (x, y, z) (r, θ, z) = cos θ r sin θ sin θ r cos θ = r. Hence, d rdrdθdz. If we draw a picture,

More information

Practice Final Solutions

Practice Final Solutions Practice Final Solutions Math 1, Fall 17 Problem 1. Find a parameterization for the given curve, including bounds on the parameter t. Part a) The ellipse in R whose major axis has endpoints, ) and 6, )

More information

Math 234 Exam 3 Review Sheet

Math 234 Exam 3 Review Sheet Math 234 Exam 3 Review Sheet Jim Brunner LIST OF TOPIS TO KNOW Vector Fields lairaut s Theorem & onservative Vector Fields url Divergence Area & Volume Integrals Using oordinate Transforms hanging the

More information

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 3 Solutions [Multiple Integration; Lines of Force]

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 3 Solutions [Multiple Integration; Lines of Force] ENGI 44 Advanced Calculus for Engineering Facult of Engineering and Applied Science Problem Set Solutions [Multiple Integration; Lines of Force]. Evaluate D da over the triangular region D that is bounded

More information

36. Double Integration over Non-Rectangular Regions of Type II

36. Double Integration over Non-Rectangular Regions of Type II 36. Double Integration over Non-Rectangular Regions of Type II When establishing the bounds of a double integral, visualize an arrow initially in the positive x direction or the positive y direction. A

More information

f(p i )Area(T i ) F ( r(u, w) ) (r u r w ) da

f(p i )Area(T i ) F ( r(u, w) ) (r u r w ) da MAH 55 Flux integrals Fall 16 1. Review 1.1. Surface integrals. Let be a surface in R. Let f : R be a function defined on. efine f ds = f(p i Area( i lim mesh(p as a limit of Riemann sums over sampled-partitions.

More information

Tufts University Math 13 Department of Mathematics April 2, 2012 Exam 2 12:00 pm to 1:20 pm

Tufts University Math 13 Department of Mathematics April 2, 2012 Exam 2 12:00 pm to 1:20 pm Tufts University Math Department of Mathematics April, Eam : pm to : pm Instructions: No calculators, notes or books are allowed. Unless otherwise stated, you must show all work to receive full credit.

More information

( ) ( ) ( ) ( ) Calculus III - Problem Drill 24: Stokes and Divergence Theorem

( ) ( ) ( ) ( ) Calculus III - Problem Drill 24: Stokes and Divergence Theorem alculus III - Problem Drill 4: tokes and Divergence Theorem Question No. 1 of 1 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as needed () Pick the 1. Use

More information

Math 265H: Calculus III Practice Midterm II: Fall 2014

Math 265H: Calculus III Practice Midterm II: Fall 2014 Name: Section #: Math 65H: alculus III Practice Midterm II: Fall 14 Instructions: This exam has 7 problems. The number of points awarded for each question is indicated in the problem. Answer each question

More information

Figure 25:Differentials of surface.

Figure 25:Differentials of surface. 2.5. Change of variables and Jacobians In the previous example we saw that, once we have identified the type of coordinates which is best to use for solving a particular problem, the next step is to do

More information

Math Review for Exam 3

Math Review for Exam 3 1. ompute oln: (8x + 36xy)ds = Math 235 - Review for Exam 3 (8x + 36xy)ds, where c(t) = (t, t 2, t 3 ) on the interval t 1. 1 (8t + 36t 3 ) 1 + 4t 2 + 9t 4 dt = 2 3 (1 + 4t2 + 9t 4 ) 3 2 1 = 2 3 ((14)

More information

Multiple Integrals. Introduction and Double Integrals Over Rectangular Regions. Philippe B. Laval KSU. Today

Multiple Integrals. Introduction and Double Integrals Over Rectangular Regions. Philippe B. Laval KSU. Today Multiple Integrals Introduction and Double Integrals Over Rectangular Regions Philippe B. Laval KSU Today Philippe B. Laval (KSU) Double Integrals Today 1 / 21 Introduction In this section we define multiple

More information

Name: Instructor: Lecture time: TA: Section time:

Name: Instructor: Lecture time: TA: Section time: Math 222 Final May 11, 29 Name: Instructor: Lecture time: TA: Section time: INSTRUCTIONS READ THIS NOW This test has 1 problems on 16 pages worth a total of 2 points. Look over your test package right

More information

Without fully opening the exam, check that you have pages 1 through 10.

Without fully opening the exam, check that you have pages 1 through 10. MTH 234 Solutions to Exam 2 April 11th 216 Name: Section: Recitation Instructor: INSTRUTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through

More information

MATHS 267 Answers to Stokes Practice Dr. Jones

MATHS 267 Answers to Stokes Practice Dr. Jones MATH 267 Answers to tokes Practice Dr. Jones 1. Calculate the flux F d where is the hemisphere x2 + y 2 + z 2 1, z > and F (xz + e y2, yz, z 2 + 1). Note: the surface is open (doesn t include any of the

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenourseWare http://ocw.mit.edu 8.02 Multivariable alculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.02 Lecture 8. hange of variables.

More information

Multiple Integrals. Introduction and Double Integrals Over Rectangular Regions. Philippe B. Laval. Spring 2012 KSU

Multiple Integrals. Introduction and Double Integrals Over Rectangular Regions. Philippe B. Laval. Spring 2012 KSU Multiple Integrals Introduction and Double Integrals Over Rectangular Regions Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) Multiple Integrals Spring 2012 1 / 21 Introduction In this section

More information

In general, the formula is S f ds = D f(φ(u, v)) Φ u Φ v da. To compute surface area, we choose f = 1. We compute

In general, the formula is S f ds = D f(φ(u, v)) Φ u Φ v da. To compute surface area, we choose f = 1. We compute alculus III Test 3 ample Problem Answers/olutions 1. Express the area of the surface Φ(u, v) u cosv, u sinv, 2v, with domain u 1, v 2π, as a double integral in u and v. o not evaluate the integral. In

More information

Math 340 Final Exam December 16, 2006

Math 340 Final Exam December 16, 2006 Math 34 Final Exam December 6, 6. () Suppose A 3 4. a) Find the row-reduced echelon form of A. 3 4 so the row reduced echelon form is b) What is rank(a)? 3 4 4 The rank is two since there are two pivots.

More information

FOCUS ON THEORY. We now consider a general change of variable, where x; y coordinates are related to s; t coordinates by the differentiable functions

FOCUS ON THEORY. We now consider a general change of variable, where x; y coordinates are related to s; t coordinates by the differentiable functions FOCUS ON HEOY 753 CHANGE OF VAIABLES IN A MULIPLE INEGAL In the previous sections, we used polar, clindrical, and spherical coordinates to simplif iterated integrals. In this section, we discuss more general

More information

Math 32B Discussion Session Week 10 Notes March 14 and March 16, 2017

Math 32B Discussion Session Week 10 Notes March 14 and March 16, 2017 Math 3B iscussion ession Week 1 Notes March 14 and March 16, 17 We ll use this week to review for the final exam. For the most part this will be driven by your questions, and I ve included a practice final

More information

ENGI 4430 Multiple Integration Cartesian Double Integrals Page 3-01

ENGI 4430 Multiple Integration Cartesian Double Integrals Page 3-01 ENGI 4430 Multiple Integration Cartesian Double Integrals Page 3-01 3. Multiple Integration This chapter provides only a very brief introduction to the major topic of multiple integration. Uses of multiple

More information

16.2 Iterated Integrals

16.2 Iterated Integrals 6.2 Iterated Integrals So far: We have defined what we mean by a double integral. We have estimated the value of a double integral from contour diagrams and from tables of values. We have interpreted the

More information

Double integrals using polar coordinates Let s look at a motivating example:

Double integrals using polar coordinates Let s look at a motivating example: Double integrals using polar coordinates Let s look at a motivating example: Example Evaluate e x +y da where is the bounded region in the first quadrant (x 0, y 0) between the circles of radius 1 and

More information

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P 3, 3π, r t) 3 cos t, 4t, 3 sin t 3 ). b) 5 points) Find curvature of the curve at the point P. olution:

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

Solution Midterm 2, Math 53, Summer (a) (10 points) Let f(x, y, z) be a differentiable function of three variables and define

Solution Midterm 2, Math 53, Summer (a) (10 points) Let f(x, y, z) be a differentiable function of three variables and define Solution Midterm, Math 5, Summer. (a) ( points) Let f(,, z) be a differentiable function of three variables and define F (s, t) = f(st, s + t, s t). Calculate the partial derivatives F s and F t in terms

More information

Let s estimate the volume under this surface over the rectangle R = [0, 4] [0, 2] in the xy-plane.

Let s estimate the volume under this surface over the rectangle R = [0, 4] [0, 2] in the xy-plane. Math 54 - Vector Calculus Notes 3. - 3. Double Integrals Consider f(x, y) = 8 x y. Let s estimate the volume under this surface over the rectangle R = [, 4] [, ] in the xy-plane. Here is a particular estimate:

More information

Math 425 Notes 9. We state a rough version of the fundamental theorem of calculus. Almost all calculations involving integrals lead back to this.

Math 425 Notes 9. We state a rough version of the fundamental theorem of calculus. Almost all calculations involving integrals lead back to this. Multiple Integrals: efintion Math 425 Notes 9 We state a rough version of the fundamental theorem of calculus. Almost all calculations involving integrals lead back to this. efinition 1. Let f : R R and

More information

MATH 52 FINAL EXAM DECEMBER 7, 2009

MATH 52 FINAL EXAM DECEMBER 7, 2009 MATH 52 FINAL EXAM DECEMBER 7, 2009 THIS IS A CLOSED BOOK, CLOSED NOTES EXAM. NO CALCULATORS OR OTHER ELECTRONIC DEVICES ARE PERMITTED. IF YOU NEED EXTRA SPACE, PLEASE USE THE BACK OF THE PREVIOUS PROB-

More information

(x 3)(x + 5) = (x 3)(x 1) = x + 5. sin 2 x e ax bx 1 = 1 2. lim

(x 3)(x + 5) = (x 3)(x 1) = x + 5. sin 2 x e ax bx 1 = 1 2. lim SMT Calculus Test Solutions February, x + x 5 Compute x x x + Answer: Solution: Note that x + x 5 x x + x )x + 5) = x )x ) = x + 5 x x + 5 Then x x = + 5 = Compute all real values of b such that, for fx)

More information

on an open connected region D, then F is conservative on D. (c) If curl F=curl G on R 3, then C F dr = C G dr for all closed path C.

on an open connected region D, then F is conservative on D. (c) If curl F=curl G on R 3, then C F dr = C G dr for all closed path C. . (5%) Determine the statement is true ( ) or false ( ). 微甲 -4 班期末考解答和評分標準 (a) If f(x, y) is continuous on the rectangle R = {(x, y) a x b, c y d} except for finitely many points, then f(x, y) is integrable

More information

MATH2321, Calculus III for Science and Engineering, Fall Name (Printed) Print your name, the date, and then sign the exam on the line

MATH2321, Calculus III for Science and Engineering, Fall Name (Printed) Print your name, the date, and then sign the exam on the line MATH2321, Calculus III for Science and Engineering, Fall 218 1 Exam 2 Name (Printed) Date Signature Instructions STOP. above. Print your name, the date, and then sign the exam on the line This exam consists

More information

HOMEWORK 8 SOLUTIONS

HOMEWORK 8 SOLUTIONS HOMEWOK 8 OLUTION. Let and φ = xdy dz + ydz dx + zdx dy. let be the disk at height given by: : x + y, z =, let X be the region in 3 bounded by the cone and the disk. We orient X via dx dy dz, then by definition

More information

f x,y da ln 1 y ln 1 x dx. To evaluate this integral, we use integration by parts with dv dx

f x,y da ln 1 y ln 1 x dx. To evaluate this integral, we use integration by parts with dv dx MATH (Calculus III) - Quiz 4 Solutions March, 5 S. F. Ellermeer Name Instructions. This is a take home quiz. It is due to be handed in to me on Frida, March at class time. You ma work on this quiz alone

More information

MATH 255 Applied Honors Calculus III Winter Homework 11. Due: Monday, April 18, 2011

MATH 255 Applied Honors Calculus III Winter Homework 11. Due: Monday, April 18, 2011 MATH 255 Applied Honors Calculus III Winter 211 Homework 11 ue: Monday, April 18, 211 ection 17.7, pg. 1155: 5, 13, 19, 24. ection 17.8, pg. 1161: 3, 7, 13, 17 ection 17.9, pg. 1168: 3, 7, 19, 25. 17.7

More information

MATH 280 Multivariate Calculus Fall Integration over a surface. da. A =

MATH 280 Multivariate Calculus Fall Integration over a surface. da. A = MATH 28 Multivariate Calculus Fall 212 Integration over a surface Given a surface S in space, we can (conceptually) break it into small pieces each of which has area da. In me cases, we will add up these

More information

18.01 Single Variable Calculus Fall 2006

18.01 Single Variable Calculus Fall 2006 MIT OpenCourseWare http://ocw.mit.edu 18.01 Single Variable Calculus Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Exam 4 Review 1. Trig substitution

More information

x 2 y = 1 2. Problem 2. Compute the Taylor series (at the base point 0) for the function 1 (1 x) 3.

x 2 y = 1 2. Problem 2. Compute the Taylor series (at the base point 0) for the function 1 (1 x) 3. MATH 8.0 - FINAL EXAM - SOME REVIEW PROBLEMS WITH SOLUTIONS 8.0 Calculus, Fall 207 Professor: Jared Speck Problem. Consider the following curve in the plane: x 2 y = 2. Let a be a number. The portion of

More information

Multiple Integrals and Vector Calculus: Synopsis

Multiple Integrals and Vector Calculus: Synopsis Multiple Integrals and Vector Calculus: Synopsis Hilary Term 28: 14 lectures. Steve Rawlings. 1. Vectors - recap of basic principles. Things which are (and are not) vectors. Differentiation and integration

More information

Math 32B Discussion Session Session 3 Notes August 14, 2018

Math 32B Discussion Session Session 3 Notes August 14, 2018 Math 3B Discussion Session Session 3 Notes August 4, 8 In today s discussion we ll think about two common applications of multiple integrals: locating centers of mass and moments of inertia. Centers of

More information

Math 20C Homework 2 Partial Solutions

Math 20C Homework 2 Partial Solutions Math 2C Homework 2 Partial Solutions Problem 1 (12.4.14). Calculate (j k) (j + k). Solution. The basic properties of the cross product are found in Theorem 2 of Section 12.4. From these properties, we

More information

Math 234 Final Exam (with answers) Spring 2017

Math 234 Final Exam (with answers) Spring 2017 Math 234 Final Exam (with answers) pring 217 1. onsider the points A = (1, 2, 3), B = (1, 2, 2), and = (2, 1, 4). (a) [6 points] Find the area of the triangle formed by A, B, and. olution: One way to solve

More information

Section 5-7 : Green's Theorem

Section 5-7 : Green's Theorem Section 5-7 : Green's Theorem In this section we are going to investigate the relationship between certain kinds of line integrals (on closed paths) and double integrals. Let s start off with a simple

More information

MULTIVARIABLE INTEGRATION

MULTIVARIABLE INTEGRATION MULTIVARIABLE INTEGRATION (PLANE & CYLINDRICAL POLAR COORDINATES) PLANE POLAR COORDINATES Question 1 The finite region on the x-y plane satisfies 1 x + y 4, y 0. Find, in terms of π, the value of I. I

More information

Math Vector Calculus II

Math Vector Calculus II Math 255 - Vector Calculus II Review Notes Vectors We assume the reader is familiar with all the basic concepts regarding vectors and vector arithmetic, such as addition/subtraction of vectors in R n,

More information

Math Exam IV - Fall 2011

Math Exam IV - Fall 2011 Math 233 - Exam IV - Fall 2011 December 15, 2011 - Renato Feres NAME: STUDENT ID NUMBER: General instructions: This exam has 16 questions, each worth the same amount. Check that no pages are missing and

More information

234 Review Sheet 2 Solutions

234 Review Sheet 2 Solutions 4 Review Sheet Solutions. Find all the critical points of the following functions and apply the second derivative test. (a) f(x, y) (x y)(x + y) ( ) x f + y + (x y)x (x + y) + (x y) ( ) x + ( x)y x + x

More information

Math 67. Rumbos Fall Solutions to Review Problems for Final Exam. (a) Use the triangle inequality to derive the inequality

Math 67. Rumbos Fall Solutions to Review Problems for Final Exam. (a) Use the triangle inequality to derive the inequality Math 67. umbos Fall 8 Solutions to eview Problems for Final Exam. In this problem, u and v denote vectors in n. (a) Use the triangle inequality to derive the inequality Solution: Write v u v u for all

More information

C 3 C 4. R k C 1. (x,y)

C 3 C 4. R k C 1. (x,y) 16.4 1 16.4 Green s Theorem irculation Density (x,y + y) 3 (x+ x,y + y) 4 k 2 (x,y) 1 (x+ x,y) Suppose that F(x,y) M(x,y)i+N(x,y)j is the velocity field of a fluid flow in the plane and that the first

More information

Practice problems. m zδdv. In our case, we can cancel δ and have z =

Practice problems. m zδdv. In our case, we can cancel δ and have z = Practice problems 1. Consider a right circular cone of uniform density. The height is H. Let s say the distance of the centroid to the base is d. What is the value d/h? We can create a coordinate system

More information

Attempt QUESTIONS 1 and 2, and THREE other questions. penalised if you attempt additional questions.

Attempt QUESTIONS 1 and 2, and THREE other questions. penalised if you attempt additional questions. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2017 18 CALCULUS AND MULTIVARIABLE CALCULUS MTHA4005Y Time allowed: 3 Hours Attempt QUESTIONS 1 and 2, and THREE other questions.

More information

Math 210, Final Exam, Spring 2012 Problem 1 Solution. (a) Find an equation of the plane passing through the tips of u, v, and w.

Math 210, Final Exam, Spring 2012 Problem 1 Solution. (a) Find an equation of the plane passing through the tips of u, v, and w. Math, Final Exam, Spring Problem Solution. Consider three position vectors (tails are the origin): u,, v 4,, w,, (a) Find an equation of the plane passing through the tips of u, v, and w. (b) Find an equation

More information

1. (16 points) Write but do not evaluate the following integrals:

1. (16 points) Write but do not evaluate the following integrals: MATH xam # Solutions. (6 points) Write but do not evaluate the following integrals: (a) (6 points) A clindrical integral to calculate the volume of the solid which lies in the first octant (where x,, and

More information

The Probability Lifesaver: Change of Variable Theorem. Steven J. Miller

The Probability Lifesaver: Change of Variable Theorem. Steven J. Miller The Probability Lifesaver: Change of Variable Theorem Steven J. Miller January, 206 Contents Change of Variable Formula 3. Statement 3.2 Sketch of Proof 5.3 Special Cases 9 2 Greetings again! In this supplemental

More information

THE DOUBLE INTEGRAL AS THE LIMIT OF RIEMANN SUMS; POLAR COORDINATES

THE DOUBLE INTEGRAL AS THE LIMIT OF RIEMANN SUMS; POLAR COORDINATES HE DOUBLE INEGRAL AS HE LIMI OF RIEMANN SUMS; POLAR COORDINAES HE DOUBLE INEGRAL AS HE LIMI OF RIEMANN SUMS; POLAR COORDINAES he Double Integral as the Limit of Riemann Sums In the one-variable case we

More information

Multivariable Calculus Midterm 2 Solutions John Ross

Multivariable Calculus Midterm 2 Solutions John Ross Multivariable Calculus Midterm Solutions John Ross Problem.: False. The double integral is not the same as the iterated integral. In particular, we have shown in a HW problem (section 5., number 9) that

More information

Review for the First Midterm Exam

Review for the First Midterm Exam Review for the First Midterm Exam Thomas Morrell 5 pm, Sunday, 4 April 9 B9 Van Vleck Hall For the purpose of creating questions for this review session, I did not make an effort to make any of the numbers

More information

Math Double Integrals in Polar Coordinates

Math Double Integrals in Polar Coordinates Math 213 - Double Integrals in Polar Coordinates Peter A. Perry University of Kentucky October 22, 2018 Homework Re-read section 15.3 Begin work on 1-4, 5-31 (odd), 35, 37 from 15.3 Read section 15.4 for

More information

ln e 2s+2t σ(m) = 1 + h 2 x + h 2 yda = dA = 90 da R

ln e 2s+2t σ(m) = 1 + h 2 x + h 2 yda = dA = 90 da R olution to et 5, Friday ay 7th ection 5.6: 15, 17. ection 5.7:, 5, 7, 16. (1) (ection 5.5, Problem ) Find a parametrization of the suface + y 9 between z and z. olution: cost, y sint and z s with t π and

More information