Electrostatics: Energy in Electrostatic Fields

Size: px
Start display at page:

Download "Electrostatics: Energy in Electrostatic Fields"

Transcription

1 7/4/08 Electrostatics: Energy in Electrostatic Fields EE33 Electromagnetic Field Theory Outline Energy in terms of potential Energy in terms of the field Power and energy in conductors Electrostatics -- Energy Slide

2 7/4/08 Energy in Terms of Potential Recall Potential Difference A d B Recall the relation between potential difference, work, and charge. W V V V Q E AB B A Therefore, the work it takes to moe charge Q from A to B is W QV AB Electrostatics -- Energy Slide 4

3 7/4/08 Energy in an Ensemble of Charges Q Q Q 3 An ensemble of charges contains energy because the charges are putting a force on each other and so they hae the potential to do work. We will calculate how much energy the ensemble contains by calculating how much energy it took to assemble it. Electrostatics -- Energy Slide 5 Point Charge # Q P No other charges are present, so placing Q at P takes no work. W 0 Electrostatics -- Energy Slide 6 3

4 7/4/08 Point Charge # Q Q P Placing Q at P takes work because charge Q is present. W QV Electrostatics -- Energy Slide 7 Point Charge #3 Q Q P Q3 3 Placing Q 3 at P 3 takes work because charges Q and Q are present. W QV QV Electrostatics -- Energy Slide 8 4

5 7/4/08 Total Work So Far Q Q Q 3 The total work placing all three charges is W WW W3 0 QV Q V V Electrostatics -- Energy Slide 9 Assembly in Reerse Order Q Q Q 3 If we had placed the charges in the reerse order, W W3W W 0 QV Q V V 3 3 Electrostatics -- Energy Slide 0 5

6 7/4/08 Add Both Approaches W 0 QV Q V V W 0 QV Q V V 3 3 Equation obtained by placing Q, then Q, and then Q 3. Equation obtained by placing Q 3, then Q, and then Q QV 3 Q V V3 W 0QV Q V V 0 Add the two equations aboe. W Q V V Q V V Q V V V V V3 W QV QV QV 3 3 Electrostatics -- Energy Slide Final Expression W QV QV QV 3 3 W QV QV QV Sole for W. 3 3 It is straightforward to generalize this for any number of charges. W N i QV i i joules Electrostatics -- Energy Slide 6

7 7/4/08 Energy in Charge Distributions Point Charge Line Charge Sheet Charge Volume Charge Q s Charge Q C Line Charge Density C m Surface Charge Density C m s Volume Charge Density C m 3 Total Charge Q Total N Qi i Total Charge Q d L Total Total Charge Q ds S Total s s S Total Charge Q d V Total Total Energy N W i QV i i Total Energy W Vd L Total Energy W svds s Total Energy W Vd Electrostatics -- Energy Slide 3 Energy in Terms of the Field 7

8 7/4/08 Deriation ( of 5) The energy in a olume charge is W Vd Recall from Maxwell s equations that D. W DVd Recall the product rule for diergence fa f A Af VD V DDV D V VD DV Electrostatics -- Energy Slide 5 Deriation ( of 5) Apply the product rule for our equation for work. W DVd VDD V d VDd D V d Electrostatics -- Energy Slide 6 8

9 7/4/08 Deriation (3 of 5) Recall the diergence theorem S Fds F d W VDd DVd Apply this to our equation for work. V VD ds S W VDds DVd S Electrostatics -- Energy Slide 7 Deriation (4 of 5) Look more closely at the surface integral. W VDds DVd V r S D r ds r Oerall r r r r We are free to choose whateer surface S we wish. As we enlarge the surface out to infinity, the surface integral becomes negligible relatie to the olume integral. W VDds DVd S Electrostatics -- Energy Slide 8 9

10 7/4/08 Deriation (5 of 5) Our equation for work is now W DVd Associate the negatie sign with V. W D V d This is the electric field intensity. W D E d This is the general equation for energy stored in the electrostatic field. It is alid for anisotropic and inhomogeneous media. E Electrostatics -- Energy Slide 9 Electrostatic Energy in LHI Media The more common expression for energy in the electrostatic field is for the special case of linear, homogeneous, and isotropic (LHI) media. In isotropic media we hae D E. W DEd E E d W E d Simpler equation that is only alid in LHI media. Electrostatics -- Energy Slide 0 0

11 7/4/08 Electrostatic Energy Density Obsere what we hae been integrating to get total energy. W DEd These expressions must be energy density w. W E d We can now think of calculating total energy by integrating the energy density w. D E General case W wd w E LHI media Electrostatics -- Energy Slide Power & Energy in Conductors

12 7/4/08 Joule s Law Joule s law states that This is equialent to P = VI in circuit theory. P E J d From this, we can extract the energy density in a conductor. w EJ Applying Ohm s law for electromagnetics J E gies w EJ E E P E d Most common form. E Electrostatics -- Energy Slide 3

Validity of expressions

Validity of expressions E&M Lecture 8 Topics: (1)Validity of expressions ()Electrostatic energy (in a capacitor?) (3)Collection of point charges (4)Continuous charge distribution (5)Energy in terms of electric field (6)Energy

More information

Electrostatics: Electrostatic Devices

Electrostatics: Electrostatic Devices Electrostatics: Electrostatic Devices EE331 Electromagnetic Field Theory Outline Laplace s Equation Derivation Meaning Solving Laplace s equation Resistors Capacitors Electrostatics -- Devices Slide 1

More information

ELECTROMAGNETIC INDUCTION (Y&F Chapters 30, 31; Ohanian Chapter 32) The Electric and magnetic fields are inter-related

ELECTROMAGNETIC INDUCTION (Y&F Chapters 30, 31; Ohanian Chapter 32) The Electric and magnetic fields are inter-related EMF Handout 9: Electromagnetic Induction ELECTROMAGNETIC INDUCTION (Y&F Chapters 30, 3; Ohanian Chapter 3) This handout coers: Motional emf and the electric generator Electromagnetic Induction and Faraday

More information

Electrostatics: Electric Potential

Electrostatics: Electric Potential Electrostatics: EE3321 Electromagnetic Field Theory Outline Concept of electric potential V Potential difference V Electric potential due to charge Relationship between E and V Electric potential example

More information

Lecture 13 Electrostatic Energy and Energy Density

Lecture 13 Electrostatic Energy and Energy Density Lecture 13 Electrostatic Energy and Energy Density Sections: 4.8 Homework: See homework file Energy of System of Point Charges 1 any system of charged bodies held static in relatively close proximity contains

More information

Chapter 11 Collision Theory

Chapter 11 Collision Theory Chapter Collision Theory Introduction. Center o Mass Reerence Frame Consider two particles o masses m and m interacting ia some orce. Figure. Center o Mass o a system o two interacting particles Choose

More information

Electric Motor and Dynamo the Hall effect

Electric Motor and Dynamo the Hall effect Electric Motor and Dynamo the Hall effect Frits F.M. de Mul Motor and Dynamo; Hall effect 1 Presentations: Electromagnetism: History Electromagnetism: Electr. topics Electromagnetism: Magn. topics Electromagnetism:

More information

Lecture Outline. Maxwell s Equations Predict Waves Derivation of the Wave Equation Solution to the Wave Equation 8/7/2018

Lecture Outline. Maxwell s Equations Predict Waves Derivation of the Wave Equation Solution to the Wave Equation 8/7/2018 Course Instructor Dr. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: rcrumpf@utep.edu EE 4347 Applied Electromagnetics Topic 3a Electromagnetic Waves Electromagnetic These notes Waves may

More information

Kinetic plasma description

Kinetic plasma description Kinetic plasma description Distribution function Boltzmann and Vlaso equations Soling the Vlaso equation Examples of distribution functions plasma element t 1 r t 2 r Different leels of plasma description

More information

Lecture ( 9 ) Chapter Three : Electric Field in Material Space

Lecture ( 9 ) Chapter Three : Electric Field in Material Space Lecture ( 9 ) Chapter Three : Electric Field in Material Space Properties of Materials, Convection and Conduction Currents, and Conductors 3.1 Properties of Materials Just as electric fields can exist

More information

Maxwell s Equations:

Maxwell s Equations: Course Instructor Dr. Raymond C. Rumpf Office: A-337 Phone: (915) 747-6958 E-Mail: rcrumpf@utep.edu Maxwell s Equations: Physical Interpretation EE-3321 Electromagnetic Field Theory Outline Maxwell s Equations

More information

Lecture 5 Charge Density & Differential Charge. Sections: 2.3, 2.4, 2.5 Homework: See homework file

Lecture 5 Charge Density & Differential Charge. Sections: 2.3, 2.4, 2.5 Homework: See homework file Lecture 5 Charge Density & Differential Charge Sections: 2.3, 2.4, 2.5 Homework: See homework file Point Charge as an Approximation charge occupies a finite olume and may hae arying density a charged body

More information

Сollisionless damping of electron waves in non-maxwellian plasma 1

Сollisionless damping of electron waves in non-maxwellian plasma 1 http:/arxi.org/physics/78.748 Сollisionless damping of electron waes in non-mawellian plasma V. N. Soshnio Plasma Physics Dept., All-Russian Institute of Scientific and Technical Information of the Russian

More information

Chapter 4: Techniques of Circuit Analysis

Chapter 4: Techniques of Circuit Analysis Chapter 4: Techniques of Circuit Analysis This chapter gies us many useful tools for soling and simplifying circuits. We saw a few simple tools in the last chapter (reduction of circuits ia series and

More information

Antennas and Propagation. Chapter 2: Basic Electromagnetic Analysis

Antennas and Propagation. Chapter 2: Basic Electromagnetic Analysis Antennas and Propagation : Basic Electromagnetic Analysis Outline Vector Potentials, Wave Equation Far-field Radiation Duality/Reciprocity Transmission Lines Antennas and Propagation Slide 2 Antenna Theory

More information

Maxwell s Equations:

Maxwell s Equations: Course Instructor Dr. Raymond C. Rumpf Office: A-337 Phone: (915) 747-6958 E-Mail: rcrumpf@utep.edu Maxwell s Equations: Terms & Definitions EE-3321 Electromagnetic Field Theory Outline Maxwell s Equations

More information

A Brief Revision of Vector Calculus and Maxwell s Equations

A Brief Revision of Vector Calculus and Maxwell s Equations A Brief Revision of Vector Calculus and Maxwell s Equations Debapratim Ghosh Electronic Systems Group Department of Electrical Engineering Indian Institute of Technology Bombay e-mail: dghosh@ee.iitb.ac.in

More information

Physics 212. Motional EMF

Physics 212. Motional EMF Physics 212 Lecture 16 Motional EMF Conductors moing in field nduced emf!! Physics 212 Lecture 16, Slide 1 Music Who is the Artist? A) Gram Parsons ) Tom Waits C) Elis Costello D) Townes Van Zandt E) John

More information

Gravitational Poynting theorem: interaction of gravitation and electromagnetism

Gravitational Poynting theorem: interaction of gravitation and electromagnetism Graitational Poynting theorem 433 Journal of Foundations of Physics and Chemistry, 0, ol. (4) 433 440 Graitational Poynting theorem: interaction of graitation and electromagnetism M.W. Eans Alpha Institute

More information

Lesson 10 Steady Electric Currents

Lesson 10 Steady Electric Currents Lesson Steady lectric Currents 楊尚達 Shang-Da Yang Institute of Photonics Technologies Department of lectrical ngineering National Tsing Hua Uniersity, Taiwan Outline Current density Current laws Boundary

More information

Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture 18 Basic Laws of Electromagnetics We saw in the earlier lecture

More information

LECTURE 3 3.1Rules of Vector Differentiation

LECTURE 3 3.1Rules of Vector Differentiation LETURE 3 3.1Rules of Vector Differentiation We hae defined three kinds of deriaties inoling the operator grad( ) i j k, x y z 1 3 di(., x y z curl( i x 1 j y k z 3 d The good news is that you can apply

More information

Physics 212. Motional EMF

Physics 212. Motional EMF Physics 212 ecture 16 Motional EMF Conductors moing in field nduced emf!! Physics 212 ecture 16, Slide 1 The ig dea When a conductor moes through a region containg a magnetic field: Magnetic forces may

More information

Lecture 7. Capacitors and Electric Field Energy. Last lecture review: Electrostatic potential

Lecture 7. Capacitors and Electric Field Energy. Last lecture review: Electrostatic potential Lecture 7. Capacitors and Electric Field Energy Last lecture review: Electrostatic potential V r = U r q Q Iclicker question The figure shows cross sections through two equipotential surfaces. In both

More information

v v Downloaded 01/11/16 to Redistribution subject to SEG license or copyright; see Terms of Use at

v v Downloaded 01/11/16 to Redistribution subject to SEG license or copyright; see Terms of Use at The pseudo-analytical method: application of pseudo-laplacians to acoustic and acoustic anisotropic wae propagation John T. Etgen* and Serre Brandsberg-Dahl Summary We generalize the pseudo-spectral method

More information

Intermission on Page 343

Intermission on Page 343 Intermission on Page 343 Together with the force law, All of our cards are now on the table, and in a sense my job is done. In the first seven chapters we assembled electrodynamics piece by piece, and

More information

Outline. Example. Solution. Property evaluation examples Specific heat Internal energy, enthalpy, and specific heats of solids and liquids Examples

Outline. Example. Solution. Property evaluation examples Specific heat Internal energy, enthalpy, and specific heats of solids and liquids Examples Outline Property ealuation examples Specific heat Internal energy, enthalpy, and specific heats of solids and liquids s A piston-cylinder deice initially contains 0.5m of saturated water apor at 00kPa.

More information

So now that we ve mentioned these terms : kinetic, potential, work we should try to explain them more. Let s develop a model:

So now that we ve mentioned these terms : kinetic, potential, work we should try to explain them more. Let s develop a model: Lecture 12 Energy e are now at the point where we can talk about one of the most powerful tools in physics, energy. Energy is really an abstract concept. e hae indicators of energy (temperature, elocity

More information

Exam 2 Solutions. R 1 a. (a) [6 points] Find the voltage drop between points a and b: Vab = Va Vb. , the current i 2 is found by:

Exam 2 Solutions. R 1 a. (a) [6 points] Find the voltage drop between points a and b: Vab = Va Vb. , the current i 2 is found by: PHY06 0--04 Exam Solutions R a + R R 3. Consider the circuit aboe. The battery supplies an EMF of 6.0 V, and the resistances of the 3 resistors are R 00Ω, R 5Ω, and R 3 75Ω (a) [6 points] Find the oltage

More information

Transmission lines using a distributed equivalent circuit

Transmission lines using a distributed equivalent circuit Cambridge Uniersity Press 978-1-107-02600-1 - Transmission Lines Equialent Circuits, Electromagnetic Theory, and Photons Part 1 Transmission lines using a distributed equialent circuit in this web serice

More information

Chapter 14 Thermal Physics: A Microscopic View

Chapter 14 Thermal Physics: A Microscopic View Chapter 14 Thermal Physics: A Microscopic View The main focus of this chapter is the application of some of the basic principles we learned earlier to thermal physics. This will gie us some important insights

More information

Lecture 14 Date:

Lecture 14 Date: Lecture 14 Date: 06.01.014 Energy Density in Electrostatic Field Conduction and Convection Current Conductors Ohm s Law Resistor Energy Density in Electrostatic Field To determine the energy in an assembly

More information

Part IB Electromagnetism

Part IB Electromagnetism Part IB Electromagnetism Theorems Based on lectures by D. Tong Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

2/11/2006 Doppler ( F.Robilliard) 1

2/11/2006 Doppler ( F.Robilliard) 1 2//2006 Doppler ( F.obilliard) Deinition o Terms: The requency o waes can be eected by the motion o either the source,, or the receier,, o the waes. This phenomenon is called the Doppler Eect. We will

More information

Physics 2A Chapter 3 - Motion in Two Dimensions Fall 2017

Physics 2A Chapter 3 - Motion in Two Dimensions Fall 2017 These notes are seen pages. A quick summary: Projectile motion is simply horizontal motion at constant elocity with ertical motion at constant acceleration. An object moing in a circular path experiences

More information

Simulations of bulk phases. Periodic boundaries. Cubic boxes

Simulations of bulk phases. Periodic boundaries. Cubic boxes Simulations of bulk phases ChE210D Today's lecture: considerations for setting up and running simulations of bulk, isotropic phases (e.g., liquids and gases) Periodic boundaries Cubic boxes In simulations

More information

Physics Electricity and Magnetism Lecture 09 - Charges & Currents in Magnetic Fields Y&F Chapter 27, Sec. 1-8

Physics Electricity and Magnetism Lecture 09 - Charges & Currents in Magnetic Fields Y&F Chapter 27, Sec. 1-8 Phsics 121 - Electricit and Magnetism Lecture 09 - Charges & Currents in Magnetic Fields Y&F Chapter 27, Sec. 1-8 What Produces Magnetic Field? Properties of Magnetic ersus Electric Fields Force on a Charge

More information

Transmission Lines Embedded in Arbitrary Anisotropic Media

Transmission Lines Embedded in Arbitrary Anisotropic Media ECE 53 1 st Century Electromagnetics Instructor: Office: Phone: E Mail: Dr. Raymond C. Rumpf A 337 (915) 747 6958 rcrumpf@utep.edu Lecture #4 Transmission Lines Embedded in Arbitrary Anisotropic Media

More information

Potential from a distribution of charges = 1

Potential from a distribution of charges = 1 Lecture 7 Potential from a distribution of charges V = 1 4 0 X Smooth distribution i q i r i V = 1 4 0 X i q i r i = 1 4 0 Z r dv Calculating the electric potential from a group of point charges is usually

More information

Doppler shifts in astronomy

Doppler shifts in astronomy 7.4 Doppler shift 253 Diide the transformation (3.4) by as follows: = g 1 bck. (Lorentz transformation) (7.43) Eliminate in the right-hand term with (41) and then inoke (42) to yield = g (1 b cos u). (7.44)

More information

be ye transformed by the renewing of your mind Romans 12:2

be ye transformed by the renewing of your mind Romans 12:2 Lecture 12: Coordinate Free Formulas for Affine and rojectie Transformations be ye transformed by the reing of your mind Romans 12:2 1. Transformations for 3-Dimensional Computer Graphics Computer Graphics

More information

Lecture 14 Current Density Ohm s Law in Differential Form

Lecture 14 Current Density Ohm s Law in Differential Form Lecture 14 Current Density Ohm s Law in Differential Form Sections: 5.1, 5.2, 5.3 Homework: See homework file Direct Electric Current Review DC is the flow of charge under electrostatic forces in conductors

More information

Lesson 2: Kinematics (Sections ) Chapter 2 Motion Along a Line

Lesson 2: Kinematics (Sections ) Chapter 2 Motion Along a Line Lesson : Kinematics (Sections.-.5) Chapter Motion Along a Line In order to specify a position, it is necessary to choose an origin. We talk about the football field is 00 yards from goal line to goal line,

More information

Key Questions. ECE 340 Lecture 27 : Junction Capacitance 4/6/14. Class Outline: Breakdown Review Junction Capacitance

Key Questions. ECE 340 Lecture 27 : Junction Capacitance 4/6/14. Class Outline: Breakdown Review Junction Capacitance ECE 340 Lecture 27 : Junction Capacitance Breakdown Reiew Class Outline: Things you should know when you leae Key Questions What types of capacitance are prealent in p-n junctions? Which is important in

More information

Worksheet 9. Math 1B, GSI: Andrew Hanlon. 1 Ce 3t 1/3 1 = Ce 3t. 4 Ce 3t 1/ =

Worksheet 9. Math 1B, GSI: Andrew Hanlon. 1 Ce 3t 1/3 1 = Ce 3t. 4 Ce 3t 1/ = Worksheet 9 Math B, GSI: Andrew Hanlon. Show that for each of the following pairs of differential equations and functions that the function is a solution of a differential equation. (a) y 2 y + y 2 ; Ce

More information

free space (vacuum) permittivity [ F/m]

free space (vacuum) permittivity [ F/m] Electrostatic Fields Electrostatic fields are static (time-invariant) electric fields produced by static (stationary) charge distributions. The mathematical definition of the electrostatic field is derived

More information

General Lorentz Boost Transformations, Acting on Some Important Physical Quantities

General Lorentz Boost Transformations, Acting on Some Important Physical Quantities General Lorentz Boost Transformations, Acting on Some Important Physical Quantities We are interested in transforming measurements made in a reference frame O into measurements of the same quantities as

More information

Lecture Outline 9/27/2017. EE 4347 Applied Electromagnetics. Topic 4a

Lecture Outline 9/27/2017. EE 4347 Applied Electromagnetics. Topic 4a 9/7/17 Course Instructor Dr. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: rcrumpf@utep.edu EE 4347 Applied Electromagnetics Topic 4a Transmission Lines Transmission These Lines notes may

More information

Chapter 6: Operational Amplifiers

Chapter 6: Operational Amplifiers Chapter 6: Operational Amplifiers Circuit symbol and nomenclature: An op amp is a circuit element that behaes as a VCVS: The controlling oltage is in = and the controlled oltage is such that 5 5 A where

More information

Chapter 21. And. Electric Potential due to Point Charges. Capacitors

Chapter 21. And. Electric Potential due to Point Charges. Capacitors Chapter 21 Electric Potential due to Point Charges And Capacitors Potential Difference, commonly called Voltage Recall: E = F/q o = force per unit charge (units: N/C) V = W/q o = work per unit charge

More information

Chapter 23 non calculus

Chapter 23 non calculus Chapter 23 non calculus Magnetism CHAPTER 23 MAGNETISM In our discussion of Coulomb's law, we saw that electric forces are ery strong but in most circumstances tend to cancel. The strength of the forces

More information

Lect-19. In this lecture...

Lect-19. In this lecture... 19 1 In this lecture... Helmholtz and Gibb s functions Legendre transformations Thermodynamic potentials The Maxwell relations The ideal gas equation of state Compressibility factor Other equations of

More information

Plasma Interactions with Electromagnetic Fields

Plasma Interactions with Electromagnetic Fields Plasma Interactions with Electromagnetic Fields Roger H. Varney SRI International June 21, 2015 R. H. Varney (SRI) Plasmas and EM Fields June 21, 2015 1 / 23 1 Introduction 2 Particle Motion in Fields

More information

UNIT-I Static Electric fields

UNIT-I Static Electric fields UNIT-I Static Electric fields In this chapter we will discuss on the followings: Coulomb's Law Electric Field & Electric Flux Density Gauss's Law with Application Electrostatic Potential, Equipotential

More information

PHY102 Electricity Course Summary

PHY102 Electricity Course Summary TOPIC 1 ELECTOSTTICS PHY1 Electricity Course Summary Coulomb s Law The magnitude of the force between two point charges is directly proportional to the product of the charges and inversely proportional

More information

Electrostatic Forces and Fields

Electrostatic Forces and Fields Conductors, Insulators, and Induced Charges Electrostatic orces and ields undamental unit of charge is the Coulomb (C) electron charge is 1.60 x 10 19 C proton charge is 1.60 x 10 19 C Conductors permit

More information

Electromagnetic Theorems

Electromagnetic Theorems Electromagnetic Theorems Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Electromagnetic Theorems Outline Outline Duality The Main Idea Electric Sources

More information

Class 5 : Conductors and Capacitors

Class 5 : Conductors and Capacitors Class 5 : Conductors and Capacitors What is a conductor? Field and potential around conductors Defining and evaluating capacitance Potential energy of a capacitor Recap Gauss s Law E. d A = Q enc and ε

More information

Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Thursday, February 22, 18

Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Thursday, February 22, 18 Physics 169 Kitt Peak National Observatory Luis anchordoqui 1 4.1 Capacitors A capacitor is a system of two conductors that carries equal and opposite charges A capacitor stores charge and energy in the

More information

Mutual Resistance in Spicelink

Mutual Resistance in Spicelink . Introduction Mutual Resistance in Spicelink J. Eric Bracken, Ph.D. Ansoft Corporation September 8, 000 In this note, we discuss the mutual resistance phenomenon and investigate why it occurs. In order

More information

Relativistic Energy Derivation

Relativistic Energy Derivation Relatiistic Energy Deriation Flamenco Chuck Keyser //4 ass Deriation (The ass Creation Equation ρ, ρ as the initial condition, C the mass creation rate, T the time, ρ a density. Let V be a second mass

More information

The Lorenz Transform

The Lorenz Transform The Lorenz Transform Flameno Chuk Keyser Part I The Einstein/Bergmann deriation of the Lorentz Transform I follow the deriation of the Lorentz Transform, following Peter S Bergmann in Introdution to the

More information

The Inner Product (Many slides adapted from Octavia Camps and Amitabh Varshney) Much of material in Appendix A. Goals

The Inner Product (Many slides adapted from Octavia Camps and Amitabh Varshney) Much of material in Appendix A. Goals The Inner Product (Many slides adapted from Octaia Camps and Amitabh Varshney) Much of material in Appendix A Goals Remember the inner product See that it represents distance in a specific direction. Use

More information

Conventional Paper-I Solutions:(ECE)

Conventional Paper-I Solutions:(ECE) Conentional Paper-- 13 olutions:(ece) ol. 1(a)(i) n certain type of polar dielectric materials permanent electric diploes are oriented in specific direction een in absence of external electric field. o

More information

Chapter 4: Methods of Analysis

Chapter 4: Methods of Analysis Chapter 4: Methods of Analysis When SCT are not applicable, it s because the circuit is neither in series or parallel. There exist extremely powerful mathematical methods that use KVL & KCL as its basis

More information

dv dv 2 2 dt dt dv dt

dv dv 2 2 dt dt dv dt 1/3/14 hapter 8 Second order circuits A circuit with two energy storage elements: One inductor, one capacitor Two capacitors, or Two inductors i Such a circuit will be described with second order differential

More information

Physics 212 / Summer 2009 Name: ANSWER KEY Dr. Zimmerman Ch. 26 Quiz

Physics 212 / Summer 2009 Name: ANSWER KEY Dr. Zimmerman Ch. 26 Quiz Physics 1 / Summer 9 Name: ANSWER KEY h. 6 Quiz As shown, there are three negatie charges located at the corners of a square of side. There is a single positie charge in the center of the square. (a) Draw

More information

HW7 Fri Emf & Induction Mon.

HW7 Fri Emf & Induction Mon. Wed. 7.1.1-7.1.3 Ohm s Law & mf Thurs. HW7 Fri. 7.1.3-7.. mf & nduction Mon. Wed. Fri. xam (Ch 3 & 5) 7..3-7..5 nductance and nergy of 7.3.1-.3.3 Maxwell s uations Mon. 10.1 -..1 Potential Formulation

More information

Chap. 1 Fundamental Concepts

Chap. 1 Fundamental Concepts NE 2 Chap. 1 Fundamental Concepts Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820) Faradays

More information

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3332 Electromagnetic II Chapter 9 Maxwell s Equations Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2012 1 Review Electrostatics and Magnetostatics Electrostatic Fields

More information

Lecture contents Review: Few concepts from physics Electric field

Lecture contents Review: Few concepts from physics Electric field 1 Lecture contents Review: Few concepts from physics Electric field Coulomb law, Gauss law, Poisson equation, dipole, capacitor Conductors and isolators 1 Electric current Dielectric constant Overview

More information

4. A Physical Model for an Electron with Angular Momentum. An Electron in a Bohr Orbit. The Quantum Magnet Resulting from Orbital Motion.

4. A Physical Model for an Electron with Angular Momentum. An Electron in a Bohr Orbit. The Quantum Magnet Resulting from Orbital Motion. 4. A Physical Model for an Electron with Angular Momentum. An Electron in a Bohr Orbit. The Quantum Magnet Resulting from Orbital Motion. We now hae deeloped a ector model that allows the ready isualization

More information

Motors and Generators

Motors and Generators Physics Motors and Generators New Reised Edition Brian Shadwick Contents Use the table of contents to record your progress through this book. As you complete each topic, write the date completed, then

More information

Chapter 1. Maxwell s Equations

Chapter 1. Maxwell s Equations Chapter 1 Maxwell s Equations 11 Review of familiar basics Throughout this course on electrodynamics, we shall use cgs units, in which the electric field E and the magnetic field B, the two aspects of

More information

What You Already Know

What You Already Know What You Already Know Coulomb s law Electric fields Gauss law Electric fields for several configurations Point Line Plane (nonconducting) Sheet (conducting) Ring (along axis) Disk (along axis) Sphere Cylinder

More information

Electricity & Magnetism

Electricity & Magnetism Ch 31 Faraday s Law Electricity & Magnetism Up to this point, we ve seen electric fields produced by electric charges... E =... and magnetic fields produced by moving charges... k dq E da = q in r 2 B

More information

CHAPTER 13. Solutions for Exercises

CHAPTER 13. Solutions for Exercises HPT 3 Solutions for xercises 3. The emitter current is gien by the Shockley equation: i S exp VT For operation with i, we hae exp >> S >>, and we can write VT i S exp VT Soling for, we hae 3.2 i 2 0 26ln

More information

Real Gas Thermodynamics. and the isentropic behavior of substances. P. Nederstigt

Real Gas Thermodynamics. and the isentropic behavior of substances. P. Nederstigt Real Gas Thermodynamics and the isentropic behaior of substances. Nederstigt ii Real Gas Thermodynamics and the isentropic behaior of substances by. Nederstigt in partial fulfillment of the requirements

More information

Magnetic Fields Part 3: Electromagnetic Induction

Magnetic Fields Part 3: Electromagnetic Induction Magnetic Fields Part 3: Electromagnetic Induction Last modified: 15/12/2017 Contents Links Electromagnetic Induction Induced EMF Induced Current Induction & Magnetic Flux Magnetic Flux Change in Flux Faraday

More information

Chapters 22/23: Potential/Capacitance Tuesday September 20 th

Chapters 22/23: Potential/Capacitance Tuesday September 20 th Chapters 22/23: Potential/Capacitance Tuesday September 20 th Mini Exam 2 on Thursday: Covers Chs. 21 and 22 (Gauss law and potential) Covers LONCAPA #3 to #6 (due this Wed.) No formula sheet allowed!!

More information

Electromagnetic Waves & Polarization

Electromagnetic Waves & Polarization Course Instructor Dr. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: rcrumpf@utep.edu EE 4347 Applied Electromagnetics Topic 3a Electromagnetic Waves & Polarization Electromagnetic These

More information

Electric Field Mapping

Electric Field Mapping PC1143 Physics III Electric Field Mapping 1 Objectives Map the electric fields and potentials resulting from three different configurations of charged electrodes rectangular, concentric, and circular.

More information

Your Comments. I don't understand how to find current given the velocity and magnetic field. I only understand how to find external force

Your Comments. I don't understand how to find current given the velocity and magnetic field. I only understand how to find external force Your Comments CONFUSED! Especially with the direction of eerything The rotating loop checkpoint question is incredibly difficult to isualize. All of this is pretty confusing, but 'm especially confused

More information

Physics Will Farmer. May 5, Physics 1120 Contents 2

Physics Will Farmer. May 5, Physics 1120 Contents 2 Physics 1120 Will Farmer May 5, 2013 Contents Physics 1120 Contents 2 1 Charges 3 1.1 Terms................................................... 3 1.2 Electric Charge..............................................

More information

Chapter 30. Faraday's Law FARADAY'S LAW

Chapter 30. Faraday's Law FARADAY'S LAW Chapter 30 Faraday's Law FARADAY'S LAW In this chapter we will discuss one of the more remarkable, and in terms of practical impact, important laws of physics Faraday s law. This law explains the operation

More information

F = q v B. F = q E + q v B. = q v B F B. F = q vbsinφ. Right Hand Rule. Lorentz. The Magnetic Force. More on Magnetic Force DEMO: 6B-02.

F = q v B. F = q E + q v B. = q v B F B. F = q vbsinφ. Right Hand Rule. Lorentz. The Magnetic Force. More on Magnetic Force DEMO: 6B-02. Lorentz = q E + q Right Hand Rule Direction of is perpendicular to plane containing &. If q is positie, has the same sign as x. If q is negatie, has the opposite sign of x. = q = q sinφ is neer parallel

More information

(Refer Slide Time: 1:49)

(Refer Slide Time: 1:49) Analog Electronic Circuits Professor S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology Delhi Lecture no 14 Module no 01 Midband analysis of FET Amplifiers (Refer Slide

More information

Engineering Electromagnetic Fields and Waves

Engineering Electromagnetic Fields and Waves CARL T. A. JOHNK Professor of Electrical Engineering University of Colorado, Boulder Engineering Electromagnetic Fields and Waves JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore CHAPTER

More information

Course no. 4. The Theory of Electromagnetic Field

Course no. 4. The Theory of Electromagnetic Field Cose no. 4 The Theory of Electromagnetic Field Technical University of Cluj-Napoca http://www.et.utcluj.ro/cs_electromagnetics2006_ac.htm http://www.et.utcluj.ro/~lcret March 19-2009 Chapter 3 Magnetostatics

More information

Residual migration in VTI media using anisotropy continuation

Residual migration in VTI media using anisotropy continuation Stanford Exploration Project, Report SERGEY, Noember 9, 2000, pages 671?? Residual migration in VTI media using anisotropy continuation Tariq Alkhalifah Sergey Fomel 1 ABSTRACT We introduce anisotropy

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-ELECTRICITY AND MAGNETISM 1. Electrostatics (1-58) 1.1 Coulomb s Law and Superposition Principle 1.1.1 Electric field 1.2 Gauss s law 1.2.1 Field lines and Electric flux 1.2.2 Applications 1.3

More information

Quadratic Equation. ax bx c =. = + + =. Example 2. = + = + = 3 or. The solutions are -7/3 and 1.

Quadratic Equation. ax bx c =. = + + =. Example 2. = + = + = 3 or. The solutions are -7/3 and 1. Quadratic Equation A quadratic equation is any equation that is equialent to the equation in fmat a c + + = 0 (1.1) where a,, and c are coefficients and a 0. The ariale name is ut the same fmat applies

More information

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Faraday s law of induction We have learned that a constant current induces magnetic field and a constant charge (or a voltage) makes an electric

More information

VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION

VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION Predict Obsere Explain Exercise 1 Take an A4 sheet of paper and a heay object (cricket ball, basketball, brick, book, etc). Predict what will

More information

6.013 Recitation 11. Quasistatic Electric and Magnetic Fields in Devices and Circuit Elements

6.013 Recitation 11. Quasistatic Electric and Magnetic Fields in Devices and Circuit Elements 6.013 Recitation 11 Quasistatic Electric and Magnetic Fields in Devices and Circuit Elements A. Introduction The behavior of most electric devices depends on static or slowly varying (quasistatic 1 ) electric

More information

Second Year Electromagnetism Summer 2018 Caroline Terquem. Vacation work: Problem set 0. Revisions

Second Year Electromagnetism Summer 2018 Caroline Terquem. Vacation work: Problem set 0. Revisions Second Year Electromagnetism Summer 2018 Caroline Terquem Vacation work: Problem set 0 Revisions At the start of the second year, you will receive the second part of the Electromagnetism course. This vacation

More information

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/ Physics GRE: Electromagnetism G. J. Loges University of Rochester Dept. of Physics & stronomy xkcd.com/567/ c Gregory Loges, 206 Contents Electrostatics 2 Magnetostatics 2 3 Method of Images 3 4 Lorentz

More information

Electrostatics and Charge. Creating Electric Fields

Electrostatics and Charge. Creating Electric Fields Electrostatics and Charge Creating Electric Fields Electric Charges Recall that all matter is made of atoms. Neutral atoms can acquire a charge in several different ways, all of which require movement

More information

4 Fundamentals of Continuum Thermomechanics

4 Fundamentals of Continuum Thermomechanics 4 Fundamentals of Continuum Thermomechanics In this Chapter, the laws of thermodynamics are reiewed and formulated for a continuum. The classical theory of thermodynamics, which is concerned with simple

More information

A possible mechanism to explain wave-particle duality L D HOWE No current affiliation PACS Numbers: r, w, k

A possible mechanism to explain wave-particle duality L D HOWE No current affiliation PACS Numbers: r, w, k A possible mechanism to explain wae-particle duality L D HOWE No current affiliation PACS Numbers: 0.50.-r, 03.65.-w, 05.60.-k Abstract The relationship between light speed energy and the kinetic energy

More information