Plasma Interactions with Electromagnetic Fields

Size: px
Start display at page:

Download "Plasma Interactions with Electromagnetic Fields"

Transcription

1 Plasma Interactions with Electromagnetic Fields Roger H. Varney SRI International June 21, 2015 R. H. Varney (SRI) Plasmas and EM Fields June 21, / 23

2 1 Introduction 2 Particle Motion in Fields 3 Generation of Electric Fields in Plasmas Ambipolar Electric Fields Dynamo Theory Electrodynamical Magnetosphere-Ionosphere Coupling R. H. Varney (SRI) Plasmas and EM Fields June 21, / 23

3 Introduction The Ionosphere and Thermosphere R. H. Varney (SRI) Plasmas and EM Fields June 21, / 23

4 Introduction Magnetic Structure of the Ionosphere and Magnetosphere R. H. Varney (SRI) Plasmas and EM Fields June 21, / 23

5 Particle Motion in Fields Particle Motion in a Uniform B field y m dv dt = qv B Separate by components z x Electrons m dv x dt = m dv y dt = qv yb z qv xb z B = B z ẑ Solution to coupled system with v 0 = v 0ˆx v x = v y = Gyrofrequency: Ω = qb m v 0 cos(ωt) sgn(q)v 0 sin(ωt) Ions R. H. Varney (SRI) Plasmas and EM Fields June 21, / 23

6 Particle Motion in Fields The E B Drift E B V D v D = E B B 2 R. H. Varney (SRI) Plasmas and EM Fields June 21, / 23

7 Particle Motion in Fields Electric Fields in Different Frames of Reference Lorentz Force: F = q[e+v B] In a different frame of reference moving with velocity u F = q [ E +(v u) B ] The force must be the same in all reference frames: F = F E = E+u B The frame moving at the E B drift velocity is special: E = E+ E B B 2 B = E E B 2 B 2 = 0 Assuming: E = 0 R. H. Varney (SRI) Plasmas and EM Fields June 21, / 23

8 Ambipolar Electric Fields Ambipolar Electric Fields and Ambipolar Diffusion Steady state parallel electron momentum equation: [ m e t (n eu e )+ (n e ue 2 ) ] = p e n e ee E = 1 en p e e Substitute into parallel ion momentum equation: + m i [ t (n iu i )+ (n i u 2 i ) ] = p i n i n p e m i n i g e m i n i ν ij (u i u j ) E R. H. Varney (SRI) Plasmas and EM Fields June 21, / 23 j

9 Dynamo Theory Fundamentals of Ionospheric Electrodynamics Electrostatic Limit of Maxwell s Equations: 1 E B = µ 0 J+ 0 c 2 t 0 B E = t Ohm s Law for the ionosphere: J = 0 E = Φ J = σ E+J 0 Putting everything together yields a boundary value problem: σ Φ = J 0 R. H. Varney (SRI) Plasmas and EM Fields June 21, / 23

10 Dynamo Theory Ohm s Law for the Ionosphere Steady-state momentum equation for each species (zero neutral wind case): 0 = n α q α (E+u α B) ν αn m α n α u α Resulting Ohm s Law: J = σ P σ H 0 n α q α u α J = σ H σ P 0 E α 0 0 σ 0 R. H. Varney (SRI) Plasmas and EM Fields June 21, / 23

11 Dynamo Theory Conductivity Profiles R. H. Varney (SRI) Plasmas and EM Fields June 21, / 23

12 Dynamo Theory Other Kinds of Current Substitute F for q α E in steady state momentum equation. Wind drag: F = ν αn m α u n J = σ (u n B) Gravity: F = m α g J = Γ g Pressure Gradients (Diamagnetic Currents): F = 1 n α p α J = D α p α Complete Dynamo Equation: ( σ Φ = σ (u n B)+Γ g+d α p α ) R. H. Varney (SRI) Plasmas and EM Fields June 21, / 23

13 Dynamo Theory Slab Model of the F-region Dynamo J = σ P (E+u n B) Two ways to achieve J = 0 1 Parallel currents which close elsewhere 2 J = 0 J = 0 E = u n B V D = E B B 2 = u n B B B 2 = u n R. H. Varney (SRI) Plasmas and EM Fields June 21, / 23

14 Dynamo Theory Slab Model of the E-region Dynamo Suppose E x is the eastward component of u n B in the E-region. A vertical electric field forms to oppose the vertical Hall current. σ H E x = σ P E z = E z = σ H σ P E x The Hall current from this new E z adds to the existing Pedersen current from E x J x = σ H E z +σ P E x = [ (σ H /σ P ) 2 +1 ] σ P E x σ C E x R. H. Varney (SRI) Plasmas and EM Fields June 21, / 23

15 Dynamo Theory Equatorial Fountain Effect 1000 Ne (cm 3 ) 7 6 Altitude Vertical Drift (m/s) Latitude Local Time 3 R. H. Varney (SRI) Plasmas and EM Fields June 21, / 23

16 Dynamo Theory Influences of Atmospheric Tides (Immel et al. 2006) R. H. Varney (SRI) Plasmas and EM Fields June 21, / 23

17 Electrodynamical Magnetosphere-Ionosphere Coupling Current Systems in the Ionosphere and Magnetosphere R. H. Varney (SRI) Plasmas and EM Fields June 21, / 23

18 Electrodynamical Magnetosphere-Ionosphere Coupling Closure of Field Aligned Currents in a Slab Ionosphere 3D potential equation with magnetospheric currents: σ Φ = J mag Integrate over altitude, assume equipotential field lines: Σ Φ = J mag dz Expand the divergence: J mag = J + J z J goes to 0 above ionosphere, thus: J mag dz = J 2D slab ionosphere potential equation: Σ Φ = J R. H. Varney (SRI) Plasmas and EM Fields June 21, / 23

19 Electrodynamical Magnetosphere-Ionosphere Coupling High Latitude Convection Patterns R. H. Varney (SRI) Plasmas and EM Fields June 21, / 23

20 Electrodynamical Magnetosphere-Ionosphere Coupling Energy Transport: Poynting s Theorem Poynting s Theorem: t [ ǫ 0 E 2 ] [ ] + B 2 E B + 2µ 0 µ 0 }{{} Energy Flux 2 } {{ } Energy Density = J E }{{} Joule Heating Ionospheric Joule Heating: Use E field in the neutral wind frame J E = ( σ E ) E = σ P E+u n B 2 = n i m i ν in u i u n 2 See Appendix A of Thayer and Semeter, 2004, JASTP. R. H. Varney (SRI) Plasmas and EM Fields June 21, / 23

21 Electrodynamical Magnetosphere-Ionosphere Coupling Joule Heating Weimer, R. H. Varney (SRI) Plasmas and EM Fields June 21, / 23

22 Electrodynamical Magnetosphere-Ionosphere Coupling Conductivity Effects on Magnetosphere (Lotko et al., 2014) R. H. Varney (SRI) Plasmas and EM Fields June 21, / 23

23 Electrodynamical Magnetosphere-Ionosphere Coupling Summary of Ionospheric Electrodynamics ( σ Φ = σ (u n B)+Γ g+d ) p α +J mag α The ionospheric potential, and thus the E B drifts, depend on: Neutral winds (driving from below) Magnetospheric currents (driving from above) Ionospheric conductivities (chemistry) Ionospheric pressure gradients (energetics) R. H. Varney (SRI) Plasmas and EM Fields June 21, / 23

A better way of modeling ionospheric electrodynamics

A better way of modeling ionospheric electrodynamics A better way of modeling ionospheric electrodynamics Paul Withers Boston University (withers@bu.edu) Center for Space Physics Journal Club Tuesday (Monday) 2008.02.9 Not all magnetic fields are like Earth

More information

A Three-Fluid Approach to Model Coupling of Solar Wind-Magnetosphere-Ionosphere- Thermosphere

A Three-Fluid Approach to Model Coupling of Solar Wind-Magnetosphere-Ionosphere- Thermosphere A Three-Fluid Approach to Model Coupling of Solar Wind-Magnetosphere-Ionosphere- Thermosphere P. Song Center for Atmospheric Research University of Massachusetts Lowell V. M. Vasyliūnas Max-Planck-Institut

More information

Heliophysics in Atmospheres

Heliophysics in Atmospheres Heliophysics in Atmospheres Thermosphere-Ionosphere Response to Geomagnetic Storms Tim Fuller-Rowell NOAA Space Weather Prediction Center and CIRES University of Colorado Atmospheres Gravitationally bound

More information

Variations of Ion Drifts in the Ionosphere at Low- and Mid- Latitudes

Variations of Ion Drifts in the Ionosphere at Low- and Mid- Latitudes Variations of Ion Drifts in the Ionosphere at Low- and Mid- Latitudes Edgardo E. Pacheco Jicamarca Radio Observatory Jul, 2014 Outline Motivation Introduction to Ionospheric Electrodynamics Objectives

More information

Three-fluid Ohm s law

Three-fluid Ohm s law Three-fluid Ohm s law P. Song Department of Environmental, Earth & Atmospheric Sciences, Center for Atmospheric Research, University of Massachusetts, Lowell, Massachusetts T. I. Gombosi and A. J. Ridley

More information

Collisions and transport phenomena

Collisions and transport phenomena Collisions and transport phenomena Collisions in partly and fully ionized plasmas Typical collision parameters Conductivity and transport coefficients Conductivity tensor Formation of the ionosphere and

More information

Magnetosphere-Ionosphere-Thermosphere Coupling During Storms and Substorms

Magnetosphere-Ionosphere-Thermosphere Coupling During Storms and Substorms Magnetosphere-Ionosphere-Thermosphere Coupling During Storms and Substorms Bill Lotko Bin Zhang Oliver Brambles Sheng Xi John Lyon Tian Luo Roger Varney Jeremy Ouellette Mike Wiltberger 2 3 4 CEDAR: Storms

More information

Modeling Interactions between the Magnetosphere, Ionosphere & Thermosphere. M.Wiltberger NCAR/HAO

Modeling Interactions between the Magnetosphere, Ionosphere & Thermosphere. M.Wiltberger NCAR/HAO Modeling Interactions between the Magnetosphere, Ionosphere & Thermosphere M.Wiltberger NCAR/HAO Outline Overview of MIT circuit Modeling Magnetospheric impacts on the Ionosphere Energetic Particle Fluxes

More information

Height-dependent energy exchange rates in the high-latitude E region ionosphere

Height-dependent energy exchange rates in the high-latitude E region ionosphere JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 7369 7383, doi:10.1002/2013ja019195, 2013 Height-dependent energy exchange rates in the high-latitude E region ionosphere L. Cai, 1 A. T. Aikio,

More information

Single particle motion and trapped particles

Single particle motion and trapped particles Single particle motion and trapped particles Gyromotion of ions and electrons Drifts in electric fields Inhomogeneous magnetic fields Magnetic and general drift motions Trapped magnetospheric particles

More information

Magnetospherically-Generated Ionospheric Electric Fields

Magnetospherically-Generated Ionospheric Electric Fields Magnetospherically-Generated Ionospheric Electric Fields Stanislav Sazykin Rice University sazykin@rice.edu June 26, 2005 Sazykin--Ionospheric E-Fields--CEDAR Student Workshop 1 Overall Magnetospheric

More information

RCM Modeling of Penetration Electric Fields During Magnetic Storms

RCM Modeling of Penetration Electric Fields During Magnetic Storms RCM Modeling of Penetration Electric Fields During Magnetic Storms S. Sazykin, R. A. Wolf, R. W. Spiro, Haystack Workshop on Penetration Electric Fields November 8, 2005 Low Latitude E-field: Massive Undershielding

More information

Thermospheric Winds. Astrid Maute. High Altitude Observatory (HAO) National Center for Atmospheric Science (NCAR) Boulder CO, USA

Thermospheric Winds. Astrid Maute. High Altitude Observatory (HAO) National Center for Atmospheric Science (NCAR) Boulder CO, USA Thermospheric Winds Astrid Maute High Altitude Observatory (HAO) National Center for Atmospheric Science (NCAR) Boulder CO, USA High Altitude Observatory (HAO) National Center for Atmospheric Research

More information

Final Technical Report for FA C Partitioning of Electromagnetic Energy Inputs to the Thermosphere during Geomagnetic Disturbances

Final Technical Report for FA C Partitioning of Electromagnetic Energy Inputs to the Thermosphere during Geomagnetic Disturbances SPARTA, Inc. a Parsons Company Lake Forest, CA 92630-8873 Final Technical Report for FA9550-09-C-0207 Partitioning of Electromagnetic Energy Inputs to the Thermosphere during Geomagnetic Disturbances June

More information

Whole Atmosphere Community Climate Model with Thermosphere/Ionosphere Extension (WACCM-X): Model Requirements, Structure, Capabilities and Validation

Whole Atmosphere Community Climate Model with Thermosphere/Ionosphere Extension (WACCM-X): Model Requirements, Structure, Capabilities and Validation Whole Atmosphere Community Climate Model with Thermosphere/Ionosphere Extension (WACCM-X): Model Requirements, Structure, Capabilities and Validation Han-Li Liu and WACCM-X Team: NCAR/HAO: Ben Foster,

More information

Plasma collisions and conductivity

Plasma collisions and conductivity e ion conductivity Plasma collisions and conductivity Collisions in weakly and fully ionized plasmas Electric conductivity in non-magnetized and magnetized plasmas Collision frequencies In weakly ionized

More information

MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION

MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION Marty Goldman University of Colorado Spring 2017 Physics 5150 Issues 2 How is MHD related to 2-fluid theory Level of MHD depends

More information

Uppsala universitet Institutionen för astronomi och rymdfysik Anders Eriksson

Uppsala universitet Institutionen för astronomi och rymdfysik Anders Eriksson Tentamen för Rymdfysik I 2006-08-15 Uppsala universitet Institutionen för astronomi och rymdfysik Anders Eriksson Please write your name on all papers, and on the first page your address, e-mail and phone

More information

Macroscopic plasma description

Macroscopic plasma description Macroscopic plasma description Macroscopic plasma theories are fluid theories at different levels single fluid (magnetohydrodynamics MHD) two-fluid (multifluid, separate equations for electron and ion

More information

Fluid equations, magnetohydrodynamics

Fluid equations, magnetohydrodynamics Fluid equations, magnetohydrodynamics Multi-fluid theory Equation of state Single-fluid theory Generalised Ohm s law Magnetic tension and plasma beta Stationarity and equilibria Validity of magnetohydrodynamics

More information

Intermission on Page 343

Intermission on Page 343 Intermission on Page 343 Together with the force law, All of our cards are now on the table, and in a sense my job is done. In the first seven chapters we assembled electrodynamics piece by piece, and

More information

20. Alfven waves. ([3], p ; [1], p ; Chen, Sec.4.18, p ) We have considered two types of waves in plasma:

20. Alfven waves. ([3], p ; [1], p ; Chen, Sec.4.18, p ) We have considered two types of waves in plasma: Phys780: Plasma Physics Lecture 20. Alfven Waves. 1 20. Alfven waves ([3], p.233-239; [1], p.202-237; Chen, Sec.4.18, p.136-144) We have considered two types of waves in plasma: 1. electrostatic Langmuir

More information

EXAMINATION QUESTION PAPER

EXAMINATION QUESTION PAPER Faculty of Science and Technology EXAMINATION QUESTION PAPER Exam in: Fys-2009 Introduction to Plasma Physics Date: 20161202 Time: 09.00-13.00 Place: Åsgårdvegen 9 Approved aids: Karl Rottmann: Matematisk

More information

What can I do with the TIEGCM?

What can I do with the TIEGCM? What can I do with the TIEGCM? Astrid Maute and lots of people at HAO, and the community High Altitude Observatory NCAR High Altitude Observatory (HAO) National Center for Atmospheric Research (NCAR) The

More information

cos 6 λ m sin 2 λ m Mirror Point latitude Equatorial Pitch Angle Figure 5.1: Mirror point latitude as function of equatorial pitch angle.

cos 6 λ m sin 2 λ m Mirror Point latitude Equatorial Pitch Angle Figure 5.1: Mirror point latitude as function of equatorial pitch angle. Chapter 5 The Inner Magnetosphere 5.1 Trapped Particles The motion of trapped particles in the inner magnetosphere is a combination of gyro motion, bounce motion, and gradient and curvature drifts. In

More information

Chapter 5 MAGNETIZED PLASMAS. 5.1 Introduction. 5.2 Diamagnetic current

Chapter 5 MAGNETIZED PLASMAS. 5.1 Introduction. 5.2 Diamagnetic current Chapter 5 MAGNETIZED PLASMAS 5.1 Introduction We are now in a position to study the behaviour of plasma in a magnetic field. In the first instance we will re-examine particle diffusion and mobility with

More information

PROBLEM 1 (15 points) In a Cartesian coordinate system, assume the magnetic flux density

PROBLEM 1 (15 points) In a Cartesian coordinate system, assume the magnetic flux density PROBLEM 1 (15 points) In a Cartesian coordinate system, assume the magnetic flux density varies as ( ) where is a constant, is the unit vector in x direction. a) Sketch the magnetic flux density and the

More information

Lesson 3: MHD reconnec.on, MHD currents

Lesson 3: MHD reconnec.on, MHD currents Lesson3:MHDreconnec.on, MHDcurrents AGF 351 Op.calmethodsinauroralphysicsresearch UNIS,24. 25.11.2011 AnitaAikio UniversityofOulu Finland Photo:J.Jussila MHDbasics MHD cannot address discrete or single

More information

Single Particle Motion

Single Particle Motion Single Particle Motion C ontents Uniform E and B E = - guiding centers Definition of guiding center E gravitation Non Uniform B 'grad B' drift, B B Curvature drift Grad -B drift, B B invariance of µ. Magnetic

More information

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer May-Britt Kallenrode Space Physics An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres With 170 Figures, 9 Tables, Numerous Exercises and Problems Springer Contents 1. Introduction

More information

Intermission Page 343, Griffith

Intermission Page 343, Griffith Intermission Page 343, Griffith Chapter 8. Conservation Laws (Page 346, Griffith) Lecture : Electromagnetic Power Flow Flow of Electromagnetic Power Electromagnetic waves transport throughout space the

More information

Solid State Physics FREE ELECTRON MODEL. Lecture 17. A.H. Harker. Physics and Astronomy UCL

Solid State Physics FREE ELECTRON MODEL. Lecture 17. A.H. Harker. Physics and Astronomy UCL Solid State Physics FREE ELECTRON MODEL Lecture 17 A.H. Harker Physics and Astronomy UCL Magnetic Effects 6.7 Plasma Oscillations The picture of a free electron gas and a positive charge background offers

More information

The Physics of Field-Aligned Currents

The Physics of Field-Aligned Currents The Physics of Field-Aligned Currents Andrew N. Wright UNIVERSITY OF ST ANDREWS Magnetospheric Current Circuit There is a rich structure of currents flowing parallel (j ) and perpendicular (j ) to the

More information

Sondrestrom Joule Heating Estimates

Sondrestrom Joule Heating Estimates Sondrestrom Joule Heating Estimates Barbara Emery (HAO/NCAR), Arthur Richmond (HAO/NCAR), Anja Stromme (SRI International), J Michael Ruohoniemi (VT) CEDAR POLA-04 Tuesday 24 June 2014 Abstract The Sondrestrom

More information

Magnetospheric Currents at Quiet Times

Magnetospheric Currents at Quiet Times Magnetospheric Currents at Quiet Times Robert L. McPherron Institute of Geophysics and Planetary Physics University of California Los Angeles Los Angeles, CA 90095-1567 e-mail: rmcpherron@igpp.ucla.edu

More information

INTRODUCTION TO ELECTRODYNAMICS

INTRODUCTION TO ELECTRODYNAMICS INTRODUCTION TO ELECTRODYNAMICS Second Edition DAVID J. GRIFFITHS Department of Physics Reed College PRENTICE HALL, Englewood Cliffs, New Jersey 07632 CONTENTS Preface xi Advertisement 1 1 Vector Analysis

More information

UNH Modeling for RENU2

UNH Modeling for RENU2 UNH Modeling for RENU2 RENU 2 Science Team Meeting I Brent Sadler University of New Hampshire (Model: Antonius Otto, UAF) 1 CHAMP satellite Plot showing 8 orbits of the CHAMP satellite, at 400 km altitude,

More information

Radiation belt particle dynamics

Radiation belt particle dynamics Radiation belt particle dynamics Prepared by Kevin Graf Stanford University, Stanford, CA IHY Workshop on Advancing VLF through the Global AWESOME Network Basic Motion Motion of charged particle q in presence

More information

Dynamics of the Thermosphere

Dynamics of the Thermosphere Dynamics of the Thermosphere Jeffrey M. Forbes, University of Colorado http://spot.colorado.edu/~forbes/home.html http://sisko.colorado.edu/forbes/asen5335/ ASEN5335 Aerospace Environment: Space Weather

More information

Magnetic Reconnection

Magnetic Reconnection Magnetic Reconnection? On small scale-lengths (i.e. at sharp gradients), a diffusion region (physics unknown) can form where the magnetic field can diffuse through the plasma (i.e. a breakdown of the frozenin

More information

Joule heating due to vertical ion currents in the lower thermosphere over the dip equator

Joule heating due to vertical ion currents in the lower thermosphere over the dip equator Earth Planets Space, 50, 833 837, 1998 Joule heating due to vertical ion currents in the lower thermosphere over the dip equator R. Raghavarao, R. Sridharan, and R. Suhasini Physical Research Laboratory,

More information

Part IB Electromagnetism

Part IB Electromagnetism Part IB Electromagnetism Theorems Based on lectures by D. Tong Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

MODELING THE EARTH S IONOSPHERE: SAMI2 AND SAMI3

MODELING THE EARTH S IONOSPHERE: SAMI2 AND SAMI3 MODELING THE EARTH S IONOSPHERE: SAMI2 AND SAMI3 J.D. Huba and G. Joyce Plasma Physics Division Naval Research Laboratory Washington, DC CEDAR Workshop Boulder, CO June, 2010 Icarus Research, Inc. (acknowledge

More information

Hartmann Flow Physics at Plasma-Insulator Boundary in the Maryland Centrifugal Experiment (MCX)

Hartmann Flow Physics at Plasma-Insulator Boundary in the Maryland Centrifugal Experiment (MCX) Hartmann Flow Physics at Plasma-Insulator Boundary in the Maryland Centrifugal Experiment (MCX) Sheung-Wah Ng, A. B. Hassam IREAP, University of Maryland, College Park ICC 2006, Austin, TX Maryland Centrifugal

More information

26. Non-linear effects in plasma

26. Non-linear effects in plasma Phys780: Plasma Physics Lecture 26. Non-linear effects. Collisionless shocks.. 1 26. Non-linear effects in plasma Collisionless shocks ([1], p.405-421, [6], p.237-245, 249-254; [4], p.429-440) Collisionless

More information

Numerical simulation of the equatorial wind jet in the thermosphere

Numerical simulation of the equatorial wind jet in the thermosphere JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2011ja017373, 2012 Numerical simulation of the equatorial wind jet in the thermosphere Yasunobu Miyoshi, 1 Hitoshi Fujiwara, 2 Hidekatsu Jin, 3 Hiroyuki

More information

Whole Atmosphere Community Climate Model with Thermosphere and Ionosphere Extension (WACCM-X): Model Overview

Whole Atmosphere Community Climate Model with Thermosphere and Ionosphere Extension (WACCM-X): Model Overview Whole Atmosphere Community Climate Model with Thermosphere and Ionosphere Extension (WACCM-X): Model Overview Han-Li Liu and WACCM-X Team NCAR/HAO: Ben Foster, Jing Liu, Gang Lu, Astrid Maute, Joe McInerney,

More information

xkcd.com It IS about physics. It ALL is.

xkcd.com It IS about physics. It ALL is. xkcd.com It IS about physics. It ALL is. Introduction to Space Plasmas The Plasma State What is a plasma? Basic plasma properties: Qualitative & Quantitative Examples of plasmas Single particle motion

More information

A New Equatorial Plasma Bubble Prediction Capability

A New Equatorial Plasma Bubble Prediction Capability A New Equatorial Plasma Bubble Prediction Capability Brett A. Carter Institute for Scientific Research, Boston College, USA, http://www.bc.edu/research/isr/, RMIT University, Australia, www.rmit.edu.au/space

More information

Ideal Magnetohydrodynamics (MHD)

Ideal Magnetohydrodynamics (MHD) Ideal Magnetohydrodynamics (MHD) Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 1, 2016 These lecture notes are largely based on Lectures in Magnetohydrodynamics

More information

Chapter 8. Conservation Laws. 8.3 Magnetic Forces Do No Work

Chapter 8. Conservation Laws. 8.3 Magnetic Forces Do No Work Chapter 8. Conservation Laws 8.3 Magnetic Forces Do No Work 8.2 Momentum of EM fields 8.2.1 Newton's Third Law in Electrodynamics Consider two charges, q 1 and q 2, moving with speeds v 1 and v 2 magnetic

More information

Perspectives on Ionospheric Electrodynamics Arthur D. Richmond, NCAR-HAO and collaborators

Perspectives on Ionospheric Electrodynamics Arthur D. Richmond, NCAR-HAO and collaborators Perspectives on Ionospheric Electrodynamics Arthur D. Richmond, NCAR-HAO and collaborators Ionospheric dynamo modeling Disturbance dynamo Assimilative Mapping of Ionospheric Electrodynamics (AMIE) Interactions

More information

CHARGED PARTICLE MOTION IN CONSTANT AND UNIFORM ELECTROMAGNETIC FIELDS

CHARGED PARTICLE MOTION IN CONSTANT AND UNIFORM ELECTROMAGNETIC FIELDS CHARGED PARTICLE MOTION IN CONSTANT AND UNIFORM ELECTROMAGNETIC FIELDS In this and in the following two chapters we investigate the motion of charged particles in the presence of electric and magnetic

More information

Impact of the altitudinal Joule heating distribution on the thermosphere

Impact of the altitudinal Joule heating distribution on the thermosphere JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2010ja016019, 2011 Impact of the altitudinal Joule heating distribution on the thermosphere Yue Deng, 1 Timothy J. Fuller Rowell, 2,3 Rashid A. Akmaev,

More information

Fundamentals of Plasma Physics Transport in weakly ionized plasmas

Fundamentals of Plasma Physics Transport in weakly ionized plasmas Fundamentals of Plasma Physics Transport in weakly ionized plasmas APPLAuSE Instituto Superior Técnico Instituto de Plasmas e Fusão Nuclear Luís L Alves (based on Vasco Guerra s original slides) 1 As perguntas

More information

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism Benjamin Hornberger 1/26/1 Phy 55, Classical Electrodynamics, Prof. Goldhaber Lecture notes from Oct. 26, 21 Lecture held by Prof. Weisberger

More information

Planetary Magnetospheres

Planetary Magnetospheres 1 Planetary Magnetospheres Vytenis M. Vasyliūnas Max-Planck-Institut für Sonnensystemforschung Heliophysics Summer School: Year 4 July 28 August 4, 2010 Boulder, Colorado July 23, 2010 Figure 1: Schematic

More information

The Physics of Space Plasmas

The Physics of Space Plasmas The Physics of Space Plasmas Magnetic Storms, Substorms and the Generalized Ohm s Law William J. Burke 27 November 2012 University of Massachusetts, Lowell Lecture 10 Geomagnetic Storms: (continued ) Large

More information

Sub-Auroral Electric Fields: An Inner Magnetosphere Perspective

Sub-Auroral Electric Fields: An Inner Magnetosphere Perspective Sub-Auroral Electric Fields: An Inner Magnetosphere Perspective Bob Spiro Rice University 2005 GEM/CEDAR Tutorial 1 Introduction/Outline Introduction/Outline Importance of Sub-Auroral E-Fields Early Models

More information

Whole Atmosphere Simulation of Anthropogenic Climate Change

Whole Atmosphere Simulation of Anthropogenic Climate Change Whole Atmosphere Simulation of Anthropogenic Climate Change Stan Solomon, Hanli Liu, Dan Marsh, Joe McInerney, Liying Qian, and Francis Vitt High Altitude Observatory National Center for Atmospheric Research

More information

The ionosphere of the Earth

The ionosphere of the Earth Chapter 3 The ionosphere of the Earth The ionosphere of the Earth consists of weakly ionised gas. No more than about a fraction of the order of 10 3 of the atmospheric molecules are ionised. This means

More information

Hybrid Simulations: Numerical Details and Current Applications

Hybrid Simulations: Numerical Details and Current Applications Hybrid Simulations: Numerical Details and Current Applications Dietmar Krauss-Varban and numerous collaborators Space Sciences Laboratory, UC Berkeley, USA Boulder, 07/25/2008 Content 1. Heliospheric/Space

More information

Single Particle Motion

Single Particle Motion Single Particle Motion Overview Electromagnetic fields, Lorentz-force, gyration and guiding center, drifts, adiabatic invariants. Pre-requisites: Energy density of the particle population smaller than

More information

Lecture notes for ELECTRODYNAMICS.

Lecture notes for ELECTRODYNAMICS. Lecture notes for 640-343 ELECTRODYNAMICS. 1 Summary of Electrostatics 1.1 Coulomb s Law Force between two point charges F 12 = 1 4πɛ 0 Q 1 Q 2ˆr 12 r 1 r 2 2 (1.1.1) 1.2 Electric Field For a charge distribution:

More information

The Equatorial Ionosphere: A Tutorial

The Equatorial Ionosphere: A Tutorial The Equatorial Ionosphere: A Tutorial Bela G. Fejer Center for Atmospheric and Space Science Utah State University Logan, Utah CEDAR Meeting Seattle, WA June 2015 The Equatorial Ionosphere Outline Introduction

More information

Diffusion equation, flux, diffusion coefficient scaling. Diffusion in fully ionized plasma vs. weakly ionized plasma. n => Coulomb collision frequency

Diffusion equation, flux, diffusion coefficient scaling. Diffusion in fully ionized plasma vs. weakly ionized plasma. n => Coulomb collision frequency Last Time Diffusion in plasma: the main reason why we need to control it (i.e. using magnetic field) Diffusion equation, flux, diffusion coefficient scaling o o t nx,t Dn D2 nx,t o D ~ L 2 T Diffusion

More information

Daytime zonal drifts in the ionospheric E and 150 km regions estimated using EAR observations

Daytime zonal drifts in the ionospheric E and 150 km regions estimated using EAR observations Daytime zonal drifts in the ionospheric E and 150 km regions estimated using EAR observations P. Pavan Chaitanya, A. K. Patra National Atmospheric Research Laboratory, Gadanki, India Y. Otsuka Solar-Terrestrial

More information

ブラックホール磁気圏での 磁気リコネクションの数値計算 熊本大学 小出眞路 RKKコンピュー 森野了悟 ターサービス(株) BHmag2012,名古屋大学,

ブラックホール磁気圏での 磁気リコネクションの数値計算 熊本大学 小出眞路 RKKコンピュー 森野了悟 ターサービス(株) BHmag2012,名古屋大学, RKK ( ) BHmag2012,, 2012.2.29 Outline Motivation and basis: Magnetic reconnection around astrophysical black holes Standard equations of resistive GRMHD Test calculations of resistive GRMHD A simulation

More information

WACCM X Updates. CESM Workshop, June, 2017, Boulder, Colorado

WACCM X Updates. CESM Workshop, June, 2017, Boulder, Colorado WACCM X Updates Han Li Liu and WACCM X Team NCAR/HAO: Ben Foster, Jing Liu, Gang Lu, Astrid Maute, Joe McInerney, Nick Pedatella, Liying Qian, Art Richmond, Stan Solomon, Wenbin Wang NCAR/ACOM: Chuck Bardeen,

More information

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge.

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge. MP204, Important Equations page 1 Below is a list of important equations that we meet in our study of Electromagnetism in the MP204 module. For your exam, you are expected to understand all of these, and

More information

Figure 1.1: Ionization and Recombination

Figure 1.1: Ionization and Recombination Chapter 1 Introduction 1.1 What is a Plasma? 1.1.1 An ionized gas A plasma is a gas in which an important fraction of the atoms is ionized, so that the electrons and ions are separately free. When does

More information

Equatorial-PRIMO. (Problems Related to Ionospheric Models and Observations) Non-coupled models (GIP, SAMI2, PBMOD, LLIONS, IFM, IPM)

Equatorial-PRIMO. (Problems Related to Ionospheric Models and Observations) Non-coupled models (GIP, SAMI2, PBMOD, LLIONS, IFM, IPM) Equatorial-PRIMO (Problems Related to Ionospheric Models and Observations) Non-coupled models (GIP, SAMI2, PBMOD, LLIONS, IFM, IPM) March equinox, F 10.7 =120, geomagnetic quiet condition Ne, Te, and Ti

More information

Modelling the zonal drift of equatorial plasma irregularities and scintillation. Chaosong Huang Air Force Research Laboratory

Modelling the zonal drift of equatorial plasma irregularities and scintillation. Chaosong Huang Air Force Research Laboratory Modelling the zonal drift of equatorial plasma irregularities and scintillation Chaosong Huang Air Force Research Laboratory 14 th International Ionospheric Effects Symposium Alexandria, Virginia May 12-14,

More information

PROBLEM SET. Heliophysics Summer School. July, 2013

PROBLEM SET. Heliophysics Summer School. July, 2013 PROBLEM SET Heliophysics Summer School July, 2013 Problem Set for Shocks and Particle Acceleration There is probably only time to attempt one or two of these questions. In the tutorial session discussion

More information

Global-scale Observations of the Limb and Disk

Global-scale Observations of the Limb and Disk Global-scale Observations of the Limb and Disk R. Eastes, W. McClintock, M. Lankton, A. Aksnes, D. Anderson, L. Andersson, A. Burns*, S. Budzien, M. Codrescu R. Daniell, K. Dymond, S. England, F. Eparvier,

More information

Topside interactions with the Titan atmosphere. Anne Wellbrock

Topside interactions with the Titan atmosphere. Anne Wellbrock Topside interactions with the Titan atmosphere Anne Wellbrock Outline 1. About me 2. Introduction 3. Introducing Titan and its atmosphere 4. The UCL Titan thermosphere code 5. The interaction with Saturn

More information

Enabling system science: Ionospheric conductivity

Enabling system science: Ionospheric conductivity Enabling system science: Ionospheric conductivity Ryan McGranaghan Thayer School of Engineering Dartmouth College Delores Knipp, Tomoko Matsuo CU Boulder, NCAR HAO Assimilative approach Bring diverse data

More information

WACCM-X Simulations of Climate Change in the Upper Atmosphere Stan Solomon, Hanli Liu, Dan Marsh, Joe McInerney, Liying Qian, and Francis Vitt

WACCM-X Simulations of Climate Change in the Upper Atmosphere Stan Solomon, Hanli Liu, Dan Marsh, Joe McInerney, Liying Qian, and Francis Vitt WACCM-X Simulations of Climate Change in the Upper Atmosphere Stan Solomon, Hanli Liu, Dan Marsh, Joe McInerney, Liying Qian, and Francis Vitt High Altitude Observatory National Center for Atmospheric

More information

MI Coupling from a Magnetospheric Point of View

MI Coupling from a Magnetospheric Point of View MI Coupling from a Magnetospheric Point of View Robert L. McPherron Institute of Geophysics and Planetary Physics and Department of Earth and Space Sciences rmcpherron@igpp.ucla.edu Normal Stress Normal

More information

EECS 117. Lecture 17: Magnetic Forces/Torque, Faraday s Law. Prof. Niknejad. University of California, Berkeley

EECS 117. Lecture 17: Magnetic Forces/Torque, Faraday s Law. Prof. Niknejad. University of California, Berkeley University of California, Berkeley EECS 117 Lecture 17 p. 1/? EECS 117 Lecture 17: Magnetic Forces/Torque, Faraday s Law Prof. Niknejad University of California, Berkeley University of California, Berkeley

More information

Magnetosphere-Ionosphere- Thermosphere coupling and the aurora

Magnetosphere-Ionosphere- Thermosphere coupling and the aurora Magnetosphere-Ionosphere- Thermosphere coupling and the aurora UV Ingo Müller-Wodarg 1 Space & Atmospheric Physics Group Imperial College London i.mueller-wodarg@imperial.ac.uk Ionosphere of Earth The

More information

Multi-fluid Simulation Models for Inductively Coupled Plasma Sources

Multi-fluid Simulation Models for Inductively Coupled Plasma Sources Multi-fluid Simulation Models for Inductively Coupled Plasma Sources Madhusudhan Kundrapu, Seth A. Veitzer, Peter H. Stoltz, Kristian R.C. Beckwith Tech-X Corporation, Boulder, CO, USA and Jonathan Smith

More information

Primer in Special Relativity and Electromagnetic Equations (Lecture 13)

Primer in Special Relativity and Electromagnetic Equations (Lecture 13) Primer in Special Relativity and Electromagnetic Equations (Lecture 13) January 29, 2016 212/441 Lecture outline We will review the relativistic transformation for time-space coordinates, frequency, and

More information

The Physics of Space Plasmas

The Physics of Space Plasmas The Physics of Space Plasmas Magnetic Storms and Substorms William J. Burke 14 November 2012 University of Massachusetts, Lowell Lecture 9 Course term-paper topics Geomagnetic Storms: (continued ) Volland-Stern

More information

Reformulation and energy flow of the Cowling channel

Reformulation and energy flow of the Cowling channel JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2010ja015989, 2011 Reformulation and energy flow of the Cowling channel R. Fujii, 1 O. Amm, 2 A. Yoshikawa, 3 A. Ieda, 1 and H. Vanhamäki 2 Received

More information

Electromagnetic Fields in Space

Electromagnetic Fields in Space Chapter 3 Electromagnetic Fields in Space Magnetic and electric field are fundamental properties in the entire universe. Massive magnetic fields eist in the vicinity of pulsars, in active galactic nuclei,

More information

Protons - Part Two. Remodelling the Models

Protons - Part Two. Remodelling the Models Protons - Part Two Remodelling the Models Quick Recap Three types of fluxes we regularly see in astronomy Light Neutrinoes Particles The last one is the most important to me The Westmorland Gazette goes

More information

Marianna G. Shepherd Scientific Secretary Scientific Committee on Solar-Terrestrial Physics (SCOSTEP)

Marianna G. Shepherd Scientific Secretary Scientific Committee on Solar-Terrestrial Physics (SCOSTEP) 51 st Scientific and Technical Subcommittee UN COPUOS Vienna, 12 February 2014 Marianna G. Shepherd Scientific Secretary Scientific Committee on Solar-Terrestrial Physics (SCOSTEP) STEP Solar- Terrestrial

More information

Tentamen för kursen Rymdfysik (1FA255)

Tentamen för kursen Rymdfysik (1FA255) Tentamen för kursen Rymdfysik (1FA255) 2017-10-24 Uppsala universitet Institutionen för fysik och astronomi Avdelningen för astronomi och rymdfysik Anders Eriksson Answers should be provided in Swedish

More information

David versus Goliath 1

David versus Goliath 1 David versus Goliath 1 or A Comparison of the Magnetospheres between Jupiter and Earth 1 David and Goliath is a story from the Bible that is about a normal man (David) who meets a giant (Goliath) Tomas

More information

Thermosphere/Ionosphere Coupling in WACCM-X

Thermosphere/Ionosphere Coupling in WACCM-X Thermosphere/Ionosphere Coupling in WACCM-X Ben Foster (with Hanli Liu and Joe McInerny) NCAR/HAO Whole Atmosphere Working Group February 18, 2015 HAO Thermospheric GCM s TIEGCM and TIMEGCM Global, 3d,

More information

Module II: Relativity and Electrodynamics

Module II: Relativity and Electrodynamics Module II: Relativity and Electrodynamics Lecture 2: Lorentz transformations of observables Amol Dighe TIFR, Mumbai Outline Length, time, velocity, acceleration Transformations of electric and magnetic

More information

Development and Validation of WACCM-X Thermosphere and Ionosphere

Development and Validation of WACCM-X Thermosphere and Ionosphere Development and Validation of WACCM-X Thermosphere and Ionosphere Han-Li Liu and WACCM-X Team NCAR/HAO: Ben Foster, Jing Liu, Gang Lu, Astrid Maute, Joe McInerney, Nick Pedatella, Liying Qian, Art Richmond,

More information

xkcd.com It IS about physics. It ALL is.

xkcd.com It IS about physics. It ALL is. xkcd.com It IS about physics. It ALL is. Introduction to Space Plasmas! The Plasma State What is a plasma? Basic plasma properties: Qualitative & Quantitative Examples of plasmas! Single particle motion

More information

Lecture 14 Current Density Ohm s Law in Differential Form

Lecture 14 Current Density Ohm s Law in Differential Form Lecture 14 Current Density Ohm s Law in Differential Form Sections: 5.1, 5.2, 5.3 Homework: See homework file Direct Electric Current Review DC is the flow of charge under electrostatic forces in conductors

More information

Ionosphere Variability at Mid Latitudes during Sudden Stratosphere Warmings

Ionosphere Variability at Mid Latitudes during Sudden Stratosphere Warmings Ionosphere Variability at Mid Latitudes during Sudden Stratosphere Warmings Nick Pedatella 1 and Astrid Maute 2 1 COSMIC Program Office, University Corporation for Atmospheric Research 2 High Altitude

More information

toroidal iron core compass switch battery secondary coil primary coil

toroidal iron core compass switch battery secondary coil primary coil Fundamental Laws of Electrostatics Integral form Differential form d l C S E 0 E 0 D d s V q ev dv D ε E D qev 1 Fundamental Laws of Magnetostatics Integral form Differential form C S dl S J d s B d s

More information

Reduced MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 19, 2014

Reduced MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 19, 2014 Reduced MHD Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 19, 2014 These lecture notes are largely based on Lectures in Magnetohydrodynamics by Dalton

More information

MHD turbulence in the solar corona and solar wind

MHD turbulence in the solar corona and solar wind MHD turbulence in the solar corona and solar wind Pablo Dmitruk Departamento de Física, FCEN, Universidad de Buenos Aires Motivations The role of MHD turbulence in several phenomena in space and solar

More information

The Earth s thermosphere and coupling to the Sun:

The Earth s thermosphere and coupling to the Sun: The Earth s thermosphere and coupling to the Sun: Does the stratosphere and troposphere care? Alan D Aylward, George Millward, Ingo Muller-Wodarg and Matthew Harris Atmospheric Physics Laboratory, Dept

More information