Matrices and Vectors

Size: px
Start display at page:

Download "Matrices and Vectors"

Transcription

1 Matrices and Vectors James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 11, 2013

2 Outline 1 Matrices and Vectors 2 Vector Details 3 Matrix Details 4 Operations On Matrices

3 Abstract This lecture is going discuss vectors and matrices.

4 Matrices and Vectors A matrix A is a rectangular collection of real numbers A = A is a 3 3 matrix as it has 3 rows and 3 columns. The number of rows and columns can be any positive integer. Column vectors have only 1 column. So V 7 V = 9 2 is a 3 1 matrix or a column vector. Row vectors have only 1 row. So W W = [ ] is a 1 3 matrix or a row vector.

5 Matrices and Vectors The transpose of a matrix swaps the rows and columns. We denote this by a superscript T. 3 3 transpose is still T = transpose is T = [ ] 1 3 transpose is 3 1. [ ] T = 7 9 2

6 Matrices and Vectors Basic Operations Add and subtract matrices and vectors of same size component wise. scalar multiply or divide a matrix or vector means you multiply or divide each component. Examples: just do vectors as matrices similar ( 7) 4(8) = = 2( 9) 4(3) = (2) 4( 6) = 28 There are also zero vectors and zero matrices of various sizes.

7 Vector Details Let s look at two dimensional column vectors. Let [ ] a V = c We graph this vector using its components as coordinates in the standard x y plane. We draw a line from the origin (0, 0) to (a, c) just like we would do for the complex number a + c i. This line has a length (a) 2 + (c) 2 and we denote the length of V by V. This is called the norm of V. Hence, the vector V has a representation with a = r cos(θ), c = r sin(θ) which is called the polar coordinate representation. See the next picture.

8 Vector Details V a c r y θ x A vector V can be identified with an order pair (a, c). The components (a, c) are graphed in the usual Cartesian manner as an ordered pair in plane. The magnitude of V is (a) 2 + (c) 2 which is shown on the graph as r. The angle associated with V is drawn as an arc of angle θ

9 Vector Details Example For the vector V = [ ] 5 3 find its magnitude, its associated angle and graph it carefully, Solution The magnitude is V = ( 5) 2 + (3) 2. This vector is in Quadrant 2 and so the associated angle is π tan 1 ( 3 5 ) = π.54 = 2.60 radians. The graph is for you to do.

10 Vector Details Example For the vector V = [ ] 8 2 find its magnitude, its associated angle and graph it carefully, Solution The magnitude is V = ( 8) 2 + ( 2) 2. This vector is in Quadrant 3 and so the associated angle is π + tan 1 ( 2 8 ) = π +.24 = 3.38 radians. The graph is for you to do.

11 Vector Details Homework 31 For each vector, find its magnitude, its associated angle, and graph it carefully [ ] 6 V = V = V = V = [ ] 3 7 [ ] 2 5 [ ] 3 5

12 Matrix Details A matrix is a rectangular collection of real numbers organized like this:

13 Matrix Details A matrix is a rectangular collection of real numbers organized like this: In this matrix, we have a collection of numbers which are organized into 4 rows and 4 columns. We call this a square matrix because the number of rows and columns are the same. This particular matrix has only positive or negative integers in it, but of course the number 0 could be used as well as real numbers like , π and e. It is just easier to type integers!

14 Matrix Details A matrix can also have a different number of rows and columns.

15 Matrix Details A matrix can also have a different number of rows and columns. Consider the matrices shown below. which are a 5 4 matrix and a 4 3 matrix. We call the 5 4 and the 4 3 the sizes of these matrices. In general, if a matrix has m rows and n columns, we say its size is m n

16 Matrix Details We usually denote a matrix by a capital letter such as A.

17 Matrix Details We usually denote a matrix by a capital letter such as A. Each entry in a matrix can be labeled by the row and column it occurs in. Thus, the entry in row 2 and column 3 of a matrix A is labeled as A 23.

18 Matrix Details We usually denote a matrix by a capital letter such as A. Each entry in a matrix can be labeled by the row and column it occurs in. Thus, the entry in row 2 and column 3 of a matrix A is labeled as A 23. For example A 11 A 12 A 13 A 14 B = A 21 A 22 A 23 A 24 A 31 A 32 A 33 A 34 A 41 A 42 A 43 A 44 = A 51 A 52 A 53 A

19 Matrix Details There are some special matrices. A matrix that only has 0 as its entries is called a zero matrix.

20 Matrix Details There are some special matrices. A matrix that only has 0 as its entries is called a zero matrix. Now, since there are matrices of all different sizes, we can not pick just one to call the zero matrix. So when we are working on a problem, we just use the size of the zero matrix that is appropriate for the problem s context. For example, a 4 3 zero matrix would be =

21 Matrix Details There are some special matrices. A matrix that only has 0 as its entries is called a zero matrix. Now, since there are matrices of all different sizes, we can not pick just one to call the zero matrix. So when we are working on a problem, we just use the size of the zero matrix that is appropriate for the problem s context. For example, a 4 3 zero matrix would be = A 2 2 zero matrix would be 0 = [ ]

22 Matrix Details Square matrices often occur in our work, i.e. matrices that have the same number of rows and columns. Consider A 11 A 12 A 13 A A = A 21 A 22 A 23 A 24 A 31 A 32 A 33 A 34 = A 41 A 42 A 43 A

23 Matrix Details A square matrix has three important parts which you are subsets of the original matrix. The Lower Triangular Part of A is L given by A L = A 21 A A 31 A 32 A 33 0 A 41 A 42 A 43 A 44

24 Matrix Details A square matrix has three important parts which you are subsets of the original matrix. The Lower Triangular Part of A is L given by A L = A 21 A A 31 A 32 A 33 0 A 41 A 42 A 43 A 44 The Upper Triangular Part of A is U given by A 11 A 12 A 13 A 14 U = 0 A 22 A 23 A A 33 A A 44

25 Matrix Details The Diagonal Part of A is D given by A D = 0 A A 33 0 = A

26 Matrix Details The Diagonal Part of A is D given by A D = 0 A A 33 0 = A We can also define what is called the identity matrix. An identity matrix is a square matrix whose only nonzero entries are one s on the diagonal. For example, I = is a 3 3 identity matrix,

27 Matrix Details Consider the 5 4 matrix A defined by A = The transpose of A is the matrix formed by switching the rows and columns of A.

28 Matrix Details Consider the 5 4 matrix A defined by A = The transpose of A is the matrix formed by switching the rows and columns of A. We denote this new matrix by A T or sometimes A. Hence, A T =

29 Matrix Details If a matrix A equals its own transpose, then first, we know A must be a square matrix of size n n for some positive integer n.

30 Matrix Details If a matrix A equals its own transpose, then first, we know A must be a square matrix of size n n for some positive integer n. Thus, ( A T) ij = A ij = A ji In this case, we say A is symmetric

31 Matrix Details If a matrix A equals its own transpose, then first, we know A must be a square matrix of size n n for some positive integer n. Thus, ( A T) ij = A ij = A ji In this case, we say A is symmetric Thus, the matrix A below is symmetric. A =

32 Matrix Details Homework Find the transpose of [ 2 3 ] Find the transpose of Is this matrix symmetric?

33 Operations On Matrices We can also perform many operations on matrices. It is easiest to show these operations with examples. We can add matrices of the same size by adding their components = =

34 Operations On Matrices We can subtract matrices of the same size by subtracting their components = =

35 Operations On Matrices We can scale a matrix by multiplying each component of the matrix by the same number =

36 Operations On Matrices We can multiply two matrices A and B if their sizes are just right. The number of columns of A must match the number of rows of B.

37 Operations On Matrices We can multiply two matrices A and B if their sizes are just right. The number of columns of A must match the number of rows of B. In the example below, the number of columns of the first matrix is 3 which matches the number of rows in the second matrix. So the matrix multiplication is defined. Since the size of A is 4 3 and the size of B is 3 2, the size of the product will be 4 2. In this example, each row of the first matrix has 3 entries and each column of the second matrix has 3 rows. Look at row 1 of the first matrix and column 1 of the second matrix.

38 Operations On Matrices We multiply row 1 and column 1 like this: [ ] = (1)( 20) + ( 2)(16) + (3)(16). 16

39 Operations On Matrices We multiply row 1 and column 1 like this: [ ] = (1)( 20) + ( 2)(16) + (3)(16). 16 In general, we would have for the i th row of A and the j th column of B [ ] B 1j Ai1 A i2 A i3 B 2j = B 3j 3 (A i1 )(B 1j ) + (A i2 )(B 2j ) + (A i3 )(B 3j ) = A ik B kj. k=1 where the individual components of A are denoted by A ij and those of B by B ij for appropriate indices i and j.

40 Operations On Matrices Hence, the full matrix multiplication of these two matrices is given by (1)( 20) + ( 2)(16) + (3)(16) (1)(3) + ( 2)(9) + (3)(2) = (4)( 20) + (1)(16) + ( 8)(16) (4)(3) + (1)(9) + ( 8)(2) ( 7)( 20) + (6)(16) + (12)(16) ( 7)(3) + (6)(9) + (12)(2) (12)( 20) + ( 2)(16) + (3)(16) (12)(3) + ( 2)(9) + (3)(2) = =

41 Operations On Matrices If A is a square matrix of size n n, then if I denotes the identity matrix of size n n, both multiplications I A and A I are possible and give the answer A. This is why I is called the identity matrix!

42 Operations On Matrices If A is a square matrix of size n n, then if I denotes the identity matrix of size n n, both multiplications I A and A I are possible and give the answer A. This is why I is called the identity matrix! If A is a matrix of any size and 0 is the appropriate zero matrix of the same size, then both 0 + A and A + 0 are nicely defined operations and the result is just A.

43 Operations On Matrices If A is a square matrix of size n n, then if I denotes the identity matrix of size n n, both multiplications I A and A I are possible and give the answer A. This is why I is called the identity matrix! If A is a matrix of any size and 0 is the appropriate zero matrix of the same size, then both 0 + A and A + 0 are nicely defined operations and the result is just A. Matrix multiplication is not commutative: i.e. for square matrices A and B, the matrix product A B is not necessarily the same as the product B A.

44 Operations On Matrices Homework Compute Compute

45 Operations On Matrices Homework 33 Continued Consider C = and D = Compute C + D 33.4 Compute C D 33.5 Compute 2C + 3D 33.6 Compute 4C + 5D 33.7 Compute C D D C

Complex Numbers. James K. Peterson. September 19, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Complex Numbers. James K. Peterson. September 19, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Complex Numbers James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 19, 2013 Outline 1 Complex Numbers 2 Complex Number Calculations

More information

Complex Numbers. Outline. James K. Peterson. September 19, Complex Numbers. Complex Number Calculations. Complex Functions

Complex Numbers. Outline. James K. Peterson. September 19, Complex Numbers. Complex Number Calculations. Complex Functions Complex Numbers James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 19, 2013 Outline Complex Numbers Complex Number Calculations Complex

More information

Matrix Basic Concepts

Matrix Basic Concepts Matrix Basic Concepts Topics: What is a matrix? Matrix terminology Elements or entries Diagonal entries Address/location of entries Rows and columns Size of a matrix A column matrix; vectors Special types

More information

MATH 320, WEEK 7: Matrices, Matrix Operations

MATH 320, WEEK 7: Matrices, Matrix Operations MATH 320, WEEK 7: Matrices, Matrix Operations 1 Matrices We have introduced ourselves to the notion of the grid-like coefficient matrix as a short-hand coefficient place-keeper for performing Gaussian

More information

Multiplying matrices by diagonal matrices is faster than usual matrix multiplication.

Multiplying matrices by diagonal matrices is faster than usual matrix multiplication. 7-6 Multiplying matrices by diagonal matrices is faster than usual matrix multiplication. The following equations generalize to matrices of any size. Multiplying a matrix from the left by a diagonal matrix

More information

Phys 201. Matrices and Determinants

Phys 201. Matrices and Determinants Phys 201 Matrices and Determinants 1 1.1 Matrices 1.2 Operations of matrices 1.3 Types of matrices 1.4 Properties of matrices 1.5 Determinants 1.6 Inverse of a 3 3 matrix 2 1.1 Matrices A 2 3 7 =! " 1

More information

CS100: DISCRETE STRUCTURES. Lecture 3 Matrices Ch 3 Pages:

CS100: DISCRETE STRUCTURES. Lecture 3 Matrices Ch 3 Pages: CS100: DISCRETE STRUCTURES Lecture 3 Matrices Ch 3 Pages: 246-262 Matrices 2 Introduction DEFINITION 1: A matrix is a rectangular array of numbers. A matrix with m rows and n columns is called an m x n

More information

Matrices. Chapter Definitions and Notations

Matrices. Chapter Definitions and Notations Chapter 3 Matrices 3. Definitions and Notations Matrices are yet another mathematical object. Learning about matrices means learning what they are, how they are represented, the types of operations which

More information

[ Here 21 is the dot product of (3, 1, 2, 5) with (2, 3, 1, 2), and 31 is the dot product of

[ Here 21 is the dot product of (3, 1, 2, 5) with (2, 3, 1, 2), and 31 is the dot product of . Matrices A matrix is any rectangular array of numbers. For example 3 5 6 4 8 3 3 is 3 4 matrix, i.e. a rectangular array of numbers with three rows four columns. We usually use capital letters for matrices,

More information

CS 246 Review of Linear Algebra 01/17/19

CS 246 Review of Linear Algebra 01/17/19 1 Linear algebra In this section we will discuss vectors and matrices. We denote the (i, j)th entry of a matrix A as A ij, and the ith entry of a vector as v i. 1.1 Vectors and vector operations A vector

More information

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations Chapter 1: Systems of linear equations and matrices Section 1.1: Introduction to systems of linear equations Definition: A linear equation in n variables can be expressed in the form a 1 x 1 + a 2 x 2

More information

1 Matrices and matrix algebra

1 Matrices and matrix algebra 1 Matrices and matrix algebra 1.1 Examples of matrices A matrix is a rectangular array of numbers and/or variables. For instance 4 2 0 3 1 A = 5 1.2 0.7 x 3 π 3 4 6 27 is a matrix with 3 rows and 5 columns

More information

Finite Math - J-term Section Systems of Linear Equations in Two Variables Example 1. Solve the system

Finite Math - J-term Section Systems of Linear Equations in Two Variables Example 1. Solve the system Finite Math - J-term 07 Lecture Notes - //07 Homework Section 4. - 9, 0, 5, 6, 9, 0,, 4, 6, 0, 50, 5, 54, 55, 56, 6, 65 Section 4. - Systems of Linear Equations in Two Variables Example. Solve the system

More information

Matrices. Math 240 Calculus III. Wednesday, July 10, Summer 2013, Session II. Matrices. Math 240. Definitions and Notation.

Matrices. Math 240 Calculus III. Wednesday, July 10, Summer 2013, Session II. Matrices. Math 240. Definitions and Notation. function Matrices Calculus III Summer 2013, Session II Wednesday, July 10, 2013 Agenda function 1. 2. function function Definition An m n matrix is a rectangular array of numbers arranged in m horizontal

More information

Mathematics 13: Lecture 10

Mathematics 13: Lecture 10 Mathematics 13: Lecture 10 Matrices Dan Sloughter Furman University January 25, 2008 Dan Sloughter (Furman University) Mathematics 13: Lecture 10 January 25, 2008 1 / 19 Matrices Recall: A matrix is a

More information

Prepared by: M. S. KumarSwamy, TGT(Maths) Page

Prepared by: M. S. KumarSwamy, TGT(Maths) Page Prepared by: M. S. KumarSwamy, TGT(Maths) Page - 50 - CHAPTER 3: MATRICES QUICK REVISION (Important Concepts & Formulae) MARKS WEIGHTAGE 03 marks Matrix A matrix is an ordered rectangular array of numbers

More information

Matrix Multiplication

Matrix Multiplication 3.2 Matrix Algebra Matrix Multiplication Example Foxboro Stadium has three main concession stands, located behind the south, north and west stands. The top-selling items are peanuts, hot dogs and soda.

More information

Linear Algebra V = T = ( 4 3 ).

Linear Algebra V = T = ( 4 3 ). Linear Algebra Vectors A column vector is a list of numbers stored vertically The dimension of a column vector is the number of values in the vector W is a -dimensional column vector and V is a 5-dimensional

More information

Lecture 3: Matrix and Matrix Operations

Lecture 3: Matrix and Matrix Operations Lecture 3: Matrix and Matrix Operations Representation, row vector, column vector, element of a matrix. Examples of matrix representations Tables and spreadsheets Scalar-Matrix operation: Scaling a matrix

More information

Section 9.2: Matrices.. a m1 a m2 a mn

Section 9.2: Matrices.. a m1 a m2 a mn Section 9.2: Matrices Definition: A matrix is a rectangular array of numbers: a 11 a 12 a 1n a 21 a 22 a 2n A =...... a m1 a m2 a mn In general, a ij denotes the (i, j) entry of A. That is, the entry in

More information

Linear Algebra and Matrix Inversion

Linear Algebra and Matrix Inversion Jim Lambers MAT 46/56 Spring Semester 29- Lecture 2 Notes These notes correspond to Section 63 in the text Linear Algebra and Matrix Inversion Vector Spaces and Linear Transformations Matrices are much

More information

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections )

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections ) c Dr. Igor Zelenko, Fall 2017 1 10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections 7.2-7.4) 1. When each of the functions F 1, F 2,..., F n in right-hand side

More information

Lecture 3 Linear Algebra Background

Lecture 3 Linear Algebra Background Lecture 3 Linear Algebra Background Dan Sheldon September 17, 2012 Motivation Preview of next class: y (1) w 0 + w 1 x (1) 1 + w 2 x (1) 2 +... + w d x (1) d y (2) w 0 + w 1 x (2) 1 + w 2 x (2) 2 +...

More information

1 Last time: determinants

1 Last time: determinants 1 Last time: determinants Let n be a positive integer If A is an n n matrix, then its determinant is the number det A = Π(X, A)( 1) inv(x) X S n where S n is the set of n n permutation matrices Π(X, A)

More information

Definition 2.3. We define addition and multiplication of matrices as follows.

Definition 2.3. We define addition and multiplication of matrices as follows. 14 Chapter 2 Matrices In this chapter, we review matrix algebra from Linear Algebra I, consider row and column operations on matrices, and define the rank of a matrix. Along the way prove that the row

More information

MATRICES. a m,1 a m,n A =

MATRICES. a m,1 a m,n A = MATRICES Matrices are rectangular arrays of real or complex numbers With them, we define arithmetic operations that are generalizations of those for real and complex numbers The general form a matrix of

More information

Elementary Row Operations on Matrices

Elementary Row Operations on Matrices King Saud University September 17, 018 Table of contents 1 Definition A real matrix is a rectangular array whose entries are real numbers. These numbers are organized on rows and columns. An m n matrix

More information

SECTION 6.3: VECTORS IN THE PLANE

SECTION 6.3: VECTORS IN THE PLANE (Section 6.3: Vectors in the Plane) 6.18 SECTION 6.3: VECTORS IN THE PLANE Assume a, b, c, and d are real numbers. PART A: INTRO A scalar has magnitude but not direction. We think of real numbers as scalars,

More information

I = i 0,

I = i 0, Special Types of Matrices Certain matrices, such as the identity matrix 0 0 0 0 0 0 I = 0 0 0, 0 0 0 have a special shape, which endows the matrix with helpful properties The identity matrix is an example

More information

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in Vectors and Matrices Continued Remember that our goal is to write a system of algebraic equations as a matrix equation. Suppose we have the n linear algebraic equations a x + a 2 x 2 + a n x n = b a 2

More information

Math 360 Linear Algebra Fall Class Notes. a a a a a a. a a a

Math 360 Linear Algebra Fall Class Notes. a a a a a a. a a a Math 360 Linear Algebra Fall 2008 9-10-08 Class Notes Matrices As we have already seen, a matrix is a rectangular array of numbers. If a matrix A has m columns and n rows, we say that its dimensions are

More information

Matrices: 2.1 Operations with Matrices

Matrices: 2.1 Operations with Matrices Goals In this chapter and section we study matrix operations: Define matrix addition Define multiplication of matrix by a scalar, to be called scalar multiplication. Define multiplication of two matrices,

More information

ICS 6N Computational Linear Algebra Matrix Algebra

ICS 6N Computational Linear Algebra Matrix Algebra ICS 6N Computational Linear Algebra Matrix Algebra Xiaohui Xie University of California, Irvine xhx@uci.edu February 2, 2017 Xiaohui Xie (UCI) ICS 6N February 2, 2017 1 / 24 Matrix Consider an m n matrix

More information

Matrices BUSINESS MATHEMATICS

Matrices BUSINESS MATHEMATICS Matrices BUSINESS MATHEMATICS 1 CONTENTS Matrices Special matrices Operations with matrices Matrix multipication More operations with matrices Matrix transposition Symmetric matrices Old exam question

More information

Section 9.2: Matrices. Definition: A matrix A consists of a rectangular array of numbers, or elements, arranged in m rows and n columns.

Section 9.2: Matrices. Definition: A matrix A consists of a rectangular array of numbers, or elements, arranged in m rows and n columns. Section 9.2: Matrices Definition: A matrix A consists of a rectangular array of numbers, or elements, arranged in m rows and n columns. That is, a 11 a 12 a 1n a 21 a 22 a 2n A =...... a m1 a m2 a mn A

More information

Chapter 2. Ma 322 Fall Ma 322. Sept 23-27

Chapter 2. Ma 322 Fall Ma 322. Sept 23-27 Chapter 2 Ma 322 Fall 2013 Ma 322 Sept 23-27 Summary ˆ Matrices and their Operations. ˆ Special matrices: Zero, Square, Identity. ˆ Elementary Matrices, Permutation Matrices. ˆ Voodoo Principle. What is

More information

Linear Algebra Tutorial for Math3315/CSE3365 Daniel R. Reynolds

Linear Algebra Tutorial for Math3315/CSE3365 Daniel R. Reynolds Linear Algebra Tutorial for Math3315/CSE3365 Daniel R. Reynolds These notes are meant to provide a brief introduction to the topics from Linear Algebra that will be useful in Math3315/CSE3365, Introduction

More information

REFRESHER. William Stallings

REFRESHER. William Stallings BASIC MATH REFRESHER William Stallings Trigonometric Identities...2 Logarithms and Exponentials...4 Log Scales...5 Vectors, Matrices, and Determinants...7 Arithmetic...7 Determinants...8 Inverse of a Matrix...9

More information

Math 123, Week 2: Matrix Operations, Inverses

Math 123, Week 2: Matrix Operations, Inverses Math 23, Week 2: Matrix Operations, Inverses Section : Matrices We have introduced ourselves to the grid-like coefficient matrix when performing Gaussian elimination We now formally define general matrices

More information

Basic Concepts in Linear Algebra

Basic Concepts in Linear Algebra Basic Concepts in Linear Algebra Grady B Wright Department of Mathematics Boise State University February 2, 2015 Grady B Wright Linear Algebra Basics February 2, 2015 1 / 39 Numerical Linear Algebra Linear

More information

Matrix Solutions to Linear Systems of ODEs

Matrix Solutions to Linear Systems of ODEs Matrix Solutions to Linear Systems of ODEs James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 3, 216 Outline 1 Symmetric Systems of

More information

Elementary Linear Algebra

Elementary Linear Algebra Elementary Linear Algebra Linear algebra is the study of; linear sets of equations and their transformation properties. Linear algebra allows the analysis of; rotations in space, least squares fitting,

More information

Review of linear algebra

Review of linear algebra Review of linear algebra 1 Vectors and matrices We will just touch very briefly on certain aspects of linear algebra, most of which should be familiar. Recall that we deal with vectors, i.e. elements of

More information

Review of Basic Concepts in Linear Algebra

Review of Basic Concepts in Linear Algebra Review of Basic Concepts in Linear Algebra Grady B Wright Department of Mathematics Boise State University September 7, 2017 Math 565 Linear Algebra Review September 7, 2017 1 / 40 Numerical Linear Algebra

More information

MAC Module 2 Systems of Linear Equations and Matrices II. Learning Objectives. Upon completing this module, you should be able to :

MAC Module 2 Systems of Linear Equations and Matrices II. Learning Objectives. Upon completing this module, you should be able to : MAC 0 Module Systems of Linear Equations and Matrices II Learning Objectives Upon completing this module, you should be able to :. Find the inverse of a square matrix.. Determine whether a matrix is invertible..

More information

Relations Graphical View

Relations Graphical View Introduction Relations Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Recall that a relation between elements of two sets is a subset of their Cartesian

More information

Matrix Operations. Linear Combination Vector Algebra Angle Between Vectors Projections and Reflections Equality of matrices, Augmented Matrix

Matrix Operations. Linear Combination Vector Algebra Angle Between Vectors Projections and Reflections Equality of matrices, Augmented Matrix Linear Combination Vector Algebra Angle Between Vectors Projections and Reflections Equality of matrices, Augmented Matrix Matrix Operations Matrix Addition and Matrix Scalar Multiply Matrix Multiply Matrix

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Introduction to Matrix Algebra August 18, 2010 1 Vectors 1.1 Notations A p-dimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the line. When p

More information

Mathematics for Graphics and Vision

Mathematics for Graphics and Vision Mathematics for Graphics and Vision Steven Mills March 3, 06 Contents Introduction 5 Scalars 6. Visualising Scalars........................ 6. Operations on Scalars...................... 6.3 A Note on

More information

The SIR Disease Model Trajectories and MatLab

The SIR Disease Model Trajectories and MatLab The SIR Disease Model Trajectories and MatLab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 17, 2013 Outline Reviewing the SIR

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

Review from Bootcamp: Linear Algebra

Review from Bootcamp: Linear Algebra Review from Bootcamp: Linear Algebra D. Alex Hughes October 27, 2014 1 Properties of Estimators 2 Linear Algebra Addition and Subtraction Transpose Multiplication Cross Product Trace 3 Special Matrices

More information

Linear Algebra. The analysis of many models in the social sciences reduces to the study of systems of equations.

Linear Algebra. The analysis of many models in the social sciences reduces to the study of systems of equations. POLI 7 - Mathematical and Statistical Foundations Prof S Saiegh Fall Lecture Notes - Class 4 October 4, Linear Algebra The analysis of many models in the social sciences reduces to the study of systems

More information

Systems of Linear Equations and Matrices

Systems of Linear Equations and Matrices Chapter 1 Systems of Linear Equations and Matrices System of linear algebraic equations and their solution constitute one of the major topics studied in the course known as linear algebra. In the first

More information

Kevin James. MTHSC 3110 Section 2.1 Matrix Operations

Kevin James. MTHSC 3110 Section 2.1 Matrix Operations MTHSC 3110 Section 2.1 Matrix Operations Notation Let A be an m n matrix, that is, m rows and n columns. We ll refer to the entries of A by their row and column indices. The entry in the i th row and j

More information

Matrix Algebra. Matrix Algebra. Chapter 8 - S&B

Matrix Algebra. Matrix Algebra. Chapter 8 - S&B Chapter 8 - S&B Algebraic operations Matrix: The size of a matrix is indicated by the number of its rows and the number of its columns. A matrix with k rows and n columns is called a k n matrix. The number

More information

Dot Products, Transposes, and Orthogonal Projections

Dot Products, Transposes, and Orthogonal Projections Dot Products, Transposes, and Orthogonal Projections David Jekel November 13, 2015 Properties of Dot Products Recall that the dot product or standard inner product on R n is given by x y = x 1 y 1 + +

More information

Math Linear Algebra Final Exam Review Sheet

Math Linear Algebra Final Exam Review Sheet Math 15-1 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a component-wise operation. Two vectors v and w may be added together as long as they contain the same number n of

More information

Matrices Gaussian elimination Determinants. Graphics 2009/2010, period 1. Lecture 4: matrices

Matrices Gaussian elimination Determinants. Graphics 2009/2010, period 1. Lecture 4: matrices Graphics 2009/2010, period 1 Lecture 4 Matrices m n matrices Matrices Definitions Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse The system of m linear equations in

More information

Systems of Linear Equations and Matrices

Systems of Linear Equations and Matrices Chapter 1 Systems of Linear Equations and Matrices System of linear algebraic equations and their solution constitute one of the major topics studied in the course known as linear algebra. In the first

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J Olver 3 Review of Matrix Algebra Vectors and matrices are essential for modern analysis of systems of equations algebrai, differential, functional, etc In this

More information

Matrix Algebra 2.1 MATRIX OPERATIONS Pearson Education, Inc.

Matrix Algebra 2.1 MATRIX OPERATIONS Pearson Education, Inc. 2 Matrix Algebra 2.1 MATRIX OPERATIONS MATRIX OPERATIONS m n If A is an matrixthat is, a matrix with m rows and n columnsthen the scalar entry in the ith row and jth column of A is denoted by a ij and

More information

Knowledge Discovery and Data Mining 1 (VO) ( )

Knowledge Discovery and Data Mining 1 (VO) ( ) Knowledge Discovery and Data Mining 1 (VO) (707.003) Review of Linear Algebra Denis Helic KTI, TU Graz Oct 9, 2014 Denis Helic (KTI, TU Graz) KDDM1 Oct 9, 2014 1 / 74 Big picture: KDDM Probability Theory

More information

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 6, 203 Outline

More information

Notes. Relations. Introduction. Notes. Relations. Notes. Definition. Example. Slides by Christopher M. Bourke Instructor: Berthe Y.

Notes. Relations. Introduction. Notes. Relations. Notes. Definition. Example. Slides by Christopher M. Bourke Instructor: Berthe Y. Relations Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 7.1, 7.3 7.5 of Rosen cse235@cse.unl.edu

More information

Lecture 7. Econ August 18

Lecture 7. Econ August 18 Lecture 7 Econ 2001 2015 August 18 Lecture 7 Outline First, the theorem of the maximum, an amazing result about continuity in optimization problems. Then, we start linear algebra, mostly looking at familiar

More information

Matrix Algebra: Definitions and Basic Operations

Matrix Algebra: Definitions and Basic Operations Section 4 Matrix Algebra: Definitions and Basic Operations Definitions Analyzing economic models often involve working with large sets of linear equations. Matrix algebra provides a set of tools for dealing

More information

Fundamentals of Engineering Analysis (650163)

Fundamentals of Engineering Analysis (650163) Philadelphia University Faculty of Engineering Communications and Electronics Engineering Fundamentals of Engineering Analysis (6563) Part Dr. Omar R Daoud Matrices: Introduction DEFINITION A matrix is

More information

Finite Mathematics Chapter 2. where a, b, c, d, h, and k are real numbers and neither a and b nor c and d are both zero.

Finite Mathematics Chapter 2. where a, b, c, d, h, and k are real numbers and neither a and b nor c and d are both zero. Finite Mathematics Chapter 2 Section 2.1 Systems of Linear Equations: An Introduction Systems of Equations Recall that a system of two linear equations in two variables may be written in the general form

More information

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 6, 2013 Outline

More information

Predator - Prey Model Trajectories are periodic

Predator - Prey Model Trajectories are periodic Predator - Prey Model Trajectories are periodic James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 4, 2013 Outline 1 Showing The PP

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2 MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS AND MATRICES Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

A FIRST COURSE IN LINEAR ALGEBRA. An Open Text by Ken Kuttler. Matrix Arithmetic

A FIRST COURSE IN LINEAR ALGEBRA. An Open Text by Ken Kuttler. Matrix Arithmetic A FIRST COURSE IN LINEAR ALGEBRA An Open Text by Ken Kuttler Matrix Arithmetic Lecture Notes by Karen Seyffarth Adapted by LYRYX SERVICE COURSE SOLUTION Attribution-NonCommercial-ShareAlike (CC BY-NC-SA)

More information

Lecture 6: Geometry of OLS Estimation of Linear Regession

Lecture 6: Geometry of OLS Estimation of Linear Regession Lecture 6: Geometry of OLS Estimation of Linear Regession Xuexin Wang WISE Oct 2013 1 / 22 Matrix Algebra An n m matrix A is a rectangular array that consists of nm elements arranged in n rows and m columns

More information

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved.

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved. 7.5 Operations with Matrices Copyright Cengage Learning. All rights reserved. What You Should Learn Decide whether two matrices are equal. Add and subtract matrices and multiply matrices by scalars. Multiply

More information

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018 Homework #1 Assigned: August 20, 2018 Review the following subjects involving systems of equations and matrices from Calculus II. Linear systems of equations Converting systems to matrix form Pivot entry

More information

Extreme Values and Positive/ Negative Definite Matrix Conditions

Extreme Values and Positive/ Negative Definite Matrix Conditions Extreme Values and Positive/ Negative Definite Matrix Conditions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 8, 016 Outline 1

More information

Linear Algebra March 16, 2019

Linear Algebra March 16, 2019 Linear Algebra March 16, 2019 2 Contents 0.1 Notation................................ 4 1 Systems of linear equations, and matrices 5 1.1 Systems of linear equations..................... 5 1.2 Augmented

More information

2.1 Matrices. 3 5 Solve for the variables in the following matrix equation.

2.1 Matrices. 3 5 Solve for the variables in the following matrix equation. 2.1 Matrices Reminder: A matrix with m rows and n columns has size m x n. (This is also sometimes referred to as the order of the matrix.) The entry in the ith row and jth column of a matrix A is denoted

More information

CSCI 239 Discrete Structures of Computer Science Lab 6 Vectors and Matrices

CSCI 239 Discrete Structures of Computer Science Lab 6 Vectors and Matrices CSCI 239 Discrete Structures of Computer Science Lab 6 Vectors and Matrices This lab consists of exercises on real-valued vectors and matrices. Most of the exercises will required pencil and paper. Put

More information

Designing Information Devices and Systems I Fall 2017 Official Lecture Notes Note 2

Designing Information Devices and Systems I Fall 2017 Official Lecture Notes Note 2 EECS 6A Designing Information Devices and Systems I Fall 07 Official Lecture Notes Note Introduction Previously, we introduced vectors and matrices as a way of writing systems of linear equations more

More information

MATH Mathematics for Agriculture II

MATH Mathematics for Agriculture II MATH 10240 Mathematics for Agriculture II Academic year 2018 2019 UCD School of Mathematics and Statistics Contents Chapter 1. Linear Algebra 1 1. Introduction to Matrices 1 2. Matrix Multiplication 3

More information

. a m1 a mn. a 1 a 2 a = a n

. a m1 a mn. a 1 a 2 a = a n Biostat 140655, 2008: Matrix Algebra Review 1 Definition: An m n matrix, A m n, is a rectangular array of real numbers with m rows and n columns Element in the i th row and the j th column is denoted by

More information

MAC Module 1 Systems of Linear Equations and Matrices I

MAC Module 1 Systems of Linear Equations and Matrices I MAC 2103 Module 1 Systems of Linear Equations and Matrices I 1 Learning Objectives Upon completing this module, you should be able to: 1. Represent a system of linear equations as an augmented matrix.

More information

Complex Numbers Class Work. Complex Numbers Homework. Pre-Calc Polar & Complex #s ~1~ NJCTL.org. Simplify using i b 4 3.

Complex Numbers Class Work. Complex Numbers Homework. Pre-Calc Polar & Complex #s ~1~ NJCTL.org. Simplify using i b 4 3. Complex Numbers Class Work Simplify using i. 1. 16 2. 36b 4 3. 8a 2 4. 32x 6 y 7 5. 16 25 6. 8 10 7. 3i 4i 5i 8. 2i 4i 6i 8i 9. i 9 10. i 22 11. i 75 Complex Numbers Homework Simplify using i. 12. 81 13.

More information

Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat

Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat Linear Algebra Lecture 2 1.3.7 Matrix Matrix multiplication using Falk s

More information

n n matrices The system of m linear equations in n variables x 1, x 2,..., x n can be written as a matrix equation by Ax = b, or in full

n n matrices The system of m linear equations in n variables x 1, x 2,..., x n can be written as a matrix equation by Ax = b, or in full n n matrices Matrices Definitions Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse The system of m linear equations in n variables x 1, x 2,..., x n a 11 x 1 + a 12 x

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

1 - Systems of Linear Equations

1 - Systems of Linear Equations 1 - Systems of Linear Equations 1.1 Introduction to Systems of Linear Equations Almost every problem in linear algebra will involve solving a system of equations. ü LINEAR EQUATIONS IN n VARIABLES We are

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I ICS4: Discrete Mathematics for Computer Science I Dept. Information & Computer Sci., Jan Stelovsky based on slides by Dr. Baek and Dr. Still Originals by Dr. M. P. Frank and Dr. J.L. Gross Provided by

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University February 6, 2018 Linear Algebra (MTH

More information

Math 121 (Lesieutre); 9.1: Polar coordinates; November 22, 2017

Math 121 (Lesieutre); 9.1: Polar coordinates; November 22, 2017 Math 2 Lesieutre; 9: Polar coordinates; November 22, 207 Plot the point 2, 2 in the plane If you were trying to describe this point to a friend, how could you do it? One option would be coordinates, but

More information

Matrix Arithmetic. j=1

Matrix Arithmetic. j=1 An m n matrix is an array A = Matrix Arithmetic a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn of real numbers a ij An m n matrix has m rows and n columns a ij is the entry in the i-th row and j-th column

More information

Matrix Dimensions(orders)

Matrix Dimensions(orders) Definition of Matrix A matrix is a collection of numbers arranged into a fixed number of rows and columns. Usually the numbers are real numbers. In general, matrices can contain complex numbers but we

More information

Chapter 4 - MATRIX ALGEBRA. ... a 2j... a 2n. a i1 a i2... a ij... a in

Chapter 4 - MATRIX ALGEBRA. ... a 2j... a 2n. a i1 a i2... a ij... a in Chapter 4 - MATRIX ALGEBRA 4.1. Matrix Operations A a 11 a 12... a 1j... a 1n a 21. a 22.... a 2j... a 2n. a i1 a i2... a ij... a in... a m1 a m2... a mj... a mn The entry in the ith row and the jth column

More information

22A-2 SUMMER 2014 LECTURE 5

22A-2 SUMMER 2014 LECTURE 5 A- SUMMER 0 LECTURE 5 NATHANIEL GALLUP Agenda Elimination to the identity matrix Inverse matrices LU factorization Elimination to the identity matrix Previously, we have used elimination to get a system

More information

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 2

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 2 EECS 6A Designing Information Devices and Systems I Fall 08 Lecture Notes Note Vectors and Matrices In the previous note, we introduced vectors and matrices as a way of writing systems of linear equations

More information

Lecture 8: Determinants I

Lecture 8: Determinants I 8-1 MATH 1B03/1ZC3 Winter 2019 Lecture 8: Determinants I Instructor: Dr Rushworth January 29th Determinants via cofactor expansion (from Chapter 2.1 of Anton-Rorres) Matrices encode information. Often

More information

Math Bootcamp An p-dimensional vector is p numbers put together. Written as. x 1 x =. x p

Math Bootcamp An p-dimensional vector is p numbers put together. Written as. x 1 x =. x p Math Bootcamp 2012 1 Review of matrix algebra 1.1 Vectors and rules of operations An p-dimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the

More information